Show simple item record

dc.contributor.authorMorell Hita, María
dc.date.accessioned2025-01-30T10:44:07Z
dc.date.available2025-01-30T10:44:07Z
dc.date.issued2009-11-27
dc.identifier.citationCoufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O'Shea KS, Moran JV, Gage FH. L1 retrotransposition in human neural progenitor cells. Nature. 2009 Aug 27;460(7259):1127-31. doi: 10.1038/nature08248. Epub 2009 Aug 5. PMID: 19657334; PMCID: PMC2909034.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/101257
dc.description.abstractLong Interspersed Element-1 (LINE-1 or L1) retrotransposons have dramatically impacted the human genome. L1s must retrotranspose in the germ-line or during early development to ensure their evolutionary success; yet the extent to which this process impacts somatic cells is poorly understood. We previously demonstrated that engineered human L1s can retrotranspose in adult rat hippocampus progenitor cells (NPCs) in vitro and in the mouse brain in vivo1. Here, we demonstrate that NPCs isolated from human fetal brain and NPCs derived from human embryonic stem cells (hESCs) support the retrotransposition of engineered human L1s in vitro. Furthermore, we developed a quantitative multiplex polymerase chain reaction that detected an increase in the copy number of endogenous L1s in the hippocampus and in several regions of adult human brains when compared to the copy number of endogenous L1s in heart or liver genomic DNAs from the same donor. These data suggest that de novo L1 retrotransposition events may occur in the human brain and, in principle, have the potential to contribute to individual somatic mosaicism.es_ES
dc.description.sponsorshipF.H.G. and N.G.C. are supported by the Picower Foundation, Lookout Fund, and the California Institute for Regenerative Medicine (CIRM). J.L.G.P. is supported by Plan Estabilizacion Grupos SNS ENCYT 2015 (EMER07/56, Instituto de Salud Carlos III, Spain) and through the IRG-FP7-PEOPLE-2007 Marie Curie program. K.S.O. was supported by grants GM069985 and NS048187 from the National Institutes of Health. J.V.M. was supported by grants GM082970 and GM069985 from the National Institutes of Health and by the Howard Hughes Medical Institute.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleL1 retrotransposition in human neural progenitor cellses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doidoi: 10.1038/nature08248. Epub 2009 Aug 5.
dc.type.hasVersionAMes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional