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HIGHLIGHTS 

 We integrated EDLUT neural simulator within a simulated robotic environment. 

 As an embodiment example, we implemented a cerebelar-like structure controlling 
a simulated arm. 

 The neural robotic simulator combines signals in analog/spike domains. 

 Neural simulator, interface, and robotic platform operate conjointly in real time. 
 
ABSTRACT 

Experimental studies of the Central Nervous System (CNS) at multiple organization 
levels aim at understanding how information is represented and processed by the brain’s 
neurobiological substrate. The information processed within different neural subsystems is 
neurocomputed using distributed and dynamic patterns of neural activity. These emerging 
patterns can be hardly understood by merely taking into account individual cell activities. 
Studying how these patterns are elicited in the CNS under specific behavioral tasks has 
become a groundbreaking research topic in system neuroscience. This methodology of 
synthetic behavioral experimentation is also motivated by the concept of embodied 
neuroscience, according to which the primary goal of the CNS is to solve/facilitate the body–
environment interaction. 

With the aim to bridge the gap between system neuroscience and biological control, 
this paper presents how the CNS neural structures can be connected/integrated within a 
body agent; in particular, an efficient neural simulator based on EDLUT (Ros et al., 2006) 
has been integrated within a simulated robotic environment to facilitate the 
implementation of object manipulating closed loop experiments (action–perception loop). 
This kind of experiment allows the study of the neural abstraction process of dynamic 
models that occurs within our neural structures when manipulating objects. 

The neural simulator, communication interfaces, and a robot platform have been 
efficiently integrated enabling real time simulations. The cerebellum is thought to play a 
crucial role in human-body interaction with a primary function related to motor control 



which makes it the perfect candidate to start building an embodied nervous system as 
illustrated in the simulations performed in this work. 
 
keywords: Neurobotics, Cerebellum, Spiking neural network, Close-loop simulation, 
Embodied neuroscience 
 
1. Introduction 

Computational models of various brain regions have been developed and 
studied for more than thirty years in order to analyze central brain functions. 
Computational neuroscience (CN) is the natural complement of experimental brain 
research, since it focuses on specific mechanisms and models which are only partially 
observed in anatomical or physiological studies. In particular, the cerebro-cerebellar 
loop has been extensively modeled since Marr and Albus [1,2], providing elegant 
explanations on how the forward controller operation of the cerebro-cerebellar loop 
seems to work. Nevertheless, these computational theories tend to focus on one part 
of the cerebellar circuitry and then, to extrapolate the obtained conclusions to the 
whole cerebro-cerebellar system. Simulating nervous systems ‘‘connected’’ to a body 
(agent or robot with sensors and actuators) is of interest for studying how certain 
capabilities of the nervous system (e.g. the role of the cerebellum in coordinated 
movements and object manipulation) are based on cellular characteristics, nervous 
system topology, or local synaptic adaptation mechanisms. This represents an 
integrative approach which aims to build the bridge between task specific 
experimentation (equivalent to ‘‘awake animal testing’’) and system neuroscience 
models. 

This integrative approach allows us to study the role of certain nervous systems 
within ‘‘behavioral tasks’’ [3]. For this purpose, it is crucial to study nervous system 
models within the framework of their interaction with a body (sensors and actuators) 
and the environment. 

This paper describes an integrated approach to the cerebellar circuit modeling 
within real time ‘‘behavioral tasks’’. The paper describes briefly: (a) a cerebellar model 
based on point neurons capable of being simulated in real-time. The model maintains 
biological interconnectivity ratios in functional medium-scale networks (rather than an 
ad-hoc neural network particularly designed for a specific behavioral task) that are 
embedded in biologically plausible control loops. (b) Testing the role of plasticity at 
parallel fibers-Purkinje cells. (c) Embedding the neural system model into a cerebro-
cerebellar control loop connected to a Light Weight Robot (LWR) performing repetitive 
fast manipulations along benchmark trajectories. In order to address these three aims, 
we have integrated a neural simulator based on EDLUT [4] with a simulated robotic 
environment to facilitate the implementation of object-manipulating closed-loop 
experiments (action–perception closed loops). 

These experiments allow us to study the neural abstraction process of dynamic 
models (of objects being manipulated) that occurs within our neural structures in fast 
manipulation tasks [5–7]. The neural simulator, the communication interface, and the 
simulated robotic platform have been developed and integrated taking into account 
computational efficiency as a major requirement in order to enable real time 
simulations. This platform allows us to study different neural representation and 
processing schemes in a specific task within a brain–body interaction framework. 

 
1.1. Functional cerebellar models; a brief overview 

 
Among Embodied System Neuroscience models, the well-organized structure of 

the cerebellum has received special attention from researchers belonging to very 



different fields. On one hand, neurophysiologists have studied and proposed detailed 
models and descriptions according to experimentally recorded cells and synaptic 
properties. However, it is not yet clear how specific properties of these current detailed 
models facilitate specific tasks at a behavioral level. On the other hand, engineers have 
proposed artificial approaches (only related with biology at a very high level) for 
biologically relevant tasks such as accurate and coordinated movements. Based on 
these opposed approaches, several cerebellar modeling frameworks have been 
proposed: 

In state-generator models, the granule cell layer presents on/off type ‘‘granule’’ 
entities that provide a sparse coding of the state space (Marr–Albus Model [1,2], CMAC 
[8–10] model, or Yamazaki and Tanaka model [11–14]). These models succeed in 
explaining some traditional cerebellum-involving tasks such as eyelid conditioning [15] 
or motor control tasks [6,7,16]. In functional models, only the functional abstraction of 
specific cerebellar operations is considered: MPFIM model [17], Adaptive Filter model 
[18–22], APG model [23], or LWPR model [24,25]. Although in some cases, these 
models are also used to explain how the cerebellum works, these can be seen as 
problem solving approaches (that use internal structures not constrained to biologically 
plausible features). These functional models are also used to study the potential role of 
the cerebellum in tasks such as eyelid conditioning, the vestibule ocular reflex (VOR), 
or movement correction [24,25]. Finally, cellular-level models capture the biophysical 
features of the cerebellar neuronal topology and processing, and can be evaluated in 
the framework of neurophysiological experiments. These models aim to be as 
biologically plausible as possible. But due to their inherent complexity, their application 
in the context of large-scale cerebellar modeling and computation remains limited. The 
very first approximations in this field were developed based on the simplified models 
of Schweighofer–Arbib [26,27]. 

 
1.2. How to embody the cerebellar circuitry 

 
The cerebellar network has been at the core of neurocomputational theories 

since the 1960s, when Eccles proposed the Beam Theory [28] and Marr and Albus, the 
Motor Learning Theory [1,2]. Later on, Ito developed the forward controller theory 
[4,29–32]. Since then, the view has been crystallized on two main concepts that 
can be synthesized as follows; the way the cerebellum operates is by decorrelating 
the inputs in the granular layer and detecting known patterns in Purkinje cells. Pattern 
recognition is regulated by memory storage at the parallel-fiber-Purkinje-cell synapse. 
When unfamiliar patterns are detected repeatedly, the Purkinje cells change their firing 
rate and regulate activity in the deep cerebellar nuclei (DCN), thereby emitting the 
corrective terms used for highly accurate motions (skillful control performance). 

Despite its attractiveness and simplicity, this theory only partially accounts for 
the capabilities of the cerebellum. Furthermore, recent experimental data indicate that 
the cerebellar system is much more complex than initially stated. Just to make a very 
short survey, the mechanisms of the granular layer go far beyond simple decorrelation 
[33], long-term synaptic plasticity does not occur only at the parallel fibers (PF) [33–
35], the inferior olive (IO) operates as a complex timing system and not simply to drive 
Purkinje cell plasticity [36], the Purkinje cells and the DCN cells have operative states 
that go far beyond the concept of firing rate regulation [37]. The core idea is that our 
knowledge on the functioning of neuronal networks of the cerebellum is still rather 
vague, and that we have to develop new computational tools to investigate cerebellar 
network dynamics beyond the current existing paradigms. 

The available neurophysiological data (which is essential for understanding the 
functional organization of the cerebellum and related structures) has to be analyzed to 



investigate the particular processing capabilities of each neuron and of its internal 
dynamics. Emphasis must be put on proving how the network processing capabilities 
are supported by the low-level characteristics of each neuron type. Many of the 
specific cerebellar neural types have already been implemented in Python–NEURON–
EDLUT software simulators [38,39] and there are even specific repositories gathering 
different kinds of models [40,41]. 

 
1.3. Modeling the cerebellar circuits 

 
When modeling the cerebellar circuit with a bottom-up approach, the cerebellar 

network needs to be modeled aiming at the construction and generation of a complete 
cerebellar functional network, tested in realistic functional conditions and endowed 
with plasticity rules. This process demands the comprehension of the interplay that 
occurs between the Granular-and-molecularlayer subcircuit and the PC–DCN–IO 
subcircuit. 

Whilst the granular layer and molecular layer neurons can be largely 
reconstructed starting from precise existing models, the DCN-and-IO subcircuits are not 
modeled in detail. Therefore, the PC–DCN–IO circuit requires basic modeling to achieve 
functional properties. An initial model of the DCN can be constructed based on [42,43]. 
As a starting point, the IO can be modeled at a functional level, i.e. as a module 
translating ‘‘error related signals’’ into activity that modulates learning at the PF–PC 
synapses. Also at this stage, although different plasticity sites have been reported 
[34,35], most cerebellar functional models are based solely on the PF–PC adaptation 
mechanism modulated by the IO activity (which delivers the teaching signals). 

Once all the subcircuits and long-term synaptic plasticity are implemented and 
tested separately, the functional operation of a complete circuit can be tested. The 
first step lies on developing an appropriate connectivity between the modular 
subcircuits. The connection map between the IO and PCs via climbing fibers, the 
convergence of PCs to DCN neurons [44] and the mossy fiber (MF) projections to the 
DCN [45], and the granular layer have been extensively described in the literature 
and should be reconstructed respecting the known convergence/divergence ratios. 

 
2. Material and methods 

 
2.1. The real-time neural simulator. EDLUT 

 
Common event-driven simulators [46,47] use simple neural models whose 

dynamics are described by equations which can be discontinuously evaluated at 
arbitrary times (e.g. current based integrate-and-fire models). But even when using 
simple neural models, the firing-time prediction which is necessary for an eventdriven 
simulation may be complex [48,49]. 

An EDLUT (Event-Driven neural simulator based on LookUp Tables) was 
implemented [4] to simulate neural models whose internal dynamics is defined by 
a set of differential equations (for instance, the Hodgkin and Huxley model [50]) 
adopting an event-driven simulation scheme. This software is an open source project 
[51] for efficient simulation of biological neural networks. It is of particular interest in 
the field of neurobotics and embedded neural computing in which real-time 
processing is required, for example, for experiments which include perception–action 
loops. 

EDLUT uses an intensive preliminary simulation stage in which a neural model 
is characterized, i.e. massive simulations of a single cell are done with different initial 
conditions. At this stage, samples of the neural variables at different times are stored 



in lookup tables. This preliminary stage can be seen as a cell model compilation stage. 
These tables are calculated using time-consuming numerical analysis (e.g. Runge–Kutta 
method). However, once they are generated, the network simulation can be run 
efficiently through the event-driven method, just by accessing tables when the neural 
state must be updated or predicted. 

EDLUT uses lookup tables which store all the possible values (with certain 
precision) of the neural-model state variables [52] in addition to the future states (firing 
times) [53]. Therefore, a whole neural model is encoded in each set of model-
characterization tables. In this way, the simulator takes advantage of the increasing 
memory resources available to perform efficient simulations with very limited 
computation requirements. The event-driven simulation scheme based on lookup 
tables uses memory access intensively, instead of CPU computation power for the 
neural variable updates. 

The initial EDLUT processing scheme allowed fast simulation of complex neural 
models. Nonetheless, this scheme is constrained by the number of state variables of 
a neural model because this determines the number of dimensions of the required 
lookup tables. But in later versions [54], the EDLUT was upgraded to provide a hybrid 
time-and-event driven simulation method. This hybrid scheme allows the concurrent 
simulation of some neuronal models using the event-driven method (the models which 
can be translated into lookup tables) and other models using the time-driven method 
in the same network. 

 
2.2. The cerebellar model 

 
We have used leaky integrate-and-fire neural models (LIF) [50] whose synapses 

are modeled as conductances. The general model has been then adapted for different 
neural types. The LIF neural state is characterized by the membrane potential (Vm-c ) 
expressed by Eq. (1): 

𝐶𝑚

𝑑𝑉𝑚−𝑐

𝑑𝑡
= 𝑔𝐴𝑀𝑃𝐴(𝑡)(𝐸𝐴𝑀𝑃𝐴 − 𝑉𝑚−𝑐) + 𝑔𝐺𝐴𝐵𝐴(𝑡)(𝐸𝐺𝐴𝐵𝐴 − 𝑉𝑚−𝑐)

+ 𝐺𝑟𝑒𝑠𝑡(𝑡)(𝐸𝑟𝑒𝑠𝑡 − 𝑉𝑚−𝑐) 
(1) 

where Cm stands for the membrane capacitance, EAMPA and EGABA denote 
the reversal potentials of the synaptic conductances, and finally, Erest represents the 
resting potential (being Grest the conductance responsible for the passive decay term 
towards the resting potential). The gAMPA and gGABA conductances integrate all the 
contributions received through individual synapses and are defined as decaying 
exponential functions. The parameters of the neural model [5–7] and a more detailed 
description can be found in [5–7,51]. 

Therefore, the state of a neuron is defined with just three variables: 
Vm-c represents the membrane potential. When this variable reaches a specific 

threshold, the neuron generates an output spike. 
gAMPA and gGABA represent excitatory and inhibitory conductances respectively 

that affect the membrane potential. These conductances decrease exponentially in 
each integration step and increase proportionally to the synaptic weight of their 
connections when an input spike arrives. 

To solve the LIF neuron model differential equation, the EDLUT simulator 
incorporates different integrative methods. This differential equation is processed off-
line using a short integration step to achieve good accuracy (it does not directly affect 
the computation time during system neural simulations, since the neural model is 
computed and stored in lookup tables in a preliminary neural characterization stage). 



All the different characterized neural types have been interconnected following 
a cerebellar topology structured into micro-zones distributed in different layers, as 
described below (Fig. 1): 

Mossy fibers (MFs) (248). These mossy fibers drive the contextual information 
and sensory joint information (related with the manipulated object and desired/actual 
positions and velocities). The mossy fiber model is based on leaky integrate-and-fire 
neuron dynamics whose input current is provided by a set of overlapping receptive 
fields covering the joint value space of the input signals (see Fig. 2). 

Granular layer (GCs) (1500). This layer behaves as an abstraction of a simplified 
cerebellar granular layer. The information provided by the mossy fibers is translated 
into a sparse representation. Each granular cell (GC) receives four excitatory input 
connections; three connections randomly chosen from joint-related mossy fibers and 
the other one, from a context-related mossy fiber [7]. 

Parallel fibers (PFs) (1500). They represent the output axons of the granular 
layer. The manipulated object model abstraction is stored in learned weights at the PF–
PC connections. 

Climbing fibers (CFs) (48). The climbing fibers are the axons of the Inferior Olive 
cells. This layer consists of 6 groups of 8 climbing fibers each. The IO output (encoding 
a teaching signal related to the error) is translated into spikes using leaky integrate-
and-fire neuron dynamics whose input current is in this case proportional to the error 
signal. The CFs drive the IO outputs to the Purkinje cells for supervised learning at PF–
PC connections. More details on this learning rule can be found in [6]. 

Purkinje cells (PC) (48). These cells are divided into 6 groups of 8 cells. Each 
GC is connected to 80% of the PCs which are also receiving their corresponding teaching 
signals from the CFs. 

Deep cerebellar nuclei cells (DCN) (24). The cerebellar output is generated using 
6 groups of these cells (2 groups per joint) whose activity is capable of providing 
corrective torques for a specified cerebellar input. Corrective torque values per joint 
are encoded by a couple of these groups, one group compensating positive errors 
(agonist) whilst the other one is dedicated to compensate negative errors (antagonist). 
Each DCN neuron group receives excitation from every MF cell and inhibition from the 
two corresponding PCs. The sub-circuit PC–DCN–IO then is organized into six 
microzones; three of them generating joint positive corrections (one per joint) and the 
other three, generating joint negative corrections (one per joint). Mind that as it will 
be explained below, we use three joints in our robot experiments. 

 
2.3. Neural population coding 

 
Neural population coding is traditionally used for sensorimotor representation. 

Each neuron belonging to a certain system presents a distribution of responses over 
some set of inputs. Hence, the response of many system neurons over a set of certain 
inputs represents the system state [55,56]. In a reaching movement, the arm direction 
is encoded by means of neurons whose input current changes with the cosine of the 
difference between the stimulus angle and the preferred direction of the cell [57] 
(Cosine tuning). Each cell has a preferred direction and receives input current 
depending on how a movement is aligned to its preferred feature. However, a simple 
reaching movement involves extracting spatial information including visual acquisition 
of the target, coordination of multi-modal proprioceptive signals, and a proper motor 
command generation to drive a proper motor response towards the target [58]. 
Common reaching movements towards a target that we have already seen involve an 
internal representation of the target and limb positions, and also a coordinate 
transformation between different internal reference frames. A spiking population 



coding is used as internal representation and can be adapted as indicated below to be 
embedded into a control loop. 

The integration of computational models with neurophysiolog- 
ical observations in order to understand the main problems in motor control 

requires not only the cerebellum functionality to be considered but also its biological 
architecture (cell-network topology). This requires the development of two ‘‘translation 
processes’’ in order to interact with a robot agent: (1) Translation from analog domain 
sensor inputs to spike based patterns compatible with a spiking cerebellar network. (2) 
Translation from spike domain cerebellar outputs to analog domain actuator 
commands to be delivered to the robot agent. 

 
2.3.1. From sensors to spikes 

 
When a target reaching movement is executed, different body parts, such as 

muscles, tendons, or joints are articulated depending on their body location [59] along 
the followed trajectory. Sensory proprioceptors are activated according to the 
movement; thus, a time-varying set of stimuli is produced, and its corresponding neural 
population varying activity is generated. In contrast, in a robot scenario, the only 
available proprioception sensory information is supplied by an encoder output per link. 
Hence, a translation from the joint position/velocity measures to a time-varying set of 
stimuli is required. At this point, finding out an optimal biologically plausible encoding 
scheme that allows ‘‘biological decoders’’ (as the ones we assume at the granular and 
molecular layers of the cerebellum) to take advantage of the representation is a non-
trivial issue. It is assumed that the firing rate of an individual sensory receptor follows 
a neural response which is characterized by Eq. (2) (also equivalent to a cosine tuning 
curve, that is, the firing rate of the neurons varies with the angle between the preferred 
direction of the sensory receptors and the sensed position) [60]. Therefore, a reaching 
movement execution will be represented with a sparse population of active cells which 
are varying with time. This coding mechanism leads to a representation of the current 
sensorial state during the trajectory execution in an unambiguous way. 

The output of each receptor is given by Eq. (2); 

𝐼𝑁𝑖(𝑡) = 𝑟0 + 𝑟𝑚𝑎𝑥 ∑ 𝑒
−

(𝜃−𝜃𝑝𝑟𝑒𝑓−2𝜋𝑛)2

2𝜎2

𝑛

 (2) 

where [r0, rmax] is the joint range in radians, θ is the actual position, θpref is the 
preferred direction of the receptor, σ is the amplitude of the receptive field associated 
to the receptor, and finally, 2πn is a subtractive term used to refer the actual position 
to the first-360-degrees (the maximal range of any revolute joint is 360°). 

Receptors are distributed along the range of each joint, being their receptive 
fields overlapped (as peripheral nerve receptive fields are). Each value of a 
proprioceptor output signal is integrated using an integrate-and-fire neuron model 
whose dynamics is defined in Eq. (3) (see illustration in Fig. 2). In the case of an arm 
system, this determines the output activity that drives the Cuneate Nucleus (CN) 
activity emulating the way the Mossy Fiber activity from cells in the CN handles 
information from forelimb muscle spindles [61]. 

𝜏𝑚𝑖

𝑑𝑣𝑖

𝑑𝑡
= −𝑣𝑖(𝑡) + 𝑅𝑖𝐼𝑁𝑖 (3) 

Related to the leakage integrate and fire cell dynamics, τmi is the resting time 
constant, vi the membrane potential, INi the input current, and Ri is related to the resting 
conductance of the membrane. 



 
2.3.2. From spikes to actuators, decoding the cerebellar output 

 
Spiking modeled neurons elicit pulsed signals usually named action potentials 

or spikes. It is believed that the shape of these spikes only carries minimal information 
whilst the core of the information is carried by the spike time arrival [62,63]. The action 
potential waveforms (voltage curve profile) elicited by those neurons is usually 
translated into a set of binary symbols (0 or 1) representing an instant in which an action 
potential occurs (1) or does not 

(0). The generated binary waveform conforms a spike train and the obtained 
pattern of spikes belonging to a certain time-frame generates the spike binary code; the 
columns corresponding to the array of spikes are also named neural activation patterns. 
It is then clear that, somehow, the translation of these neural activation patterns into 
meaningful analog output signals has to be implemented for interfacing actual robot 
actuators with analog signals. 

Assuming that the goal is to decode rather than to analyze the behavior of 
biological neurons, it seems reasonable to use a mathematical approach such as 
linear filtering, particularly, a Finite Impulse Response filter (FIR), to accomplish this 
task [64]. 

Defining the spike train as 𝑥(𝑡) = ∑ 𝛿(𝑡 − 𝑡𝑗)𝑁
𝑗=𝑡 , where tj stands for the set 

of firing times of the corresponding neuron and being the FIR response defined as h(t), 
then the stimulus can be written as follows: 

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠(𝑡) = (ℎ ∗ 𝑥)(𝑡) = ∑ ℎ(𝑡 − 𝑡𝑗)

𝑁

𝑗=𝑡

 (4) 

As noticed from Eq. (4), converting spike trains into analog signals is a quite 
straightforward implementation. Nevertheless, despite the widespread use of FIR 
filters for such purpose, an undesired delay is introduced in the generated analog 
signal. This delay is strongly related to the number of filter coefficients as well as to the 
shape of the filter kernel. To mitigate this effect and to make the conversion more 
efficient, an exponentially-decaying kernel can be implemented, as seen in Eq. (5). 
Thus, at each time step, the output signal value only depends on its previous value 
and on the input spikes in the same time step. Therefore, this filter can be 
implemented by recursively updating the last value of the output signal. Actually, the 
choice of such exponential kernel is double folded. The kernel is able to mitigate the 
delay problem and bears a strong resemblance to postsynaptic currents [62,63], thus 
facilitating a possible biological interpretation. 

𝐾𝑒𝑟𝑛𝑒𝑙 = ℎ(𝑡) = 𝑒−
𝑀
𝜏  (5) 

where M is the number of filter taps (one per integration step) and 
τ is the decay factor. 
 
2.3.3. Equivalent to an integrative neuron 
 
Integrative neurons are capable of both analyzing and interpreting sensory input 

just taking into account their actual state, the incoming information, and their previous 
states as well. Once the computation of those three elements is done, the resulting 
information can be transmitted to motor neurons or other integrative neurons. 
Assuming a leaky integrate-and-fire model for the integrative neuron, the model looks 
like Eq. (3). This model forces the 



input current to exceed a threshold Ith = Vth/Ri for the cell i to 
fire; otherwise, it will simply leak out any charge in the membrane 
potential. The firing frequency is thus defined in Eq. (6): 

𝑓(𝐼) = {

0,                                                                  𝑖𝑓 𝐼𝑁𝑖 ≤ 𝐼𝑡ℎ

(𝑡𝑟𝑒𝑓 − 𝜏𝑚𝑖𝑙𝑜𝑔 (1 −
𝑉𝑡ℎ

𝐼𝑁𝑖𝑅𝑖
))

−1

, 𝑖𝑓 𝐼𝑁𝑖 > 𝐼𝑡ℎ 
 (6) 

where tref is a refractory period and τmi is the resting time constant. Solving the 
differential equation (3), the membrane potential is expressed as follows: 

𝑣𝑖(𝑡) = 𝑅𝑖𝐼𝑁𝑖(𝑡) +
𝑉𝑟𝑒𝑠𝑡 − 𝑅𝑖𝐼𝑁𝑖(𝑡)

𝑒(𝑡/𝜏𝑚𝑖)
 (7) 

The functionality of the selected FIR described in Eqs. (4) and (5) can be read in 
terms of a biological interpretation just by making an analogy between the proposed 
exponential-decaying kernel and the behavior of an integrative neuron whose 
dynamics is de fined using Eq. (7) (stimulus(t) ≈ Vj(t)). The resulting shapes of both 
sides of this analogy hold a remarkable resemblance due to the exponential-decaying 
kernel that governs both the neural dynamics and the FIR kernel. An engineering 
strategy usually adopts the FIR based approach, because it allows us to easily adapt the 
output values to the control signal which is demanded for accurate control. In such a 
way, the effect of each spike elicited by any cerebellar nuclei cell (output cerebellar 
cells) can be easily pondered thanks to the FIR filter, thus facilitating the correlation 
between the cerebellar output spikes and their corresponding corrective output 
signals. It is clear then that this conversion can be also processed by using any Integrate 
and Fire-like neuron; however, doing so, the influence of each spike on the output does 
not always remain clear. 

 
2.4. Cerebellar control loop; a plausible implementation 

 
It is widely assumed that the cerebellum, acting as a control module, is 

embedded in a feedforward control loop [65–67]. A feedforward control system is able 
to evaluate both the incoming sensory information from the environment and the 
information provided by the system itself (proprioception) before the motor control 
action is sent to the body. This means that the controller manages the sensory 
information to deliver the best motor commands to accomplish the desired movement. 
At that point, we must bear in mind that once a pure feedforward system sends the 
corresponding control actions, it is not possible to modify them. 

On one hand, a feedforward control system is able to deliver the precise set of 
motor commands for the body-plant and to make corrections during the movement 
without continuously checking the motor control output [26,27]. Conversely, the 
feedforward controller requires a previous trial-and-error learning process in order to 
later recognize (in a recall stage) all the possible sensorial states that may be reached. 
In a real manipulation task, the environmental conditions are constantly changing and 
the feedforward con troller must continuously tune its motor commands to cope with 
these changeable environmental conditions [68]. According to this scheme, the 
cerebellum operates as a feedforward controller for the motor commands which are 
originated in the motor cortex (Fig. 3). The brain is able to plan and learn the optimal 
trajectory of a movement in intrinsic coordinates [23,68–71]. This operation consists 
of three main tasks: the desired trajectory computation in external coordinates, the 
task-space translation into body coordinates, and the motor command generation [72]. 
In order to deal with the aforementioned changeable environmental conditions, the 



system needs to incorporate a Feedback-Error Learning (FEL) scheme [73] by means of 
the cerebellum operating in conjunction with a crude inverse dynamic model of the 
arm-plant [74]. It has been proposed that the association cortex provides the motor 
cortex with the desired trajectory in body coordinates. In the motor cortex, the motor 
command is calculated by using an inverse dynamic arm model (for a review, see [75]). 
The spinocerebellum–magnocellular red nucleus system provides an accurate model of 
musculoskeletal dynamics, which is learned with practice by sensing the motor command 
consequences in terms of executed movements (proprioception). The 
cerebrocerebellum–parvocellular red nucleus system, which projects back to the motor 
cortex, provides a crude inverse-dynamic model of the musculoskeletal system, which 
is acquired whilst monitoring the desired trajectory [73]. The crude inverse-dynamic 
model works together with the dynamic model provided by the cerebellum 
embedded in a feedforward control loop thus updating motor commands accord ing 
to predictable errors occurring when executing a movement. It learns and stores 
models of the skeleto-muscular system providing the precise timing control of agonist–
antagonist muscle pair groups in addition to the needed force and stiffness control [76]. 
Obviously, the muscle flexion–contraction precise timing and the needed force in a 
manipulation task depend on the weight to be handled (more concretely, on the 
dynamic model of the object under manipulation), the cerebellum being crucial for 
delivering this proper timing, force, and coordination; these appropriate corrective 
terms are learned through a trial-and-error process [68]. 

 
2.5. Simulated robot integration: robot and training trajectory 

 
Behavioral experiments with an embodied cerebellar system require the 

integration of a real or simulated robot in the control loop. The simulated robot is 
intended to follow a specific trajectory whilst the cerebellar model learns to provide 
corrective torques for the robot actuators. The robot-control experiment results are 
intended to assess the effects on performance caused by concrete neural properties, 
cerebellar subcircuits, or adaptive mechanisms (synaptic plasticity). This robot-control 
experimentation demands human-like robots whose intrinsic dynamics is somewhat 
similar to their biological counterparts. This requirement motivates the use of 
lightweight robots (LWR) such as the Kuka lightweight robot developed by DLR [77,78]. 

As mentioned above, the main role of the cerebellum seems to be related to 
human motor control, especially in those tasks where timing and force are critical. 
Therefore, those manipulation tasks able to modify the dynamics of the arm-plant 
whilst performing certain movements would constitute the paradigm to follow. These 
LWR robots are capable of being dynamically modified when manipulating different 
payload contexts under certain kind of movements. This motivates the definition of a 
benchmark trajectory capable of revealing the dynamic properties of a LWR. According 
to the proposals in [76,79], fast movements in a smooth pursuit task consisting of 
vertical and horizontal sinusoidal components are good candidates in order to reveal 
the robot dynamics. Examples of different benchmark trajectories can be checked in 
[74,76,80]. Considerations related to the communication interface delay and the 
friction force of the robot joints need to be taken into account (see Appendix). 

 
2.6. The integrated neurobotics simulation platform 

 
These techniques are now included into an integrated software platform able 

to combine realistic robotic experiments (running in real time) with cerebellar like 
modules that work as corrective engines. This platform aims to facilitate the study of 
how the adaptive neural information coding mechanisms underlying the ability of 



humans to interact with their environment is handled by means of an effective 
adaptation at the cerebellum. The simulator of the robotic LWR arm, the control loop, 
and the cerebellar module were implemented in C/C++ following previous 
developments [5–7,24,25]. The software platform source code has been made available 
at: https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot. 

The core of the neural simulator was implemented taking EDLUT [4] source code 
as the basis. EDLUT was then provided with an interface library as well as with a robot 
library able to dynamically define and model different lightweight robot configurations. 
In this work, we use a rough approximation of a Kuka LWR [77]. 

 
2.7. A practical running example 

 
The aim of this working example is to show how a cerebellar model based 

on [7] within a ‘‘perception–action’’ closed-loop [5–7,74] is used in order to control a 
simulated LWR [77] arm by means of the developed software platform. Vertical and 
horizontal sinusoidal composed trajectory-following tasks [5–7,74] will be run in order 
to reveal the robot dynamics (see Fig. 3) with different payloads to be manipulated. The 
input pathways to the artificial cerebellum will be MFs and CFs. The cerebellar output 
is translated into torque commands for each joint through conversion modules [5–7], 
following the approach described in the previous section. 

 
3. Results 

 
Using this cerebellar architecture, a 1000 trial execution (each trial takes one 

second) following the principles already presented in [7] has been performed, obtaining 
the raster plot shown in Fig. 4. This figure represents a snapshot of one trial execution 
representing a cerebellar simulation of one second eight-like trajectory operating 3 
revolute joints (joint 1, joint 2, and joint 3 indicated in Fig. 3) of a LWR defined in [5–7] 
when manipulating a 10 kg payload. This snapshot corresponds to two particular 
moments during the learning process; the initial learning stage (left column plots) and 
the final learning stage (right column plots). Mind that, as can be seen in Fig. 4, at the 
initial learning stage (0–1 s period), no cerebellar action has been learned yet (Fig. 4(E)), 
whilst at the final learning stage (999–1000 s period), the learning process is well settled 
down (Fig. 4(F)) and corrective terms are delivered through DCNs. 

As we see, all plots represent activity along time using dots (in plots A and B, 
each dot represents a spike) or short vertical markers when the number of neurons 
being monitored is lower (plots C, D, E, and F). Fig. 4(A) represents a raster plot of the 
input activity that is reaching the cerebellar architecture through mossy fibers at the 
initial learning stage. As explained before, mossy fibers are able to elicit a set of spike 
trains related to the desired and actual positions and velocities (according to the 
scheme illustrated in Fig. 2) presented by the robot arm along the eight-like trajectory 
movement. Each joint position and velocity is translated into spikes by using three 
groups (one for position and another one for velocity for each joint) of 20 mossy fibers. 
Each of these groups is activated by its corresponding set of receptive fields (Fig. 2) that 
are covering the operative range of the input variable. At this initial learning stage, the 
actual trajectory is far from the desired one, thus position/velocity values only activate 
part of the population of mossy fibers (compared to the activation of the mossy fibers 
encoding the desired trajectory). However, as Fig. 4(B) shows, at the final learning 
stage, both actual position/velocity values can properly cover the operative range of 
the input variables. It can be seen that at this final learning stage, the activation of the 
mossy fibers related to the desired trajectory is similar to the activation profile of the 
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mossy fiber group related to the actual trajectory (encoding actual position and velocity 
along the movement execution). 

The activity of mossy fibers reaches the granular cell layer. The granular 
layer operates adopting the model functionality described in [13–15] by Yamazaki 
and Tanaka, that is, it behaves as a state generator. A state generator machine is 
capable of representing each time step (in our simulations, this is 0.002 s) as an 
unambiguous time stamp (with a unique spike pattern representation), thus facilitating 
the learning process (see [7]). 

As indicated in the description of the cerebellar architecture, the Purkinje cell 
activity is divided into 6 well-defined sets of spike trains representing the generated 
spiking activity related to the output agonist/antagonist joint micro complexes for each 
robot joint (joint 1, joint 2, and joint 3). Each pair of these 6 well-defined sets is related 
to each agonist/antagonist corrective action for the three joints. As aforementioned, 
the inferior olive activity (spiking patterns Fig. 4(C), (D)) is in charge of encoding the 
error signal (Fig. 4(C), (D) colored lines) that has to be compensated by the cerebellar 
corrective terms; here, we can see that there are also 6 well-defined areas related to 
micro-complexes encoding the positive/negative corrective actions for the three robot 
joints. Fig. 4(C), 

(D) illustrates how the inferior olive spike distribution during the trajectory 
execution remains proportional to the received error signals which in turn, are related 
to the actual position/velocity errors. In these figures, it is shown how just a positive 
corrective action is demanded in joints 2 and 3 whilst both positive and negative actions 
are demanded in joint 1 along the whole eight-like trajectory execution. The error 
directionality (either positive or negative error) is also illustrated in Fig. 4(C) and (D). 
Obviously, at the initial learning stage, the amplitude of the encoded error signal to be 
translated into spikes is high as well as the number of spikes elicited by the inferior 
olive since the learning process has barely started (Fig. 4(C)). On the contrary, once the 
learning process is well settled down, the expected amplitude of the encoded error 
signal to be translated into spikes and the numbers of elicited spikes by the inferior 
olive decreased significantly at this final learning stage (Fig. 4(D)). The Inferior Olive cell 
activity is constrained between 1 and 10 Hz, according to neurophysiological data [81]. 

Finally, DCN generated output activity is plotted in Fig. 4(E) and (F). At the 
beginning of the learning stage, a negligible cerebellar output is provided (Fig. 4(E)) 
whilst at the final learning stage (Fig. 4(F)), an appropriate cerebellar output corrective 
action is generated. Error corrections are accomplished by changes in the activity of 
PCs that, in turn, affect the activity of the DCN, which eventually is translated into 
analog torque correction signals (also plotted in Fig. 4(E) and (F), with continuous lines) 
following principles already presented in the previous section. Each group of 4 DCN 
cells encodes the positive or negative corrective term which is eventually translated 
into a joint corrective torque. The higher/lower the activity at each micro complex is, 
the higher/lower its corresponding corrective torque is. In fact, the final activity at the 
DCN (which represents the actual corrective terms being produced) is the result of the 
subtraction of the PC activity (since its connection to DCN is inhibitory) which is specific 
and learned (through supervised learning at the granular cell - Purkinje cell synapses) 
from a general (nonspecific) activity term (from mossy fibers) which is approximately 
constant. Mind that, although the corrections of the DCN after learning may seem very 
irregular with high frequency terms (continuous lines Fig. 4(E) and (F)), the actual 
contributions are smoothed out by the motor system (in this case, the actual motor 
gears). 

 
3.1. Robotic input/output 

 



As briefly described in this work, cerebellar neural models are a current open 
issue whose operating basis is not yet well determined due to their working complexity 
principles. New tools for massive simulations (with multiple parameters) and state 
monitoring capabilities are necessary to identify how certain neural/subcircuit/neural 
layer features are related to the cerebellar functionality. Therefore, relating the 
cerebellar operation with the system in which the cerebellum is embodied seems to be 
the natural step forward. The presented integrated software platform is able to 
establish this interconnection between these two elements as shown in Figs. 4 and 5. 
Monitored snapshots of the whole cerebellar activity are related with their 
corresponding robot performance curve (system behavior). These snapshots facilitate 
the interpretation of the results giving a better insight about what is going on during 
embodied experimentation (behavioral experiments as the manipulation task 
illustrated in the previous section). 

Fig. 5 is an illustrative example of the sort of performance curves that can be 
obtained by using the presented software platform. 

Here, the robot arm is manipulating a 10 kg payload whilst executing a one 
second eight-like trajectory able to reveal the inner robot dynamics. Fig. 5(A) and (B), 
represent a snapshot of this one second eight-like trajectory execution in joint 
coordinates belonging to the initial learning stage (first row plots) and the final learning 
stage (position and velocity) (second row plots). The target trajectory at each joint is 
plotted in blue (continuous line) whilst the actual trajectory at each joint is plotted in 
red (dashed line). The error directionality (position and velocity error) is shown in these 
plots (either positive or negative error). As mentioned before, during the manipulation 
of objects with a significant weight, the arm–object platform dynamics differ from the 
original arm dynamics. This translates into a continuous negative error at the 2nd and 
3rd joints which activates just one of the two inferior olive micro complexes (related to 
each joint) during the simulation. Additionally, Fig. 5(C) shows the Mean Absolute Error 
(MAE) obtained along the learning process. Finally, plot 5(D) represents just an example 
of how the obtained Cartesian coordinates of the tip of the robot arm evolve during 
the learning process. As shown, at the initial learning stage, the LWR is not capable of 
properly handling the attached payload; there is no acquired cerebellar corrective 
model for the 10 kg payload. Therefore, no corrective torque values are supplied yet. 
At the final learning stage, the cerebellum is able to provide the appropriate corrective 
torque terms achieving almost the aimed target trajectory. 

Fig. 6 shows the same kind of experimentation conducted in Fig. 5 but 
extrapolated to different masses so as to reveal the capabilities and features that 
the learning at PF–PC synapses endows. Fig. 6(A) and (B), represent the MAE evolution 
whilst the robot arm is manipulating different payloads (10, 6 and 2.5 kg respectively) 
whether independently or consecutively. In Fig. 6(A) the learning process is reset, which 
means that all the synaptic weights at PF–PC are randomly chosen at the end of the 
learning of each payload whilst in Fig. 6(B) the learning process is not reset at the 
end of each payload learning. As can be seen, the learning is not destructive; the 
incoming learning process takes advantage of the previous learning process as 
indicated by the lower initial starting MAE error after switching between contexts. Fig. 
6(C) points out the normalized performance that each of the aforementioned 
experiments achieves. Fig. 6(D) demonstrates how the learning process is compatible 
with incremental learning. Here, the payloads are switched every 50 trials (between 10 
kg/6 kg in the left plot and 6 kg/2.5 kg in the right plot) thus showing how the learning 
process can simultaneously abstract two different payloads (two different dynamic 
models) that are only marginally interfering with each other. 

 
3.2. Real time simulation 



 
The computation load when simulating spiking neurons is high and needs to be 

done efficiently for controlling robots in real time. When any event-driven simulator is 
confronted with a massive amount of data to be processed online, this approach suffers 
due to the discontinuous flow of data to be computed. In fact, the learning process 
must be done online, in real time, as the robot is moving. A mechanism to ensure 
real time when processing all the neural activity involved during the simulation process 
has been implemented. During a neural simulation, all neural updates have to be 
processed in chronological order. However, during the neural simulation, future events 
may appear (i.e. events that occurred due to delayed spike firings or neural connections 
presenting delays). To manage this situation, a heap data structure able to efficiently 
insert and extract ordered events is required. Controlling the CPU time consumption of 
each time step allows real-time simulation. Although the calculation of the dynamics 
and kinematics of the robot (for instance, using a Newton Euler algorithm [74]) involves 
a constant number of operations at each time step, the neural simulation 
computational cost depends on the neural activity. 

We have implemented a watchdog timer supervising each simulation time step. 
When the simulation process is consuming more time than a certain predefined 
constraint percentage of the total robot communication step time, the simulator skips 
non-critical event processing, thus keeping the simulation running in time (see Fig. 7). 
In our example, the total computation time has to remain below 2 ms, since the 
communication between the neural simulator and the robot platform is sliced in 2 ms 
intervals. As shown in Fig. 7(A), the computation time of each simulation slice (of 2 ms) 
consumes less than 2 ms. The ‘‘computation time’’ includes the cerebellar simulation 
time, the robotic simulation time, and the communication time between them. At each 
simulation step, the cerebellum updates and computes its internal neural states thus 
eliciting a set of generated spikes. There exists a close relationship between the 
number of generated spikes and the consumed computational time (Fig. 7(A) and (B)). 
In the end, a trade-off decision has to be taken. A watchdog ensures that the boundary 
will not be surpassed. 

This illustrative simulation is composed by 1871 neurons and 69 603 synapses. 
We have used simple point neurons (parameterized according to different cerebellar 
neuron types) with three state variables (membrane potential and the excitatory and 
inhibitory conductances). Thus, 5613 state variables need to be continuously updated. 
During one second of simulation, the network produces 9890 spikes and 69 603 
synaptic weight modifications (through spike time dependent plasticity at the parallel 
fiber to Purkinje cell synapses). All this needs to be computed within the real-time 
constraint. The simulation was run on a CPU consisting of a Pentium i7 3770k 3.4 GHz 
processor with 8 GB RAM all mounted on an ASUS P8Zseries motherboard. 

 
4. Discussion 

 
Along this paper, we have outlined how the EDLUT neural simulator has been 

equipped with an integrated robotic software framework. The dialog between these 
two elements, the EDLUT and the robotic software, is mediated by an efficient 
bidirectional interface (analog signals to spike patterns and vice versa) able to process 
sensory data from the robot agent and generate the appropriate robot motor 
commands. As a running embodied nervous-system example, we have implemented 
and described a cerebellar architecture within a robotic control closed-loop where the 
robot features allow the exploitation of the cerebellar potential in a manipulating 
control task. This manipulation task aims to follow a specific desired trajectory 



consisting of sinusoidal components with the robotic arm manipulating a punctual 
mass. This punctual mass (representing the object under manipulation) affects the 

global dynamic model of the arm + object plant. The cerebellar 
system aims to provide corrective torque terms to compensate the 
existing mismatch between the arm dynamic model and the one of the arm + 

object under manipulation. These corrective torque terms are refined as the 
cerebellum acquires the dynamic model 

of the object under manipulation. This can be considered an abstraction process 
based on just the synaptic plasticity mechanism between the parallel fibers and the 
Purkinje cells. 

The interest of this integrated neurobotics software platform can be outlined in 
two main points: for accelerating the development of biologically plausible control 
architectures cooperating with robot agents and for studying how certain capabilities 
of the cerebellum in coordinated motion and object manipulation are based on cellular 
characteristics, nervous system topology, or local synaptic adaptation mechanisms. In 
fact, a rich dynamical environment (i.e. highly reconfigurable robot model dynamics and 
reconfigurable cerebellar control loops) is a powerful tool to explore neurophysiological 
hypotheses from a functional point of view. All this also needs to be complemented 
with an appropriate monitoring and evaluation methodology. Here, it has been 
addressed not only just the way in which the neural activity can be plotted and 
interpreted by considering the micro-complex biologically plausible cerebellar 
organization, but also the neural activity contributions to agonist and antagonist motor 
system outputs thanks to the continuous monitoring of the target and actual joint 
trajectories. 

Furthermore, the performance obtained is also remarkable. Al- 
though a simulation achieving real-time could be considered to be irrelevant, it 

is a critical non-trivial issue in embodied system neuroscience. When doing experiments 
with a real neuro-operated body, real-time operation becomes a major requirement. 
We have shown how this integrated software framework fulfils real-time requirement 
enabling a future real-robot cerebellar spiking control. In fact, the software framework 
integrating the neural simulator, the robotic simulator and all the communication and 
monitoring components has been developed with demanding real-time constraints. 

 
5. Conclusions 

 
In this paper, we show how a cerebellar structure integrated in the control 

loop as an adaptive feedforward model can learn to abstract model dynamics of 
objects being manipulated. We use an integrated simulation platform consisting of a 
real-time spiking neural simulator (EDLUT) and a simulated robot (LWR). This platform 
allows us to monitor the cell activity at different layers in terms of spike patterns as 
well as the contribution that they produce in terms of actual corrective torques within 
the control loop before learning the object model, and also eventually in the corrected 
trajectory (closer to the goal trajectory) after the learning process converges. The 
possibility of monitoring each cell activity allows us to interpret how the whole network 
works, receiving distributed spike patterns from the mossy fibers, producing sparse 
coding at the granular layer and adapting the weights between the granular layer and 
the Purkinje cells through supervised learning driven by the inferior olive activity (which 
is related to the actual error at each instant of the trajectory execution). The cerebellum 
integrated in the control loop with the presented configuration (actual and desired 
positions/velocities reaching the cerebellum through mossy fibers), performs the 
model abstraction process, as a function approximation problem (with the object 
under manipulation on-the-loop). 



In the final experiments done (Fig. 6(A), (B) and (C)), we demonstrate that the 
presented architecture can learn dynamic models incrementally (with low 
interference with each other). In fact, learning a new model takes advantage of 
previous learned weights (related to previous objects under manipulation) but without 
destroying these previous models (Fig. 6(D)). 
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Appendix A. Considerations related to benchmark trajectory accuracy; 
communication interface delay 

 
When a real robot is connected to the controller (cerebellar base controller), its 

communication interface introduces a delay each time that the joint positions are 
obtained and the joint motor torques are set. This delay limits the frequency in which 
the controller can interact with the robot. Thus, the robot communication interface 
determines the minimum control cycle time. The robot trajectory accuracy decreases 
as the control cycle time increases, since, for example, the robot motor torque set 
points remain constant during each cycle. Therefore, the suitability of a concrete 
communication interface (bus) depends on the trajectory accuracy decline which is 
acceptable. It is of importance then to take this limitation into account when 
developing realistic real-time software towards embodied system neuroscience. 
Spiking cerebellar updating usually demands simulation step times in the millisecond 
scale (1–2 ms) [5–7] making this bus delay consideration an important factor to be 
considered when designing cerebellar control stages. 

Just as an example, Fig. A.1 illustrates the inaccuracy introduced by different bus 
transmission delays for different conducted experiments using a simulated lightweight 
robot [77] and an eight-shaped test trajectory. In order to simulate the effect of a 
communication bus, the torque generated by the controller is repeatedly kept constant 
for a period (control cycle time). When the robot input torque is increasing, the bus 
delay produces an average torque below the desired one (with negligible bus delay). 
The opposite occurs when the input torque is decreasing. Therefore, the joint angle 
error caused by the transmission time is related to the desired angle value and velocity 
during the trajectory execution. 

 
Appendix B. Considerations related to the friction force of the robot joints 

 
There are several forces that affect the expected robot dynamic model. When 

these forces are not properly taken into account, an open-loop controller for an ideal 
robot may fail to produce accurate movements. The most relevant perturbing forces 
that can be easily found in simple robotic arms can be summarized as follows: 

Force exerted by the wires attached to the robot motors (for supping current 
and measuring angle encoder inputs/outputs): These forces remain relatively low. They 
can pull or push the robot’s joints when the arm is in certain positions, facilitating or 
hindering the movement in certain directions. Since these forces are usually very low, 
it can be assumed that they will be compensated thanks to the adaptability of the 
cerebellar controller. 



Inner dry friction forces of the robot joints: The two regimes of dry friction are 
static friction (the joint remains static) and kinetic friction (between moving surfaces of 
the joint). Sometimes the static friction of some robots is very significant. This friction 
force can be also compensated by the cerebellar controller. Nevertheless, when the 
magnitude of this force is comparable or higher than the rest of the force that the 
cerebellar controller must exert (to compensate for other deviations from the ideal 
dynamic model), the precision of the adaptive cerebellar module to compensate these 
other deviations is low. This occurs because if the cerebellar output force range 
increases, the resolution of its output per force unit decreases. This output range 
increase is equivalent to multiplying the output by a factor; therefore, the inaccuracy 
of this output would also be multiplied. 

Accurately compensating the effect of the friction forces can sometimes 
become considerably complex, depending on the used compensation technique (this 
force is not the same in all the possible joint angles); in fact, the friction term proves to 
be crucial when controlling light-weight robot arms with high-ratio gear boxes because 
there are no standard methodologies/techniques to control these robots without 
massive modeling [76]. However a complex technique to fully compensate this force is 
not needed since the cerebellar module can conveniently compensate it (when it is 
relatively low). Thus, in this case, the goal of the compensation technique should not 
be to fully compensate for these perturbations, but to keep them in a range domain 
where the cerebellar module can learn to accurately correct the movement deviations. 
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Fig. 1. Cerebellar architecture. Color representation indicates signals from different sources such 
as different cuneate receptive fields or proprioceptors. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Population coding of input (proprioceptors) signals. The joint angle position (input signal) 
provided by a joint encoder which covers the joint range is translated into a population coding 
whilst a certain trajectory is followed using a set of tuning receptive fields (Gaussian like curves) 
which represent the current injected into spiking neurons by different sensory receptors 
(proprioceptors). Each proprioceptor’s value (output signal) is integrated using an integrate-and-
fire neuron model and determines the activity response of an input neuron (as is the case of 
Mossy Fiber neurons belonging to the cerebellar circuitry). Lower plots illustrate how two 
trajectories (encoder angle varying in time) defined in a single joint produce spiking patterns 
when the contributions to the integrate neurons are integrated through the sensory receptive 
fields. 



 
Fig. 3. (A) Benchmark trajectory to be performed consisting of sinusoidal components. The 
trajectory is shown in both joint coordinate and Cartesian coordinates (eight-like trajectory). The 
receptive fields are distributed covering the whole range determined by the joint coordinates. (B) 
Implemented cerebellar control loop. The cerebellum infers a corrective model that produces 
effective corrective commands in order to compensate the existing mismatch between the 
crude inverse dynamic robot model and the actual base dynamic plant model. The desired arm 
states are generated according to the Cartesian trajectory to be followed (positions (𝑄𝑑), 

velocities (𝑄̇𝑑) and accelerations (𝑄̈𝑑)) by the trajectory generator (a crude inverse kinematic model 
representing the output of the associative cortex and other motor areas). These desired arm states 
in joint coordinates are used at each time step to compute desired torque commands (crude 
inverse dynamic robot model). They are also used as input to the cerebellum which produces 
the predictive corrective commands (τcorrective) which are added to these crude torque commands 
(τdesired). The final total torque addition is supplied to the robot plant. The difference between 
the actual robot trajectory and the desired one is used to calculate the climbing fiber activity 
which is supplied to the cerebellum as a teaching input signal (for adapting PF–PC synaptic 
weights). 



 
 
Fig. 4. Cerebellar activity monitoring one second simulation snapshot at the beginning of the 
learning process (left plots) and at the end of the learning process (right plots). Left Y axes are 
used for the neuron number in the network. The bottom legend indicates how these neurons are 
related to different joints and agonist or antagonist micro-complexes by using different colors. 
Plots C–F include two overlapped representations, the spike patterns related to the left Y axis and 
a continuous line referred to the right Y axis at each plot. (A) (B) Translation of the desired/actual 
joint positions/velocities into mossy fiber activity at the beginning of the learning process (A) and 
at the final learning stage (B). (C) (D) Evolution of the climbing fiber activity during the learning 
process and its corresponding error current proportional to the actual position and velocity error. 
(C) High error current translated into spikes at the initial learning stage. (D) Lower error current 
translated into spikes at the end of the learning process. (E) (F) Cerebellar output during the learning 
process and the corresponding generated analog corrective action. (E) Cerebellar output at the 
beginning of the learning process. No spikes are elicited at the DCNs, the corrective actions are 



zero. (F) Cerebellar output at the end of the learning process. The spike output activity is translated 
into corrective actions for each robot joint. Each couple of micro-complexes is related to a certain 
robot joint (agonist and antagonist terms). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
 

 
 
Fig. 5. Robotic performance (system behavior) in a manipulation task. The manipulation of a 10 
kg payload whilst executing an eight-like trajectory reveals the inner robot dynamics. The 
benchmark trajectory execution takes one second in each trial. (A) Snapshot of the execution of 
the eight-like trajectory in joint coordinates (position) belonging to the initial learning stage (top 
plots) and the final learning stage (bottom plots). (B) Snapshot of the execution of the eight-like 
velocity trajectory in joint coordinates (velocity) belonging to the initial learning stage (top plots) 
and the final learning stage (bottom plots). (C) Averaged Mean Absolute Error (during each trial) 
obtained along the learning process computing the addition of the individual MAEs corresponding 
to each robot joint. Four different simulations with different initial random values at PF–PC synaptic 
weights have been used. The shadowed area is defined between the maximum and minimum 
values among the four simulations in each trial. The red curve is the average of the four 



simulations. (D) Cartesian coordinate evolution during the learning process. At the initial 
learning stage, the LWR is not capable of properly handling the attached payload. At the final 
learning stage, the cerebellum is able to provide the appropriate corrective torque values 
achieving almost the aimed target trajectory. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
 

 
 
Fig. 6. Independent Learning vs. Incremental Learning. (A) Manipulation of 10, 6, and 2.5 kg 
independently. The learning process is reset (synaptic weights at PF–PC are randomly chosen at 



the end of the learning process of each payload). (B) Manipulation of 10, 6, and 2.5 kg 
consecutively. The learning process is not reset at the end of the each payload learning. The learning 
is not destructive; the incoming learning process takes advantage of the previous learning process as 
indicated by the lower initial starting MAE error after switching between contexts (objects under 
manipulation). The zoom in the graph shows how the system behaves when these new objects 
are presented again (300 iterations each). This demonstrates that the learning is done with only 
low interference between the object model dynamics being learned (abstracted). (C) Normalized 
initial error values (obtained in the ten-first trial errors per payload, 10 kg initial error has been taken 
as the worse possible scenario) obtained at the beginning of the learning process with independent 
learning (left plots) and consecutive or incremental learning (right plots). The normalized 
average and standard deviation of MAE values (of the last 100 trials of each learning process) 
with independent learning (left plot) and consecutive or incremental learning (right plot) are 
also shown. In any case, incremental learning outperforms independent learning. (D) 
Incremental learning. Switching payloads every 50 trials (between 10 kg/6 kg in the left plot and 
6 kg/2.5 kg in the right plot). It is shown how the learning can simultaneously abstract two 
different payloads (two different dynamic models) only marginally interfering with each other. 
 

 
 
Fig. 7. Real time monitoring. The total computation time has to remain below 2 ms, because the 
communication between the neural simulator and the robot platform (real or simulated) is 
sliced in intervals of 2 ms. 
 

 
 
Fig. A.1. Possible consequences of the interface delay: snapshot of the cerebellar torque 
supplied to a LWR robot [77] (after being kept constant for several milliseconds as indicated in 
different traces).  
 


