• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Mecánica de Estructuras e Ingeniería Hidráulica
  • DMEIH - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Mecánica de Estructuras e Ingeniería Hidráulica
  • DMEIH - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A continuous finite element solution of fluid interface propagation for emergence of cavities and geysering

[PDF] Artículo principal (3.494Mb)
Identificadores
URI: https://hdl.handle.net/10481/100723
DOI: 10.1016/j.cma.2019.112746
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Molina Moya, Jorge Antonio; Ortiz Rossini, Pablo Gregorio
Editorial
Computer Methods in Applied Mechanics and Engineering
Materia
Continuous finite elements
 
Sign-preserving flux correction
 
Nearly incompressible two fluids flow
 
Interface dynamics
 
Air cavity propagation
 
Date
2020-02-01
Abstract
A finite element method integrated with flux correction techniques is presented for the solution of two nearly incompressible fluids flow with moving interfaces. The procedure incorporates the advection of a phase function to couple fluids motion and the contact discontinuity, and a modified continuity equation preserving mass conservation by considering the parametric definition of density. Limiting bounds comprise information of interface location, improving responses for flows with low density ratio between fluids. A simple conservative postprocessing restores interface resolution by means of an anisotropic streamlined diffusion equation. Strategies to decrease transition thickness between two fluids are examined, using as background the stability of artificial stratified flows and mass error estimation due to density interpolation. To decrease transition thickness, a novel inexpensive nested-grid refinement is proposed. The method is founded in flux-correction principles, ensuring conservation and monotonicity of the variables during dynamical adaptation. Numerical experiments explore the efficacy of the procedure for demanding tests of phase transport and of the equations of motion for interface problems. The main target of this work is to model the genesis and propagation of air cavities in water pipe flows, thus a substantial part of testing focuses on these challenging phenomena. Weakly compressible fluid assumption is essential for proper momentum transfer between phases in the aforementioned dynamics, particularly for bubble rising process. An axisymmetric solution is also developed as an alternative cost-effective choice of the full three-dimensional model for flows in circular ducts.
Collections
  • DMEIH - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback