Mostrar el registro sencillo del ítem

dc.contributor.authorMolina, Manuel
dc.contributor.authorMéndez, Javier
dc.contributor.authorMorales Santos, Diego Pedro 
dc.contributor.authorCastillo Morales, María Encarnación 
dc.contributor.authorLópez Vallejo, Marisa
dc.contributor.authorPegalajar Cuéllar, Manuel 
dc.date.accessioned2025-01-30T07:58:13Z
dc.date.available2025-01-30T07:58:13Z
dc.date.issued2022-05-05
dc.identifier.citationM. Molina, J. Mendez, D. P. Morales, E. Castillo, M. L. Vallejo and M. Pegalajar, "Power-Efficient Implementation of Ternary Neural Networks in Edge Devices," in IEEE Internet of Things Journal, vol. 9, no. 20, pp. 20111-20121, 15 Oct.15, 2022, doi: 10.1109/JIOT.2022.3172843es_ES
dc.identifier.urihttps://hdl.handle.net/10481/101050
dc.description.abstractThere is a growing interest in pushing computation to the edge, especially the problem-solving abilities of artificial neural networks (ANNs). This article presents a simplified method to obtain a ternary neural network based on the multilayer perceptron. The method is focused on resource-constrained devices, where memory, computing power, and battery are some of the most relevant constraints. A dynamic threshold is estimated to perform ternarization, and a new pruning technique is proposed to obtain a drastic reduction in the ANN’s size, with the corresponding decrease in resource utilization and power consumption of the resulting hardware. In addition, a support framework has been developed to automate hardware design exploration and generation from the network trained in software. Experimental results show that the proposed method and architecture, when implemented in a field-programmable gate array (FPGA), provide excellent figures in power (0.11–0.13 W) and efficiency (1225–1448 kfps/W) with respect to state of the art, being its efficiency double than the maximum one reported previously.es_ES
dc.description.sponsorshipGobierno de España, ref. PGC2018-09733, NEUROWAREes_ES
dc.description.sponsorshipHorizonte 2020, ref. 876019es_ES
dc.description.sponsorshipGobierno de España, ref. MIA.2021.M04.0008es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.titlePower-efficient implementation of ternary neural networks in edge deviceses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/JIOT.2022.3172843


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License