Mostrar el registro sencillo del ítem

dc.contributor.authorMolina, Carlos
dc.contributor.authorPrados-Suárez, Belén
dc.contributor.authorMartinez-Sanchez, Beatriz
dc.date.accessioned2025-01-31T10:29:02Z
dc.date.available2025-01-31T10:29:02Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/10481/101597
dc.description.abstractFederated learning has a great potential to create solutions working over different sources without data transfer. However current federated methods are not explainable nor auditable. In this paper we propose a Federated data mining method to discover association rules. More accurately, we define what we consider as interesting itemsets and propose an algorithm to obtain them. This approach facilitates the interoperability and reusability, and it is based on the accessibility to data. These properties are quite aligned with the FAIR principles.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectElectronic Health Recordes_ES
dc.subjectData miniges_ES
dc.subjectPrivacyes_ES
dc.subjectFederated Learninges_ES
dc.titleFederated Mining of Interesting Association Rules over EHRses_ES
dc.typeconference outputes_ES
dc.relation.projectIDPGC2018-096156-B-I00es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.3233/SHTI210799
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional