• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Matemática Aplicada
  • DMA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Matemática Aplicada
  • DMA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: From subcellular dynamics to macroscopic PDEs with multiple taxis

[PDF] publicacion26-open.pdf (12.37Mb)
Identificadores
URI: https://hdl.handle.net/10481/100726
DOI: https://doi.org/10.1142/S0218202521500056
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Corbin, Gregor; Klar, Axel; Engwer, Christian; Wenske, Michael; Surulescu, Christina; Nieto Muñoz, Juan José; Soler Vizcaino, Juan Segundo
Editorial
World Scientific
Fecha
2021-01
Referencia bibliográfica
G. Corbin, A. Klar, C. Surulescu, C. Engwer, M. Wenske, J. Nieto, J. Soler, Modeling glioma invasion with anisotropy-and hypoxia-triggered motility enhancement: from subcellular dynamics to macroscopic PDEs with multiple taxis, Math. Mod. Meth. Appl. Sci. 31(1), (2021), 177-222.
Patrocinador
Federal Ministry of Education and Research BMBF in the project GlioMaTh 05M2016; MINECO-Feder (Spain) research grant number RTI2018-098850-B-I00; Junta de Andalucía, Project PY18-RT-2422; Junta de Andalucía Project A-FQM-311-UGR18
Resumen
We deduce a model for glioma invasion making use of DTI data and accounting for the dynamics of brain tissue being actively degraded by tumor cells via excessive acidity production, but also according to the local orientation of tissue fibers. Our approach has a multiscale character: we start with a microscopic description of single cell dynamics including biochemical and/or biophysical effects of the tumor microenvironment, translated on the one hand into cell stress and corresponding forces and on the other hand into receptor binding dynamics; these lead on the mesoscopic level to kinetic equations involving transport terms w.r.t. all kinetic variables and eventually, by appropriate upscaling, to a macroscopic reaction-diffusion equation for glioma density with multiple taxis, coupled to (integro-)differential equations characterizing the evolution of acidity and macro- and mesoscopic tissue. Our approach also allows for a switch between fast and slower moving regimes, according to the local tissue anisotropy. We perform numerical simulations to investigate the behavior of solutions w.r.t. various scenarios of tissue dynamics and the dominance of each of the tactic terms, also suggesting how the model can be used to perform a numerical necrosis-based tumor grading or support radiotherapy planning by dose painting. We also provide a discussion about alternative ways of including cell level environmental influences in such multiscale modeling approach, ultimately leading in the macroscopic limit to (multiple) taxis.
Colecciones
  • DMA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias