Mostrar el registro sencillo del ítem

dc.contributor.authorCarrillo Sánchez, Richard Rafael 
dc.contributor.authorRos Vidal, Eduardo 
dc.contributor.authorBoucheny, Christian
dc.contributor.authorCoenen, Olivier J.-M. D.
dc.date.accessioned2025-01-31T20:53:57Z
dc.date.available2025-01-31T20:53:57Z
dc.date.issued2008
dc.identifier.citationCarrillo, R. R., Ros, E., Boucheny, C., & Olivier, J. M. C. (2008). A real-time spiking cerebellum model for learning robot control. Biosystems, 94(1-2), 18-27es_ES
dc.identifier.urihttps://hdl.handle.net/10481/101706
dc.description.abstractWe describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with conductance-based synapses. The neuron characteristics are derived from our earlier detailed models of the different cerebellar neurons. We tested the cerebellum model in a real-time control application with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP) at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar model in a robot control system using a target-reaching task. We test whether the system learns to reach different target positions in a non-destructive way, therefore abstracting a general dynamics model. To test the system's ability to self-adapt to different dynamical situations, we present results obtained after changing the dynamics of the robotic platform significantly (its friction and load). The experimental results show that the cerebellar-based system is able to adapt dynamically to different contexts.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSpiking neurones_ES
dc.subjectCerebellumes_ES
dc.subjectAdaptivees_ES
dc.subjectSimulationes_ES
dc.subjectLearninges_ES
dc.subjectInferior olivees_ES
dc.subjectProbabilistices_ES
dc.subjectRobots es_ES
dc.subjectreal timees_ES
dc.titleA real-time spiking cerebellum model for learning robot controles_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.biosystems.2008.05.008
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional