Mostrar el registro sencillo del ítem

dc.contributor.authorTriguero, Isaac
dc.contributor.authorGarcía, Salvador
dc.contributor.authorHerrera, Francisco
dc.date.accessioned2025-01-29T10:46:49Z
dc.date.available2025-01-29T10:46:49Z
dc.date.issued2010
dc.identifier.citationIEEE Transactions on Neural Network, 21es_ES
dc.identifier.urihttps://hdl.handle.net/10481/100921
dc.description.abstractNearest prototype methods are a successful trend of many pattern classification tasks. However, they present several shortcomings such as time response, noise sensitivity and storage requirements. Data reduction techniques are suitable to alleviate these drawbacks. Prototype generation is an appropriate process for data reduction that allows the fitting of a data set for nearest neighbor classification. This concise paper presents a methodology to learn iteratively the positioning of prototypes using real parameters’ optimization procedures. Concretely, we propose an iterative prototype adjustment technique based on differential evolution (IPADE). The results obtained are contrasted with non-parametrical statistical tests and show that our proposal consistently outperforms previously proposed methods, thus becoming a suitable tool in the task of enhancing the performance of the nearest neighbor classifier.es_ES
dc.language.isoenges_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectClassificationes_ES
dc.subjectDifferential Evolutiones_ES
dc.subjectNearest Neighbores_ES
dc.subjectPrototype Generationes_ES
dc.titleIPADE: Iterative prototype adjustment for nearest neighbor classificationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TNN.2010.2087415
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional