• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

MPE Computation in Bayesian Networks Using Mini-Bucket and Probability Trees Approximation

[PDF] mpeComputation-paper.pdf (255.5Ko)
Identificadores
URI: https://hdl.handle.net/10481/100004
DOI: https://doi.org/10.1142/S0218488520500348
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Cano Utrera, Andrés; Gómez Olmedo, Manuel; Moral García, Serafín
Editorial
World Scientific Connect
Date
2020
Résumé
Given a set of uncertain discrete variables with a joint probability distribution and a set of observations for some of them, the most probable explanation is a set or configuration of values for non-observed variables maximizing the conditional probability of these variables given the observations. This is a hard problem which can be solved by a deletion algorithm with max marginalization, having a complexity similar to the one of computing conditional probabilities. When this approach is unfeasible, an alternative is to carry out an approximate deletion algorithm, which can be used to guide the search of the most probable explanation, by using A* or branch and bound (the approximate+search approach). The most common approximation procedure has been the mini-bucket approach. In this paper it is shown that the use of probability trees as representation of potentials with a pruning of branches with similar values can improve the performance of this procedure. This is corroborated with an experimental study in which computation times are compared using randomly generated and benchmark Bayesian networks from UAI competitions.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire