• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the influence of class noise in medical data classification: Treatment using noise filtering methods

[PDF] 2016-AAI-Saez.pdf (246.2Ko)
Identificadores
URI: https://hdl.handle.net/10481/100292
DOI: 10.1080/08839514.2016.1193719
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Wozniak, Michal; Sáez Muñoz, José Antonio; Krawczyk, Bartosz
Editorial
Taylor & Francis
Date
2016
Referencia bibliográfica
José A. Sáez; Bartosz Krawczyk; Michal Wozniak. On the influence of class noise in medical data classification: Treatment using noise filtering methods. Applied Artificial Intelligence, 30(6), 590-609. 2016. doi: 10.1080/08839514.2016.1193719
Résumé
Classification systems play an important role in medical decision support, because they allow automatizing and accelerating the data analysis process. However, their quality is based on that of the training dataset upon which the classification models are built. The labeling process of each training example is usually performed by domain experts or automatic systems. When a wrong assignment of class labels to examples is performed, the training process and, therefore, the classification performance, might be negatively affected. This problem is formally known as class label noise. One of the most used techniques to reduce the harmful consequences of mislabeled objects is noise filtering, which removes noisy examples from the training data. This article analyzes the usefulness of such methods in the context of medical data classification. The experiments carried out on several real-world datasets show the importance of noise filtering when class noise affects the data.
Colecciones
  • DEIO - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire