Mostrar el registro sencillo del ítem

dc.contributor.authorChinchilla-Garzón, Clara
dc.contributor.authorGalbiati, Marta
dc.contributor.authorMisturini, Alechania
dc.contributor.authorGimeno-Fonquernie, Pol
dc.contributor.authorAlmora-Barrios, Neyvis
dc.contributor.authorMuñoz Padial, Natalia 
dc.contributor.authorMartí-Gastaldo, Carlos
dc.date.accessioned2025-01-30T09:46:40Z
dc.date.available2025-01-30T09:46:40Z
dc.date.issued2025-01-26
dc.identifier.urihttps://hdl.handle.net/10481/101167
dc.descriptionSubmitted versiones_ES
dc.description.abstractThe soft nature of Metal-Organic Frameworks (MOFs) sets them apart from other non-synthetic porous materials. Their flexibility allows the framework components to rearrange in response to environmental changes, leading to different states and properties. Our work extends this concept to titanium frameworks, demonstrating control over charge transport in porous molecular crystals. MUV-35 is a two-fold catenated framework composed of heterometallic TiMn 2 trimers and electron donor 4,4',4''-(benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8triyl)tribenzoic acid (H3 BTTTB) linkers, forming a rare sit-c net topology that can fold to reduce its volume by about 40% through a single-crystal transformation controlled by linker conformation in open, intermediate, and closed states. This process, driven by a free energy difference of nearly 300 kJ·mol-1 , originates from the formation of a continuous network of non-covalent interactions that force the spontaneous loss of the solvent in the pores of the framework to establish charge transport pathways that afford photocurrents of 2.5 × 10 -3 S·m-1 under visible light for an ON/OFF ratio (∆R) of four orders of magnitude. This photoconductivity rivals the best conductivity values described for though-transport conductive MOFs while maintaining a porosity of nearly 1.000 m2 ·g-1 .es_ES
dc.description.sponsorshipThis work was supported by the H2020 program (ERC-2021-COG-101043428), the Generalitat Valenciana (PROMETEU/2021/054, MFA/2022/026, and SEJI-GENT/2021/059), and the Spanish government (CEX2019-000919-M, PID2020-118117RB-I00, & CNS2022-135677). C.C.-G. and M.G. thank the Spanish government for a FPI grant (PRE2021-098634) and RyC Fellowship (RYC2021-034609-I). N.M.P. thanks La Caixa Foundation for a Postdoctoral Junior Leader−Retaining Fellowship (ID100010434, fellowship code LCF/BQ/PR20/11770014). We also thank the University of Valencia-SCSIE for research facilities, ALBA for the access to synchrotron radiation at the beamlines BL13 XALOC (2023087722) and BSC-RES for computational resources (QHS-2024-2-0029).es_ES
dc.language.isoenges_ES
dc.publisherWILEY-V, Germany.es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.titleStructural control of photoconductivity in a flexible titanium-organic frameworkes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/adma.202412045
dc.type.hasVersionAOes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License