Mostrar el registro sencillo del ítem

dc.contributor.authorArnedo Fernández, Francisco Javier 
dc.contributor.authorRomero Zaliz, Rocio Celeste 
dc.contributor.authorZwir Nawrocki, Jorge Sergio Igor 
dc.contributor.authorVal Muñoz, María Coral Del 
dc.date.accessioned2025-01-30T09:11:46Z
dc.date.available2025-01-30T09:11:46Z
dc.date.issued2014-06-15
dc.identifier.citationArnedo J, Romero-Zaliz R, Zwir I, Del Val C. A multiobjective method for robust identification of bacterial small non-coding RNAs. Bioinformatics. 2014 Oct 15;30(20):2875-82. doi: 10.1093/bioinformatics/btu398. Epub 2014 Jun 23. PMID: 24958812.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/101112
dc.description.abstractMotivation: Small non-coding RNAs (sRNAs) have major roles in the post-transcriptional regulation in prokaryotes. The experimental validation of a relatively small number of sRNAs in quite few species requires developing computational algorithms capable of robustly encoding the available knowledge and utilizing this knowledge to predict sRNAs within and across species. Results: We present a novel methodology designed to identify bacterial sRNAs by incorporating the knowledge encoded by different sRNA prediction methods and optimally aggregating them as potential predictors. Because some of these methods emphasize specificity, whereas others emphasize sensitivity while detecting sRNAs, their optimal aggregation constitute trade-off solutions between these two contradictory objectives that enhance their individual merits. Many non-redundant optimal aggregations uncovered by using multi-objective optimization techniques are then combined into a multi-classifier, which ensures robustness during detection and prediction even in genomes with distinct nucleotide composition. By training with sRNAs in Salmonella enterica Typhimurium, we were able to successfully predict sRNAs in Sinorhizobium meliloti, as well as in multiple and poorly annotated species. The proposed methodology, like a meta-analysis approach, may begin to lay a possible foundation for developing robust predictive methods across a wide spectrum of genomic variability.es_ES
dc.description.sponsorshipSpanish Ministry of Science and Technology under projects TIN2009-13950 and TIN2012-38805;es_ES
dc.description.sponsorshipConsejerıa de Innovacion, Investigacion y Ciencia, Junta de Andalucıa, under project TIC-02788es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectmulti-classifieres_ES
dc.subjectSalmonella Typhimuriumes_ES
dc.subjectSinorhizobium meliloties_ES
dc.subjectbacterial sRNAes_ES
dc.titleA multi-objective method for robust identification of bacterial small non-coding RNAses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1093/bioinformatics/btu398
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional