Mostrar el registro sencillo del ítem

dc.contributor.authorArnedo Fernández, Francisco Javier 
dc.contributor.authorMamah, Daniel
dc.contributor.authorBaranger, David
dc.contributor.authorHarms, Michael
dc.contributor.authorBarch, Deanna
dc.contributor.authorSvrakic, Dragan
dc.contributor.authorde Erausquin, Gabriel
dc.contributor.authorCloninger, Robert
dc.contributor.authorZwir Nawrocki, Jorge Sergio Igor 
dc.date.accessioned2025-01-30T09:20:15Z
dc.date.available2025-01-30T09:20:15Z
dc.date.issued2015-10-15
dc.identifier.citationArnedo, J., Mamah, D., Baranger, D. A., Harms, M. P., Barch, D. M., Svrakic, D. M., de Erausquin, G. A., Cloninger, C. R., & Zwir, I. (2015). Decomposition of brain diffusion imaging data uncovers latent schizophrenias with distinct patterns of white matter anisotropy. NeuroImage, 120, 43-54. https://doi.org/10.1016/j.neuroimage.2015.06.083es_ES
dc.identifier.urihttps://hdl.handle.net/10481/101124
dc.description.abstractFractional anisotropy (FA) analysis of diffusion tensor-images (DTI) has yielded inconsistent abnormalities in schizophrenia (SZ). Inconsistencies may arise from averaging heterogeneous groups of patients. Here we investigate whether SZ is a heterogeneous group of disorders distinguished by distinct patterns of FA reductions. We developed a generalized factorization method (GFM) to identify biclusters (i.e., subsets of subjects associated with a subset of particular characteristics, such as low FA in specific regions). GFM appropriately assembles a collection of unsupervised techniques with Non-negative Matrix Factorization to generate biclusters, rather than averaging across all subjects and all their characteristics. DTI tract-based spatial statistics images, which output is the locally maximal FA projected onto the group white matter skeleton, were analyzed in 47 SZ and 36 healthy subjects, identifying 8 biclusters. The mean FA of the voxels characteristic of each bicluster (i.e., subset of low FA values shared by a particular subset of subjects) was significantly different from those of either other SZ subjects or 36 healthy controls. The eight biclusters were organized into four more general patterns of low FA in specific regions: 1) genu of corpus callosum (GCC), 2) fornix (FX) + external capsule (EC), 3) splenium of CC (SCC) + retrolenticular limb (RLIC) + posterior limb (PLIC) of the internal capsule, and 4) anterior limb of the internal capsule. These patterns were significantly associated with particular clinical features: Pattern 1 (GCC) with bizarre behavior, pattern 2 (FX+EC) with prominent delusions, and pattern 3 (SCC+RLIC+PLIC) with negative symptoms including disorganized speech. The uncovered patterns suggest that SZ is a heterogeneous group of disorders that can be distinguished by different patterns of FA reductions associated with distinct clinical features.es_ES
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Science and Technology TIN2009-13950, TIN2012-38805 including FEDER funds, the R. L. Kirschstein National Research Award to I.Z.; the National Institutes of Health including grant 5K08MH077220 to G.AdeE; K08MH085948 to D.M., and National Institute of Mental Health MH066031 to D.M.B. G.A.deE is a Stephen and Constance Lieber Inverstigator, and Sidney R. Baier Jr. Investigator, as well as Roksamp Chair of Biological Psychiatry at USF.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNeuroimageses_ES
dc.subjectSchizophrenia es_ES
dc.subjectFractional Anisotropyes_ES
dc.subjectDiffusion tensor-imageses_ES
dc.subjectNon-negative Matrix Factorizationes_ES
dc.subjectBiclusteringes_ES
dc.titleDecomposition of brain diffusion imaging data uncovers latent schizophrenias with distinct patterns of white matter anisotropyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.neuroimage.2015.06.083
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional