Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells
Metadatos
Mostrar el registro completo del ítemAutor
García-Pérez, José L.; Morell Hita, María; Scheys, Joshua O.; Kulpa, Deanna A.; Morell, Santiago; Carter, Christoph C.; Hammer, Gary D.; Collins, Kathleen L.; O’ Shea, K. Sue; Menéndez, Pablo; Moran, John V.Editorial
Nature
Fecha
2010-08-05Referencia bibliográfica
Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S, Carter CC, Hammer GD, Collins KL, O'Shea KS, Menendez P, Moran JV. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature. 2010 Aug 5;466(7307):769-73. doi: 10.1038/nature09209. PMID: 20686575; PMCID: PMC3034402.
Patrocinador
J.V.M. is supported by the NIH (GM060518 and GM082970) and the Howard Hughes Medical Institute. J.L.G.-P. is supported by the ISCIII-CSJA (EMER07/056), by a Marie Curie IRG action (FP7-PEOPLE-2007-4-3-IRG), by CICE (P09-CTS-4980) and Proyectos en Salud (PI0002/2009) from Junta de Andalucia (Spain), and through the Spanish Ministry of Health (FIS PI08171, and Miguel Servet CP07/00065). M.M. is supported by the ISCIII-CSJA (EMER07/056). P.M. is supported by the MICINN-PLANE (PLE-2009-0111), by CICE (P08-CTS-3678) from Junta de Andalucia (Spain) and by the Spanish Ministry of Health (FIS PI070026). K.S.O. is supported by the NIH (NS-048187 and GM-069985). K.L.C. is supported by the Burroughs Wellcome Foundation and by an NIH RO1 (AI051198). G.D.H is supported by an NIDDK NIH R01-DK62027. J.O.S. is supported by a Cellular and Molecular Approaches to Systems and Integrative Biology Training Grant (T32-GM08322). D.A.K. is supported by The Irvington Institute Fellowship Program of the Cancer Research Institute. S.M. is supported by a CICE (P08-CTS-3678) scholarship from Junta de Andalucia, Spain. C.C.C. is supported by a Rackham Predoctoral Fellowship from the University of Michigan. The costs of DNA sequencing we defrayed in part by the University of Michigan's Cancer Center Support Grant (NIH 5 P30 CA46592).Resumen
Long INterspersed Element-1 (LINE-1 or L1) retrotransposition continues to impact human genome evolution1,2. L1s can retrotranspose in the germline, during early development, and in select somatic cells3,4,5,6,7,8; however, the host response to L1 retrotransposition remains largely unexplored. Here, we show that reporter genes introduced into the genome of various human embryonic carcinoma-derived cell lines (ECs) by L1 retrotransposition are rapidly and efficiently silenced either during or immediately after their integration. Treating ECs with histone deacetylase inhibitors (IHDACs) rapidly reverses this silencing, and chromatin immunoprecipitation (ChIP) experiments revealed that reactivation of the reporter gene was correlated with changes in chromatin status at the L1 integration site. Under our assay conditions, rapid silencing also was observed when reporter genes were delivered into ECs by mouse L1s and a zebrafish LINE-2 element, but not when similar reporter genes were delivered into ECs by Moloney murine leukemia virus (MMLV) or human immunodeficiency virus (HIV), suggesting these integration events are silenced by distinct mechanisms. Finally, we demonstrate that subjecting ECs to culture conditions that promote differentiation attenuates the silencing of reporter genes delivered by L1 retrotransposition, but that differentiation, per se, is not sufficient to reactivate previously silenced reporter genes. Thus, our data suggest that ECs differ from many differentiated cells in their ability to silence reporter genes delivered by L1 retrotransposition.





