Afficher la notice abrégée

dc.contributor.authorDavó Quiñonero, Arantxa
dc.contributor.authorBailón García, Esther 
dc.contributor.authorLópez Rodríguez, Sergio
dc.contributor.authorJuan Juan, Jerónimo
dc.contributor.authorLozano Castelló, Dolores
dc.contributor.authorGarcía Melchor, Max
dc.contributor.authorHerrera, Facundo C
dc.contributor.authorPellegrin, Eric
dc.contributor.authorEscudero, Carlos
dc.contributor.authorBueno López, Agustín
dc.date.accessioned2025-01-30T10:24:05Z
dc.date.available2025-01-30T10:24:05Z
dc.date.issued2020-05-11
dc.identifier.citationACS Catalysis 10, 2020, 6532es_ES
dc.identifier.urihttps://hdl.handle.net/10481/101222
dc.description.abstractThe preferential CO oxidation (CO-PROX) reaction is paramount for the purification of reformate H2-rich streams, where CuO/CeO2 catalysts show promising opportunities. This work sheds light on the lattice oxygen recovery mechanism on CuO/CeO2 catalysts during CO-PROX reaction, which is critical to guarantee both good activity and selectivity, but that is yet to be well understood. Particularly, in situ Raman spectroscopy reveals that oxygen vacancies in the ceria lattice do not form in significant amounts until advanced reaction degrees, whereas pulse O2 isotopic tests confirm the involvement of catalyst oxygen in the CO and H2 oxidation processes occurring at all stages of the CO-PROX reaction (Mars–van Krevelen). Further mechanistic insights are provided by operando near-ambient pressure X-ray photoelectron spectroscopy (NAP–XPS) and near edge X-ray absorption fine structure (NEXAFS) experiments, which prove the gradual CuO reduction and steady oxidized state of Ce ions until the very surface reduction of CeO2 at the point of selectivity loss. Experiments are complemented by density functional theory (DFT) calculations, which reveal a more facile oxygen refill according to the trend CuO > CeO2 > Cu2O. Overall, this work concludes that the oxygen recovery mechanism in CO-PROX switches from a direct mechanism, wherein oxygen restores vacancy sites in the partially reduced CuO particles, to a synergistic mechanism with the participation of ceria once CuxO particles reach a critical reduction state. This mechanistic switch ultimately results in a decrease in CO conversion in favor of the undesired H2 oxidation, which opens-up future research on potential strategies to improve oxygen recovery.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleInsights into the Oxygen Vacancy Filling Mechanism in CuO/CeO2 Catalysts: A Key Step Toward High Selectivity in Preferential CO Oxidationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1021/acscatal.0c00648).
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional