• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

MPE Computation in Bayesian Networks Using Mini-Bucket and Probability Trees Approximation

[PDF] mpeComputation-paper.pdf (255.5Kb)
Identificadores
URI: https://hdl.handle.net/10481/100004
DOI: https://doi.org/10.1142/S0218488520500348
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Cano Utrera, Andrés; Gómez Olmedo, Manuel; Moral García, Serafín
Editorial
World Scientific Connect
Fecha
2020
Resumen
Given a set of uncertain discrete variables with a joint probability distribution and a set of observations for some of them, the most probable explanation is a set or configuration of values for non-observed variables maximizing the conditional probability of these variables given the observations. This is a hard problem which can be solved by a deletion algorithm with max marginalization, having a complexity similar to the one of computing conditional probabilities. When this approach is unfeasible, an alternative is to carry out an approximate deletion algorithm, which can be used to guide the search of the most probable explanation, by using A* or branch and bound (the approximate+search approach). The most common approximation procedure has been the mini-bucket approach. In this paper it is shown that the use of probability trees as representation of potentials with a pruning of branches with similar values can improve the performance of this procedure. This is corroborated with an experimental study in which computation times are compared using randomly generated and benchmark Bayesian networks from UAI competitions.
Colecciones
  • DCCIA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias