
Integrated neural and robotic simulations. Simulation of

cerebellar neurobiological substrate for an object-oriented

dynamic model abstraction process

Niceto R. Luque a,∗,1, Richard R. Carrillo a,1, Francisco Naveros a, Jesús A. Garrido b,
M.J. Sáez-Lara c
a Department of Computer Architecture and Technology, CITIC, University of Granada,
Periodista D. Saucedo Aranda s/n, E-18071 Granada, Spain
b Brain Connectivity Center, IRCCS Istituto Neurologico Nazionale C. Mondino, Via
Mondino 2, Pavia, I-27100, Italy
c Department of Biochemistry and Molecular Biology, University of Granada, CIBM, PTS,
s/n, E-18071 Granada, Spain

This document is a preprinted version of the final manuscript published in ROBOTICS AND

AUTONOMOUS SYSTEMS. The original reference is “Luque, N. R., Carrillo, R. R., Naveros, F.,

Garrido, J. A., & Sáez-Lara, M. J. (2014). Integrated neural and robotic simulations. Simulation of

cerebellar neurobiological substrate for an object-oriented dynamic model abstraction process.

Robotics and Autonomous Systems, 62(12), 1702-1716”. The DOI for the original document is:

https://doi.org/10.1016/j.robot.2014.08.002

HIGHLIGHTS

 We integrated EDLUT neural simulator within a simulated robotic environment.

 As an embodiment example, we implemented a cerebelar-like structure controlling
a simulated arm.

 The neural robotic simulator combines signals in analog/spike domains.

 Neural simulator, interface, and robotic platform operate conjointly in real time.

ABSTRACT

Experimental studies of the Central Nervous System (CNS) at multiple organization
levels aim at understanding how information is represented and processed by the brain’s
neurobiological substrate. The information processed within different neural subsystems is
neurocomputed using distributed and dynamic patterns of neural activity. These emerging
patterns can be hardly understood by merely taking into account individual cell activities.
Studying how these patterns are elicited in the CNS under specific behavioral tasks has
become a groundbreaking research topic in system neuroscience. This methodology of
synthetic behavioral experimentation is also motivated by the concept of embodied
neuroscience, according to which the primary goal of the CNS is to solve/facilitate the body–
environment interaction.

With the aim to bridge the gap between system neuroscience and biological control,
this paper presents how the CNS neural structures can be connected/integrated within a
body agent; in particular, an efficient neural simulator based on EDLUT (Ros et al., 2006)
has been integrated within a simulated robotic environment to facilitate the
implementation of object manipulating closed loop experiments (action–perception loop).
This kind of experiment allows the study of the neural abstraction process of dynamic
models that occurs within our neural structures when manipulating objects.

The neural simulator, communication interfaces, and a robot platform have been
efficiently integrated enabling real time simulations. The cerebellum is thought to play a
crucial role in human-body interaction with a primary function related to motor control

which makes it the perfect candidate to start building an embodied nervous system as
illustrated in the simulations performed in this work.

keywords: Neurobotics, Cerebellum, Spiking neural network, Close-loop simulation,
Embodied neuroscience

1. Introduction

Computational models of various brain regions have been developed and
studied for more than thirty years in order to analyze central brain functions.
Computational neuroscience (CN) is the natural complement of experimental brain
research, since it focuses on specific mechanisms and models which are only partially
observed in anatomical or physiological studies. In particular, the cerebro-cerebellar
loop has been extensively modeled since Marr and Albus [1,2], providing elegant
explanations on how the forward controller operation of the cerebro-cerebellar loop
seems to work. Nevertheless, these computational theories tend to focus on one part
of the cerebellar circuitry and then, to extrapolate the obtained conclusions to the
whole cerebro-cerebellar system. Simulating nervous systems ‘‘connected’’ to a body
(agent or robot with sensors and actuators) is of interest for studying how certain
capabilities of the nervous system (e.g. the role of the cerebellum in coordinated
movements and object manipulation) are based on cellular characteristics, nervous
system topology, or local synaptic adaptation mechanisms. This represents an
integrative approach which aims to build the bridge between task specific
experimentation (equivalent to ‘‘awake animal testing’’) and system neuroscience
models.

This integrative approach allows us to study the role of certain nervous systems
within ‘‘behavioral tasks’’ [3]. For this purpose, it is crucial to study nervous system
models within the framework of their interaction with a body (sensors and actuators)
and the environment.

This paper describes an integrated approach to the cerebellar circuit modeling
within real time ‘‘behavioral tasks’’. The paper describes briefly: (a) a cerebellar model
based on point neurons capable of being simulated in real-time. The model maintains
biological interconnectivity ratios in functional medium-scale networks (rather than an
ad-hoc neural network particularly designed for a specific behavioral task) that are
embedded in biologically plausible control loops. (b) Testing the role of plasticity at
parallel fibers-Purkinje cells. (c) Embedding the neural system model into a cerebro-
cerebellar control loop connected to a Light Weight Robot (LWR) performing repetitive
fast manipulations along benchmark trajectories. In order to address these three aims,
we have integrated a neural simulator based on EDLUT [4] with a simulated robotic
environment to facilitate the implementation of object-manipulating closed-loop
experiments (action–perception closed loops).

These experiments allow us to study the neural abstraction process of dynamic
models (of objects being manipulated) that occurs within our neural structures in fast
manipulation tasks [5–7]. The neural simulator, the communication interface, and the
simulated robotic platform have been developed and integrated taking into account
computational efficiency as a major requirement in order to enable real time
simulations. This platform allows us to study different neural representation and
processing schemes in a specific task within a brain–body interaction framework.

1.1. Functional cerebellar models; a brief overview

Among Embodied System Neuroscience models, the well-organized structure of

the cerebellum has received special attention from researchers belonging to very

different fields. On one hand, neurophysiologists have studied and proposed detailed
models and descriptions according to experimentally recorded cells and synaptic
properties. However, it is not yet clear how specific properties of these current detailed
models facilitate specific tasks at a behavioral level. On the other hand, engineers have
proposed artificial approaches (only related with biology at a very high level) for
biologically relevant tasks such as accurate and coordinated movements. Based on
these opposed approaches, several cerebellar modeling frameworks have been
proposed:

In state-generator models, the granule cell layer presents on/off type ‘‘granule’’
entities that provide a sparse coding of the state space (Marr–Albus Model [1,2], CMAC
[8–10] model, or Yamazaki and Tanaka model [11–14]). These models succeed in
explaining some traditional cerebellum-involving tasks such as eyelid conditioning [15]
or motor control tasks [6,7,16]. In functional models, only the functional abstraction of
specific cerebellar operations is considered: MPFIM model [17], Adaptive Filter model
[18–22], APG model [23], or LWPR model [24,25]. Although in some cases, these
models are also used to explain how the cerebellum works, these can be seen as
problem solving approaches (that use internal structures not constrained to biologically
plausible features). These functional models are also used to study the potential role of
the cerebellum in tasks such as eyelid conditioning, the vestibule ocular reflex (VOR),
or movement correction [24,25]. Finally, cellular-level models capture the biophysical
features of the cerebellar neuronal topology and processing, and can be evaluated in
the framework of neurophysiological experiments. These models aim to be as
biologically plausible as possible. But due to their inherent complexity, their application
in the context of large-scale cerebellar modeling and computation remains limited. The
very first approximations in this field were developed based on the simplified models
of Schweighofer–Arbib [26,27].

1.2. How to embody the cerebellar circuitry

The cerebellar network has been at the core of neurocomputational theories

since the 1960s, when Eccles proposed the Beam Theory [28] and Marr and Albus, the
Motor Learning Theory [1,2]. Later on, Ito developed the forward controller theory
[4,29–32]. Since then, the view has been crystallized on two main concepts that
can be synthesized as follows; the way the cerebellum operates is by decorrelating
the inputs in the granular layer and detecting known patterns in Purkinje cells. Pattern
recognition is regulated by memory storage at the parallel-fiber-Purkinje-cell synapse.
When unfamiliar patterns are detected repeatedly, the Purkinje cells change their firing
rate and regulate activity in the deep cerebellar nuclei (DCN), thereby emitting the
corrective terms used for highly accurate motions (skillful control performance).

Despite its attractiveness and simplicity, this theory only partially accounts for
the capabilities of the cerebellum. Furthermore, recent experimental data indicate that
the cerebellar system is much more complex than initially stated. Just to make a very
short survey, the mechanisms of the granular layer go far beyond simple decorrelation
[33], long-term synaptic plasticity does not occur only at the parallel fibers (PF) [33–
35], the inferior olive (IO) operates as a complex timing system and not simply to drive
Purkinje cell plasticity [36], the Purkinje cells and the DCN cells have operative states
that go far beyond the concept of firing rate regulation [37]. The core idea is that our
knowledge on the functioning of neuronal networks of the cerebellum is still rather
vague, and that we have to develop new computational tools to investigate cerebellar
network dynamics beyond the current existing paradigms.

The available neurophysiological data (which is essential for understanding the
functional organization of the cerebellum and related structures) has to be analyzed to

investigate the particular processing capabilities of each neuron and of its internal
dynamics. Emphasis must be put on proving how the network processing capabilities
are supported by the low-level characteristics of each neuron type. Many of the
specific cerebellar neural types have already been implemented in Python–NEURON–
EDLUT software simulators [38,39] and there are even specific repositories gathering
different kinds of models [40,41].

1.3. Modeling the cerebellar circuits

When modeling the cerebellar circuit with a bottom-up approach, the cerebellar

network needs to be modeled aiming at the construction and generation of a complete
cerebellar functional network, tested in realistic functional conditions and endowed
with plasticity rules. This process demands the comprehension of the interplay that
occurs between the Granular-and-molecularlayer subcircuit and the PC–DCN–IO
subcircuit.

Whilst the granular layer and molecular layer neurons can be largely
reconstructed starting from precise existing models, the DCN-and-IO subcircuits are not
modeled in detail. Therefore, the PC–DCN–IO circuit requires basic modeling to achieve
functional properties. An initial model of the DCN can be constructed based on [42,43].
As a starting point, the IO can be modeled at a functional level, i.e. as a module
translating ‘‘error related signals’’ into activity that modulates learning at the PF–PC
synapses. Also at this stage, although different plasticity sites have been reported
[34,35], most cerebellar functional models are based solely on the PF–PC adaptation
mechanism modulated by the IO activity (which delivers the teaching signals).

Once all the subcircuits and long-term synaptic plasticity are implemented and
tested separately, the functional operation of a complete circuit can be tested. The
first step lies on developing an appropriate connectivity between the modular
subcircuits. The connection map between the IO and PCs via climbing fibers, the
convergence of PCs to DCN neurons [44] and the mossy fiber (MF) projections to the
DCN [45], and the granular layer have been extensively described in the literature
and should be reconstructed respecting the known convergence/divergence ratios.

2. Material and methods

2.1. The real-time neural simulator. EDLUT

Common event-driven simulators [46,47] use simple neural models whose

dynamics are described by equations which can be discontinuously evaluated at
arbitrary times (e.g. current based integrate-and-fire models). But even when using
simple neural models, the firing-time prediction which is necessary for an eventdriven
simulation may be complex [48,49].

An EDLUT (Event-Driven neural simulator based on LookUp Tables) was
implemented [4] to simulate neural models whose internal dynamics is defined by
a set of differential equations (for instance, the Hodgkin and Huxley model [50])
adopting an event-driven simulation scheme. This software is an open source project
[51] for efficient simulation of biological neural networks. It is of particular interest in
the field of neurobotics and embedded neural computing in which real-time
processing is required, for example, for experiments which include perception–action
loops.

EDLUT uses an intensive preliminary simulation stage in which a neural model
is characterized, i.e. massive simulations of a single cell are done with different initial
conditions. At this stage, samples of the neural variables at different times are stored

in lookup tables. This preliminary stage can be seen as a cell model compilation stage.
These tables are calculated using time-consuming numerical analysis (e.g. Runge–Kutta
method). However, once they are generated, the network simulation can be run
efficiently through the event-driven method, just by accessing tables when the neural
state must be updated or predicted.

EDLUT uses lookup tables which store all the possible values (with certain
precision) of the neural-model state variables [52] in addition to the future states (firing
times) [53]. Therefore, a whole neural model is encoded in each set of model-
characterization tables. In this way, the simulator takes advantage of the increasing
memory resources available to perform efficient simulations with very limited
computation requirements. The event-driven simulation scheme based on lookup
tables uses memory access intensively, instead of CPU computation power for the
neural variable updates.

The initial EDLUT processing scheme allowed fast simulation of complex neural
models. Nonetheless, this scheme is constrained by the number of state variables of
a neural model because this determines the number of dimensions of the required
lookup tables. But in later versions [54], the EDLUT was upgraded to provide a hybrid
time-and-event driven simulation method. This hybrid scheme allows the concurrent
simulation of some neuronal models using the event-driven method (the models which
can be translated into lookup tables) and other models using the time-driven method
in the same network.

2.2. The cerebellar model

We have used leaky integrate-and-fire neural models (LIF) [50] whose synapses

are modeled as conductances. The general model has been then adapted for different
neural types. The LIF neural state is characterized by the membrane potential (Vm-c)
expressed by Eq. (1):

𝐶𝑚

𝑑𝑉𝑚−𝑐

𝑑𝑡
= 𝑔𝐴𝑀𝑃𝐴(𝑡)(𝐸𝐴𝑀𝑃𝐴 − 𝑉𝑚−𝑐) + 𝑔𝐺𝐴𝐵𝐴(𝑡)(𝐸𝐺𝐴𝐵𝐴 − 𝑉𝑚−𝑐)

+ 𝐺𝑟𝑒𝑠𝑡(𝑡)(𝐸𝑟𝑒𝑠𝑡 − 𝑉𝑚−𝑐)
(1)

where Cm stands for the membrane capacitance, EAMPA and EGABA denote
the reversal potentials of the synaptic conductances, and finally, Erest represents the
resting potential (being Grest the conductance responsible for the passive decay term
towards the resting potential). The gAMPA and gGABA conductances integrate all the
contributions received through individual synapses and are defined as decaying
exponential functions. The parameters of the neural model [5–7] and a more detailed
description can be found in [5–7,51].

Therefore, the state of a neuron is defined with just three variables:
Vm-c represents the membrane potential. When this variable reaches a specific

threshold, the neuron generates an output spike.
gAMPA and gGABA represent excitatory and inhibitory conductances respectively

that affect the membrane potential. These conductances decrease exponentially in
each integration step and increase proportionally to the synaptic weight of their
connections when an input spike arrives.

To solve the LIF neuron model differential equation, the EDLUT simulator
incorporates different integrative methods. This differential equation is processed off-
line using a short integration step to achieve good accuracy (it does not directly affect
the computation time during system neural simulations, since the neural model is
computed and stored in lookup tables in a preliminary neural characterization stage).

All the different characterized neural types have been interconnected following
a cerebellar topology structured into micro-zones distributed in different layers, as
described below (Fig. 1):

Mossy fibers (MFs) (248). These mossy fibers drive the contextual information
and sensory joint information (related with the manipulated object and desired/actual
positions and velocities). The mossy fiber model is based on leaky integrate-and-fire
neuron dynamics whose input current is provided by a set of overlapping receptive
fields covering the joint value space of the input signals (see Fig. 2).

Granular layer (GCs) (1500). This layer behaves as an abstraction of a simplified
cerebellar granular layer. The information provided by the mossy fibers is translated
into a sparse representation. Each granular cell (GC) receives four excitatory input
connections; three connections randomly chosen from joint-related mossy fibers and
the other one, from a context-related mossy fiber [7].

Parallel fibers (PFs) (1500). They represent the output axons of the granular
layer. The manipulated object model abstraction is stored in learned weights at the PF–
PC connections.

Climbing fibers (CFs) (48). The climbing fibers are the axons of the Inferior Olive
cells. This layer consists of 6 groups of 8 climbing fibers each. The IO output (encoding
a teaching signal related to the error) is translated into spikes using leaky integrate-
and-fire neuron dynamics whose input current is in this case proportional to the error
signal. The CFs drive the IO outputs to the Purkinje cells for supervised learning at PF–
PC connections. More details on this learning rule can be found in [6].

Purkinje cells (PC) (48). These cells are divided into 6 groups of 8 cells. Each
GC is connected to 80% of the PCs which are also receiving their corresponding teaching
signals from the CFs.

Deep cerebellar nuclei cells (DCN) (24). The cerebellar output is generated using
6 groups of these cells (2 groups per joint) whose activity is capable of providing
corrective torques for a specified cerebellar input. Corrective torque values per joint
are encoded by a couple of these groups, one group compensating positive errors
(agonist) whilst the other one is dedicated to compensate negative errors (antagonist).
Each DCN neuron group receives excitation from every MF cell and inhibition from the
two corresponding PCs. The sub-circuit PC–DCN–IO then is organized into six
microzones; three of them generating joint positive corrections (one per joint) and the
other three, generating joint negative corrections (one per joint). Mind that as it will
be explained below, we use three joints in our robot experiments.

2.3. Neural population coding

Neural population coding is traditionally used for sensorimotor representation.

Each neuron belonging to a certain system presents a distribution of responses over
some set of inputs. Hence, the response of many system neurons over a set of certain
inputs represents the system state [55,56]. In a reaching movement, the arm direction
is encoded by means of neurons whose input current changes with the cosine of the
difference between the stimulus angle and the preferred direction of the cell [57]
(Cosine tuning). Each cell has a preferred direction and receives input current
depending on how a movement is aligned to its preferred feature. However, a simple
reaching movement involves extracting spatial information including visual acquisition
of the target, coordination of multi-modal proprioceptive signals, and a proper motor
command generation to drive a proper motor response towards the target [58].
Common reaching movements towards a target that we have already seen involve an
internal representation of the target and limb positions, and also a coordinate
transformation between different internal reference frames. A spiking population

coding is used as internal representation and can be adapted as indicated below to be
embedded into a control loop.

The integration of computational models with neurophysiolog-
ical observations in order to understand the main problems in motor control

requires not only the cerebellum functionality to be considered but also its biological
architecture (cell-network topology). This requires the development of two ‘‘translation
processes’’ in order to interact with a robot agent: (1) Translation from analog domain
sensor inputs to spike based patterns compatible with a spiking cerebellar network. (2)
Translation from spike domain cerebellar outputs to analog domain actuator
commands to be delivered to the robot agent.

2.3.1. From sensors to spikes

When a target reaching movement is executed, different body parts, such as

muscles, tendons, or joints are articulated depending on their body location [59] along
the followed trajectory. Sensory proprioceptors are activated according to the
movement; thus, a time-varying set of stimuli is produced, and its corresponding neural
population varying activity is generated. In contrast, in a robot scenario, the only
available proprioception sensory information is supplied by an encoder output per link.
Hence, a translation from the joint position/velocity measures to a time-varying set of
stimuli is required. At this point, finding out an optimal biologically plausible encoding
scheme that allows ‘‘biological decoders’’ (as the ones we assume at the granular and
molecular layers of the cerebellum) to take advantage of the representation is a non-
trivial issue. It is assumed that the firing rate of an individual sensory receptor follows
a neural response which is characterized by Eq. (2) (also equivalent to a cosine tuning
curve, that is, the firing rate of the neurons varies with the angle between the preferred
direction of the sensory receptors and the sensed position) [60]. Therefore, a reaching
movement execution will be represented with a sparse population of active cells which
are varying with time. This coding mechanism leads to a representation of the current
sensorial state during the trajectory execution in an unambiguous way.

The output of each receptor is given by Eq. (2);

𝐼𝑁𝑖(𝑡) = 𝑟0 + 𝑟𝑚𝑎𝑥 ∑ 𝑒
−

(𝜃−𝜃𝑝𝑟𝑒𝑓−2𝜋𝑛)2

2𝜎2

𝑛

 (2)

where [r0, rmax] is the joint range in radians, θ is the actual position, θpref is the
preferred direction of the receptor, σ is the amplitude of the receptive field associated
to the receptor, and finally, 2πn is a subtractive term used to refer the actual position
to the first-360-degrees (the maximal range of any revolute joint is 360°).

Receptors are distributed along the range of each joint, being their receptive
fields overlapped (as peripheral nerve receptive fields are). Each value of a
proprioceptor output signal is integrated using an integrate-and-fire neuron model
whose dynamics is defined in Eq. (3) (see illustration in Fig. 2). In the case of an arm
system, this determines the output activity that drives the Cuneate Nucleus (CN)
activity emulating the way the Mossy Fiber activity from cells in the CN handles
information from forelimb muscle spindles [61].

𝜏𝑚𝑖

𝑑𝑣𝑖

𝑑𝑡
= −𝑣𝑖(𝑡) + 𝑅𝑖𝐼𝑁𝑖 (3)

Related to the leakage integrate and fire cell dynamics, τmi is the resting time
constant, vi the membrane potential, INi the input current, and Ri is related to the resting
conductance of the membrane.

2.3.2. From spikes to actuators, decoding the cerebellar output

Spiking modeled neurons elicit pulsed signals usually named action potentials

or spikes. It is believed that the shape of these spikes only carries minimal information
whilst the core of the information is carried by the spike time arrival [62,63]. The action
potential waveforms (voltage curve profile) elicited by those neurons is usually
translated into a set of binary symbols (0 or 1) representing an instant in which an action
potential occurs (1) or does not

(0). The generated binary waveform conforms a spike train and the obtained
pattern of spikes belonging to a certain time-frame generates the spike binary code; the
columns corresponding to the array of spikes are also named neural activation patterns.
It is then clear that, somehow, the translation of these neural activation patterns into
meaningful analog output signals has to be implemented for interfacing actual robot
actuators with analog signals.

Assuming that the goal is to decode rather than to analyze the behavior of
biological neurons, it seems reasonable to use a mathematical approach such as
linear filtering, particularly, a Finite Impulse Response filter (FIR), to accomplish this
task [64].

Defining the spike train as 𝑥(𝑡) = ∑ 𝛿(𝑡 − 𝑡𝑗)𝑁
𝑗=𝑡 , where tj stands for the set

of firing times of the corresponding neuron and being the FIR response defined as h(t),
then the stimulus can be written as follows:

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠(𝑡) = (ℎ ∗ 𝑥)(𝑡) = ∑ ℎ(𝑡 − 𝑡𝑗)

𝑁

𝑗=𝑡

 (4)

As noticed from Eq. (4), converting spike trains into analog signals is a quite
straightforward implementation. Nevertheless, despite the widespread use of FIR
filters for such purpose, an undesired delay is introduced in the generated analog
signal. This delay is strongly related to the number of filter coefficients as well as to the
shape of the filter kernel. To mitigate this effect and to make the conversion more
efficient, an exponentially-decaying kernel can be implemented, as seen in Eq. (5).
Thus, at each time step, the output signal value only depends on its previous value
and on the input spikes in the same time step. Therefore, this filter can be
implemented by recursively updating the last value of the output signal. Actually, the
choice of such exponential kernel is double folded. The kernel is able to mitigate the
delay problem and bears a strong resemblance to postsynaptic currents [62,63], thus
facilitating a possible biological interpretation.

𝐾𝑒𝑟𝑛𝑒𝑙 = ℎ(𝑡) = 𝑒−
𝑀
𝜏 (5)

where M is the number of filter taps (one per integration step) and
τ is the decay factor.

2.3.3. Equivalent to an integrative neuron

Integrative neurons are capable of both analyzing and interpreting sensory input

just taking into account their actual state, the incoming information, and their previous
states as well. Once the computation of those three elements is done, the resulting
information can be transmitted to motor neurons or other integrative neurons.
Assuming a leaky integrate-and-fire model for the integrative neuron, the model looks
like Eq. (3). This model forces the

input current to exceed a threshold Ith = Vth/Ri for the cell i to
fire; otherwise, it will simply leak out any charge in the membrane
potential. The firing frequency is thus defined in Eq. (6):

𝑓(𝐼) = {

0, 𝑖𝑓 𝐼𝑁𝑖 ≤ 𝐼𝑡ℎ

(𝑡𝑟𝑒𝑓 − 𝜏𝑚𝑖𝑙𝑜𝑔 (1 −
𝑉𝑡ℎ

𝐼𝑁𝑖𝑅𝑖
))

−1

, 𝑖𝑓 𝐼𝑁𝑖 > 𝐼𝑡ℎ
 (6)

where tref is a refractory period and τmi is the resting time constant. Solving the
differential equation (3), the membrane potential is expressed as follows:

𝑣𝑖(𝑡) = 𝑅𝑖𝐼𝑁𝑖(𝑡) +
𝑉𝑟𝑒𝑠𝑡 − 𝑅𝑖𝐼𝑁𝑖(𝑡)

𝑒(𝑡/𝜏𝑚𝑖)
 (7)

The functionality of the selected FIR described in Eqs. (4) and (5) can be read in
terms of a biological interpretation just by making an analogy between the proposed
exponential-decaying kernel and the behavior of an integrative neuron whose
dynamics is de fined using Eq. (7) (stimulus(t) ≈ Vj(t)). The resulting shapes of both
sides of this analogy hold a remarkable resemblance due to the exponential-decaying
kernel that governs both the neural dynamics and the FIR kernel. An engineering
strategy usually adopts the FIR based approach, because it allows us to easily adapt the
output values to the control signal which is demanded for accurate control. In such a
way, the effect of each spike elicited by any cerebellar nuclei cell (output cerebellar
cells) can be easily pondered thanks to the FIR filter, thus facilitating the correlation
between the cerebellar output spikes and their corresponding corrective output
signals. It is clear then that this conversion can be also processed by using any Integrate
and Fire-like neuron; however, doing so, the influence of each spike on the output does
not always remain clear.

2.4. Cerebellar control loop; a plausible implementation

It is widely assumed that the cerebellum, acting as a control module, is

embedded in a feedforward control loop [65–67]. A feedforward control system is able
to evaluate both the incoming sensory information from the environment and the
information provided by the system itself (proprioception) before the motor control
action is sent to the body. This means that the controller manages the sensory
information to deliver the best motor commands to accomplish the desired movement.
At that point, we must bear in mind that once a pure feedforward system sends the
corresponding control actions, it is not possible to modify them.

On one hand, a feedforward control system is able to deliver the precise set of
motor commands for the body-plant and to make corrections during the movement
without continuously checking the motor control output [26,27]. Conversely, the
feedforward controller requires a previous trial-and-error learning process in order to
later recognize (in a recall stage) all the possible sensorial states that may be reached.
In a real manipulation task, the environmental conditions are constantly changing and
the feedforward con troller must continuously tune its motor commands to cope with
these changeable environmental conditions [68]. According to this scheme, the
cerebellum operates as a feedforward controller for the motor commands which are
originated in the motor cortex (Fig. 3). The brain is able to plan and learn the optimal
trajectory of a movement in intrinsic coordinates [23,68–71]. This operation consists
of three main tasks: the desired trajectory computation in external coordinates, the
task-space translation into body coordinates, and the motor command generation [72].
In order to deal with the aforementioned changeable environmental conditions, the

system needs to incorporate a Feedback-Error Learning (FEL) scheme [73] by means of
the cerebellum operating in conjunction with a crude inverse dynamic model of the
arm-plant [74]. It has been proposed that the association cortex provides the motor
cortex with the desired trajectory in body coordinates. In the motor cortex, the motor
command is calculated by using an inverse dynamic arm model (for a review, see [75]).
The spinocerebellum–magnocellular red nucleus system provides an accurate model of
musculoskeletal dynamics, which is learned with practice by sensing the motor command
consequences in terms of executed movements (proprioception). The
cerebrocerebellum–parvocellular red nucleus system, which projects back to the motor
cortex, provides a crude inverse-dynamic model of the musculoskeletal system, which
is acquired whilst monitoring the desired trajectory [73]. The crude inverse-dynamic
model works together with the dynamic model provided by the cerebellum
embedded in a feedforward control loop thus updating motor commands accord ing
to predictable errors occurring when executing a movement. It learns and stores
models of the skeleto-muscular system providing the precise timing control of agonist–
antagonist muscle pair groups in addition to the needed force and stiffness control [76].
Obviously, the muscle flexion–contraction precise timing and the needed force in a
manipulation task depend on the weight to be handled (more concretely, on the
dynamic model of the object under manipulation), the cerebellum being crucial for
delivering this proper timing, force, and coordination; these appropriate corrective
terms are learned through a trial-and-error process [68].

2.5. Simulated robot integration: robot and training trajectory

Behavioral experiments with an embodied cerebellar system require the

integration of a real or simulated robot in the control loop. The simulated robot is
intended to follow a specific trajectory whilst the cerebellar model learns to provide
corrective torques for the robot actuators. The robot-control experiment results are
intended to assess the effects on performance caused by concrete neural properties,
cerebellar subcircuits, or adaptive mechanisms (synaptic plasticity). This robot-control
experimentation demands human-like robots whose intrinsic dynamics is somewhat
similar to their biological counterparts. This requirement motivates the use of
lightweight robots (LWR) such as the Kuka lightweight robot developed by DLR [77,78].

As mentioned above, the main role of the cerebellum seems to be related to
human motor control, especially in those tasks where timing and force are critical.
Therefore, those manipulation tasks able to modify the dynamics of the arm-plant
whilst performing certain movements would constitute the paradigm to follow. These
LWR robots are capable of being dynamically modified when manipulating different
payload contexts under certain kind of movements. This motivates the definition of a
benchmark trajectory capable of revealing the dynamic properties of a LWR. According
to the proposals in [76,79], fast movements in a smooth pursuit task consisting of
vertical and horizontal sinusoidal components are good candidates in order to reveal
the robot dynamics. Examples of different benchmark trajectories can be checked in
[74,76,80]. Considerations related to the communication interface delay and the
friction force of the robot joints need to be taken into account (see Appendix).

2.6. The integrated neurobotics simulation platform

These techniques are now included into an integrated software platform able

to combine realistic robotic experiments (running in real time) with cerebellar like
modules that work as corrective engines. This platform aims to facilitate the study of
how the adaptive neural information coding mechanisms underlying the ability of

humans to interact with their environment is handled by means of an effective
adaptation at the cerebellum. The simulator of the robotic LWR arm, the control loop,
and the cerebellar module were implemented in C/C++ following previous
developments [5–7,24,25]. The software platform source code has been made available
at: https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot.

The core of the neural simulator was implemented taking EDLUT [4] source code
as the basis. EDLUT was then provided with an interface library as well as with a robot
library able to dynamically define and model different lightweight robot configurations.
In this work, we use a rough approximation of a Kuka LWR [77].

2.7. A practical running example

The aim of this working example is to show how a cerebellar model based

on [7] within a ‘‘perception–action’’ closed-loop [5–7,74] is used in order to control a
simulated LWR [77] arm by means of the developed software platform. Vertical and
horizontal sinusoidal composed trajectory-following tasks [5–7,74] will be run in order
to reveal the robot dynamics (see Fig. 3) with different payloads to be manipulated. The
input pathways to the artificial cerebellum will be MFs and CFs. The cerebellar output
is translated into torque commands for each joint through conversion modules [5–7],
following the approach described in the previous section.

3. Results

Using this cerebellar architecture, a 1000 trial execution (each trial takes one

second) following the principles already presented in [7] has been performed, obtaining
the raster plot shown in Fig. 4. This figure represents a snapshot of one trial execution
representing a cerebellar simulation of one second eight-like trajectory operating 3
revolute joints (joint 1, joint 2, and joint 3 indicated in Fig. 3) of a LWR defined in [5–7]
when manipulating a 10 kg payload. This snapshot corresponds to two particular
moments during the learning process; the initial learning stage (left column plots) and
the final learning stage (right column plots). Mind that, as can be seen in Fig. 4, at the
initial learning stage (0–1 s period), no cerebellar action has been learned yet (Fig. 4(E)),
whilst at the final learning stage (999–1000 s period), the learning process is well settled
down (Fig. 4(F)) and corrective terms are delivered through DCNs.

As we see, all plots represent activity along time using dots (in plots A and B,
each dot represents a spike) or short vertical markers when the number of neurons
being monitored is lower (plots C, D, E, and F). Fig. 4(A) represents a raster plot of the
input activity that is reaching the cerebellar architecture through mossy fibers at the
initial learning stage. As explained before, mossy fibers are able to elicit a set of spike
trains related to the desired and actual positions and velocities (according to the
scheme illustrated in Fig. 2) presented by the robot arm along the eight-like trajectory
movement. Each joint position and velocity is translated into spikes by using three
groups (one for position and another one for velocity for each joint) of 20 mossy fibers.
Each of these groups is activated by its corresponding set of receptive fields (Fig. 2) that
are covering the operative range of the input variable. At this initial learning stage, the
actual trajectory is far from the desired one, thus position/velocity values only activate
part of the population of mossy fibers (compared to the activation of the mossy fibers
encoding the desired trajectory). However, as Fig. 4(B) shows, at the final learning
stage, both actual position/velocity values can properly cover the operative range of
the input variables. It can be seen that at this final learning stage, the activation of the
mossy fibers related to the desired trajectory is similar to the activation profile of the

https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot
https://code.google.com/p/edlut/source/browse/branches/EDLUT_with_Robot

mossy fiber group related to the actual trajectory (encoding actual position and velocity
along the movement execution).

The activity of mossy fibers reaches the granular cell layer. The granular
layer operates adopting the model functionality described in [13–15] by Yamazaki
and Tanaka, that is, it behaves as a state generator. A state generator machine is
capable of representing each time step (in our simulations, this is 0.002 s) as an
unambiguous time stamp (with a unique spike pattern representation), thus facilitating
the learning process (see [7]).

As indicated in the description of the cerebellar architecture, the Purkinje cell
activity is divided into 6 well-defined sets of spike trains representing the generated
spiking activity related to the output agonist/antagonist joint micro complexes for each
robot joint (joint 1, joint 2, and joint 3). Each pair of these 6 well-defined sets is related
to each agonist/antagonist corrective action for the three joints. As aforementioned,
the inferior olive activity (spiking patterns Fig. 4(C), (D)) is in charge of encoding the
error signal (Fig. 4(C), (D) colored lines) that has to be compensated by the cerebellar
corrective terms; here, we can see that there are also 6 well-defined areas related to
micro-complexes encoding the positive/negative corrective actions for the three robot
joints. Fig. 4(C),

(D) illustrates how the inferior olive spike distribution during the trajectory
execution remains proportional to the received error signals which in turn, are related
to the actual position/velocity errors. In these figures, it is shown how just a positive
corrective action is demanded in joints 2 and 3 whilst both positive and negative actions
are demanded in joint 1 along the whole eight-like trajectory execution. The error
directionality (either positive or negative error) is also illustrated in Fig. 4(C) and (D).
Obviously, at the initial learning stage, the amplitude of the encoded error signal to be
translated into spikes is high as well as the number of spikes elicited by the inferior
olive since the learning process has barely started (Fig. 4(C)). On the contrary, once the
learning process is well settled down, the expected amplitude of the encoded error
signal to be translated into spikes and the numbers of elicited spikes by the inferior
olive decreased significantly at this final learning stage (Fig. 4(D)). The Inferior Olive cell
activity is constrained between 1 and 10 Hz, according to neurophysiological data [81].

Finally, DCN generated output activity is plotted in Fig. 4(E) and (F). At the
beginning of the learning stage, a negligible cerebellar output is provided (Fig. 4(E))
whilst at the final learning stage (Fig. 4(F)), an appropriate cerebellar output corrective
action is generated. Error corrections are accomplished by changes in the activity of
PCs that, in turn, affect the activity of the DCN, which eventually is translated into
analog torque correction signals (also plotted in Fig. 4(E) and (F), with continuous lines)
following principles already presented in the previous section. Each group of 4 DCN
cells encodes the positive or negative corrective term which is eventually translated
into a joint corrective torque. The higher/lower the activity at each micro complex is,
the higher/lower its corresponding corrective torque is. In fact, the final activity at the
DCN (which represents the actual corrective terms being produced) is the result of the
subtraction of the PC activity (since its connection to DCN is inhibitory) which is specific
and learned (through supervised learning at the granular cell - Purkinje cell synapses)
from a general (nonspecific) activity term (from mossy fibers) which is approximately
constant. Mind that, although the corrections of the DCN after learning may seem very
irregular with high frequency terms (continuous lines Fig. 4(E) and (F)), the actual
contributions are smoothed out by the motor system (in this case, the actual motor
gears).

3.1. Robotic input/output

As briefly described in this work, cerebellar neural models are a current open
issue whose operating basis is not yet well determined due to their working complexity
principles. New tools for massive simulations (with multiple parameters) and state
monitoring capabilities are necessary to identify how certain neural/subcircuit/neural
layer features are related to the cerebellar functionality. Therefore, relating the
cerebellar operation with the system in which the cerebellum is embodied seems to be
the natural step forward. The presented integrated software platform is able to
establish this interconnection between these two elements as shown in Figs. 4 and 5.
Monitored snapshots of the whole cerebellar activity are related with their
corresponding robot performance curve (system behavior). These snapshots facilitate
the interpretation of the results giving a better insight about what is going on during
embodied experimentation (behavioral experiments as the manipulation task
illustrated in the previous section).

Fig. 5 is an illustrative example of the sort of performance curves that can be
obtained by using the presented software platform.

Here, the robot arm is manipulating a 10 kg payload whilst executing a one
second eight-like trajectory able to reveal the inner robot dynamics. Fig. 5(A) and (B),
represent a snapshot of this one second eight-like trajectory execution in joint
coordinates belonging to the initial learning stage (first row plots) and the final learning
stage (position and velocity) (second row plots). The target trajectory at each joint is
plotted in blue (continuous line) whilst the actual trajectory at each joint is plotted in
red (dashed line). The error directionality (position and velocity error) is shown in these
plots (either positive or negative error). As mentioned before, during the manipulation
of objects with a significant weight, the arm–object platform dynamics differ from the
original arm dynamics. This translates into a continuous negative error at the 2nd and
3rd joints which activates just one of the two inferior olive micro complexes (related to
each joint) during the simulation. Additionally, Fig. 5(C) shows the Mean Absolute Error
(MAE) obtained along the learning process. Finally, plot 5(D) represents just an example
of how the obtained Cartesian coordinates of the tip of the robot arm evolve during
the learning process. As shown, at the initial learning stage, the LWR is not capable of
properly handling the attached payload; there is no acquired cerebellar corrective
model for the 10 kg payload. Therefore, no corrective torque values are supplied yet.
At the final learning stage, the cerebellum is able to provide the appropriate corrective
torque terms achieving almost the aimed target trajectory.

Fig. 6 shows the same kind of experimentation conducted in Fig. 5 but
extrapolated to different masses so as to reveal the capabilities and features that
the learning at PF–PC synapses endows. Fig. 6(A) and (B), represent the MAE evolution
whilst the robot arm is manipulating different payloads (10, 6 and 2.5 kg respectively)
whether independently or consecutively. In Fig. 6(A) the learning process is reset, which
means that all the synaptic weights at PF–PC are randomly chosen at the end of the
learning of each payload whilst in Fig. 6(B) the learning process is not reset at the
end of each payload learning. As can be seen, the learning is not destructive; the
incoming learning process takes advantage of the previous learning process as
indicated by the lower initial starting MAE error after switching between contexts. Fig.
6(C) points out the normalized performance that each of the aforementioned
experiments achieves. Fig. 6(D) demonstrates how the learning process is compatible
with incremental learning. Here, the payloads are switched every 50 trials (between 10
kg/6 kg in the left plot and 6 kg/2.5 kg in the right plot) thus showing how the learning
process can simultaneously abstract two different payloads (two different dynamic
models) that are only marginally interfering with each other.

3.2. Real time simulation

The computation load when simulating spiking neurons is high and needs to be

done efficiently for controlling robots in real time. When any event-driven simulator is
confronted with a massive amount of data to be processed online, this approach suffers
due to the discontinuous flow of data to be computed. In fact, the learning process
must be done online, in real time, as the robot is moving. A mechanism to ensure
real time when processing all the neural activity involved during the simulation process
has been implemented. During a neural simulation, all neural updates have to be
processed in chronological order. However, during the neural simulation, future events
may appear (i.e. events that occurred due to delayed spike firings or neural connections
presenting delays). To manage this situation, a heap data structure able to efficiently
insert and extract ordered events is required. Controlling the CPU time consumption of
each time step allows real-time simulation. Although the calculation of the dynamics
and kinematics of the robot (for instance, using a Newton Euler algorithm [74]) involves
a constant number of operations at each time step, the neural simulation
computational cost depends on the neural activity.

We have implemented a watchdog timer supervising each simulation time step.
When the simulation process is consuming more time than a certain predefined
constraint percentage of the total robot communication step time, the simulator skips
non-critical event processing, thus keeping the simulation running in time (see Fig. 7).
In our example, the total computation time has to remain below 2 ms, since the
communication between the neural simulator and the robot platform is sliced in 2 ms
intervals. As shown in Fig. 7(A), the computation time of each simulation slice (of 2 ms)
consumes less than 2 ms. The ‘‘computation time’’ includes the cerebellar simulation
time, the robotic simulation time, and the communication time between them. At each
simulation step, the cerebellum updates and computes its internal neural states thus
eliciting a set of generated spikes. There exists a close relationship between the
number of generated spikes and the consumed computational time (Fig. 7(A) and (B)).
In the end, a trade-off decision has to be taken. A watchdog ensures that the boundary
will not be surpassed.

This illustrative simulation is composed by 1871 neurons and 69 603 synapses.
We have used simple point neurons (parameterized according to different cerebellar
neuron types) with three state variables (membrane potential and the excitatory and
inhibitory conductances). Thus, 5613 state variables need to be continuously updated.
During one second of simulation, the network produces 9890 spikes and 69 603
synaptic weight modifications (through spike time dependent plasticity at the parallel
fiber to Purkinje cell synapses). All this needs to be computed within the real-time
constraint. The simulation was run on a CPU consisting of a Pentium i7 3770k 3.4 GHz
processor with 8 GB RAM all mounted on an ASUS P8Zseries motherboard.

4. Discussion

Along this paper, we have outlined how the EDLUT neural simulator has been

equipped with an integrated robotic software framework. The dialog between these
two elements, the EDLUT and the robotic software, is mediated by an efficient
bidirectional interface (analog signals to spike patterns and vice versa) able to process
sensory data from the robot agent and generate the appropriate robot motor
commands. As a running embodied nervous-system example, we have implemented
and described a cerebellar architecture within a robotic control closed-loop where the
robot features allow the exploitation of the cerebellar potential in a manipulating
control task. This manipulation task aims to follow a specific desired trajectory

consisting of sinusoidal components with the robotic arm manipulating a punctual
mass. This punctual mass (representing the object under manipulation) affects the

global dynamic model of the arm + object plant. The cerebellar
system aims to provide corrective torque terms to compensate the
existing mismatch between the arm dynamic model and the one of the arm +

object under manipulation. These corrective torque terms are refined as the
cerebellum acquires the dynamic model

of the object under manipulation. This can be considered an abstraction process
based on just the synaptic plasticity mechanism between the parallel fibers and the
Purkinje cells.

The interest of this integrated neurobotics software platform can be outlined in
two main points: for accelerating the development of biologically plausible control
architectures cooperating with robot agents and for studying how certain capabilities
of the cerebellum in coordinated motion and object manipulation are based on cellular
characteristics, nervous system topology, or local synaptic adaptation mechanisms. In
fact, a rich dynamical environment (i.e. highly reconfigurable robot model dynamics and
reconfigurable cerebellar control loops) is a powerful tool to explore neurophysiological
hypotheses from a functional point of view. All this also needs to be complemented
with an appropriate monitoring and evaluation methodology. Here, it has been
addressed not only just the way in which the neural activity can be plotted and
interpreted by considering the micro-complex biologically plausible cerebellar
organization, but also the neural activity contributions to agonist and antagonist motor
system outputs thanks to the continuous monitoring of the target and actual joint
trajectories.

Furthermore, the performance obtained is also remarkable. Al-
though a simulation achieving real-time could be considered to be irrelevant, it

is a critical non-trivial issue in embodied system neuroscience. When doing experiments
with a real neuro-operated body, real-time operation becomes a major requirement.
We have shown how this integrated software framework fulfils real-time requirement
enabling a future real-robot cerebellar spiking control. In fact, the software framework
integrating the neural simulator, the robotic simulator and all the communication and
monitoring components has been developed with demanding real-time constraints.

5. Conclusions

In this paper, we show how a cerebellar structure integrated in the control

loop as an adaptive feedforward model can learn to abstract model dynamics of
objects being manipulated. We use an integrated simulation platform consisting of a
real-time spiking neural simulator (EDLUT) and a simulated robot (LWR). This platform
allows us to monitor the cell activity at different layers in terms of spike patterns as
well as the contribution that they produce in terms of actual corrective torques within
the control loop before learning the object model, and also eventually in the corrected
trajectory (closer to the goal trajectory) after the learning process converges. The
possibility of monitoring each cell activity allows us to interpret how the whole network
works, receiving distributed spike patterns from the mossy fibers, producing sparse
coding at the granular layer and adapting the weights between the granular layer and
the Purkinje cells through supervised learning driven by the inferior olive activity (which
is related to the actual error at each instant of the trajectory execution). The cerebellum
integrated in the control loop with the presented configuration (actual and desired
positions/velocities reaching the cerebellum through mossy fibers), performs the
model abstraction process, as a function approximation problem (with the object
under manipulation on-the-loop).

In the final experiments done (Fig. 6(A), (B) and (C)), we demonstrate that the
presented architecture can learn dynamic models incrementally (with low
interference with each other). In fact, learning a new model takes advantage of
previous learned weights (related to previous objects under manipulation) but without
destroying these previous models (Fig. 6(D)).

Acknowledgments

This work was supported by the EU grants REALNET FP7-ICT270434 (where the

cerebellar simulations were developed) and HBP FP7 Flagship Project 604102
(monitoring tools are being developed), and by the national grants ARC-VISION
(TEC2010-15396) and PYR (2014-16).

Appendix A. Considerations related to benchmark trajectory accuracy;
communication interface delay

When a real robot is connected to the controller (cerebellar base controller), its

communication interface introduces a delay each time that the joint positions are
obtained and the joint motor torques are set. This delay limits the frequency in which
the controller can interact with the robot. Thus, the robot communication interface
determines the minimum control cycle time. The robot trajectory accuracy decreases
as the control cycle time increases, since, for example, the robot motor torque set
points remain constant during each cycle. Therefore, the suitability of a concrete
communication interface (bus) depends on the trajectory accuracy decline which is
acceptable. It is of importance then to take this limitation into account when
developing realistic real-time software towards embodied system neuroscience.
Spiking cerebellar updating usually demands simulation step times in the millisecond
scale (1–2 ms) [5–7] making this bus delay consideration an important factor to be
considered when designing cerebellar control stages.

Just as an example, Fig. A.1 illustrates the inaccuracy introduced by different bus
transmission delays for different conducted experiments using a simulated lightweight
robot [77] and an eight-shaped test trajectory. In order to simulate the effect of a
communication bus, the torque generated by the controller is repeatedly kept constant
for a period (control cycle time). When the robot input torque is increasing, the bus
delay produces an average torque below the desired one (with negligible bus delay).
The opposite occurs when the input torque is decreasing. Therefore, the joint angle
error caused by the transmission time is related to the desired angle value and velocity
during the trajectory execution.

Appendix B. Considerations related to the friction force of the robot joints

There are several forces that affect the expected robot dynamic model. When

these forces are not properly taken into account, an open-loop controller for an ideal
robot may fail to produce accurate movements. The most relevant perturbing forces
that can be easily found in simple robotic arms can be summarized as follows:

Force exerted by the wires attached to the robot motors (for supping current
and measuring angle encoder inputs/outputs): These forces remain relatively low. They
can pull or push the robot’s joints when the arm is in certain positions, facilitating or
hindering the movement in certain directions. Since these forces are usually very low,
it can be assumed that they will be compensated thanks to the adaptability of the
cerebellar controller.

Inner dry friction forces of the robot joints: The two regimes of dry friction are
static friction (the joint remains static) and kinetic friction (between moving surfaces of
the joint). Sometimes the static friction of some robots is very significant. This friction
force can be also compensated by the cerebellar controller. Nevertheless, when the
magnitude of this force is comparable or higher than the rest of the force that the
cerebellar controller must exert (to compensate for other deviations from the ideal
dynamic model), the precision of the adaptive cerebellar module to compensate these
other deviations is low. This occurs because if the cerebellar output force range
increases, the resolution of its output per force unit decreases. This output range
increase is equivalent to multiplying the output by a factor; therefore, the inaccuracy
of this output would also be multiplied.

Accurately compensating the effect of the friction forces can sometimes
become considerably complex, depending on the used compensation technique (this
force is not the same in all the possible joint angles); in fact, the friction term proves to
be crucial when controlling light-weight robot arms with high-ratio gear boxes because
there are no standard methodologies/techniques to control these robots without
massive modeling [76]. However a complex technique to fully compensate this force is
not needed since the cerebellar module can conveniently compensate it (when it is
relatively low). Thus, in this case, the goal of the compensation technique should not
be to fully compensate for these perturbations, but to keep them in a range domain
where the cerebellar module can learn to accurately correct the movement deviations.

References

[1] J.S. Albus, A theory of cerebellar function, Math. Biosci. 10 (1971) 25–61.
[2] D. Marr, A theory of cerebellar cortex, J. Physiol. 202 (1969) 437–470.
[3] S.F. Giszter, K.A. Moxon, I.A. Rybak, J.K. Chapin, Neurobiological and neurorobotic

approaches to control architectures for a humanoid motor system, Robot. Auton. Syst. 37
(2001) 219–235.

[4] E. Ros, R. Carrillo, E.M. Ortigosa, B. Barbour, R. Agís, Event-driven simulation scheme for
spiking neural networks using lookup tables to characterize neuronal dynamics, Neural
Comput. 18 (2006) 2959–2993.

[5] N.R. Luque, J.A. Garrido, R.R. Carrillo, S. Tolu, E. Ros, Adaptive cerebellar spiking model
embedded in the control loop: context switching and robustness against noise, Int. J.
Neural Syst. 21 (2011) 385–401.

[6] N.R. Luque, J.A. Garrido, R.R. Carrillo, O.J.M.D. Coenen, E. Ros, Cerebellarlike corrective
model inference engine for manipulation tasks, IEEE Trans. Syst. Man Cybern. B 41 (2011)
1299–1312.

[7] N.R. Luque, J.A. Garrido, R.R. Carrillo, O.J.M.D. Coenen, E. Ros, Cerebellar input
configuration toward object model abstraction in manipulation tasks, IEEE Trans. Neural
Netw. 22 (2011) 1321–1328.

[8] J.S. Albus, Data storage in the cerebellar model articulation controller (CMAC), Trans. ASME,
J. Dyn. Syst. Meas. Control 3 (1975) 228–233.

[9] C. Sabourin, O. Bruneau, Robustness of the dynamic walk of a biped robot subjected to
disturbing external forces by using CMAC neural networks, Robot. Auton. Syst. 51 (2005) 81–
99.

[10] C.K. Tham, Reinforcement learning of multiple tasks using a hierarchical CMAC architecture,
Robot. Auton. Syst. 15 (1995) 247–274.

[11] T. Yamazaki, S. Nagao, A computational mechanism for unified gain and timing control in the
cerebellum, PLoS One 3 (2012) e33319.

[12] T. Yamazaki, S. Tanaka, Neural modeling of an internal clock, Neural Comput. 17 (2005)
1032–1058.

[13] T. Yamazaki, S. Tanaka, The cerebellum as a liquid state machine, Neural Netw. 20 (2007) 290–
297.

[14] T. Yamazaki, S. Tanaka, Computational models of timing mechanisms in the cerebellar

http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref1
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref2
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref3
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref3
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref3
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref3
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref4
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref4
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref4
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref4
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref4
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref5
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref5
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref5
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref5
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref6
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref6
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref6
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref6
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref7
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref7
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref7
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref7
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref8
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref8
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref8
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref9
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref9
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref9
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref9
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref9
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref10
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref10
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref11
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref11
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref11
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref12
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref12
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref12
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref13
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref13
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref13
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref14

granular layer, Cerebellum 8 (2009) 423–432.
[15] T. Yamazaki, S. Tanaka, A spiking network model for passage-of-time representation in the

cerebellum, Eur. J. Neurosci. 26 (2007) 2279–2292.
[16] P. Manoonpong, T. Geng, T. Kulvicius, B. Porr, F. Wörgötter, Adaptive, fast walking in a

biped robot under neuronal control and learning, PLoS Comput. Biol. 3 (2007) e134.
[17] W. Wolpert, M. Kawato, Multiple paired forward and inverse models for motor control, Neural

Netw. 11 (1998) 1317–1329.
[18] P. Dean, J. Porril, Adaptive filter models of the cerebellum. computational analysis,

Cerebellum 7 (2008) 567–571.
[19] P. Dean, J. Porrill, The cerebellum as an adaptive filter: a general model? Funct. Neurol. 25

(2010) 173–180.
[20] P. Dean, J. Porrill, C.F. Ekerot, H. Jörntel, The cerebellar microcircuit as an adaptive filter:

experimental and computational evidence, Nat. Rev. Neurosci. 11 (2010) 30–34.
[21] M. Fujita, Adaptive filter model of the cerebellum, Biol. Cybernet. 45 (1982) 195–206.
[22] J. Porrill, P. Dean, Cerebellar motor learning: when is cortical plasticity not enough? PLoS

Comput. Biol. 3 (2007) e197.
[23] J.C. Houk, J.T. Buckingham, A.G. Barto, Models of cerebellum and motor learning, Behav.

Brain Sci. 19 (1996) 369–383.
[24] S. Tolu, M. Vanegas, N.R. Luque, J.A. Garrido, E. Ros, Bio-inspired adaptive feedback error

learning architecture for motor control, Biol. Cybernet. 106 (2012) 507–522.
[25] S. Tolu, M. Vanegas, J.A. Garrido, N.R. Luque, E. Ros, Adaptive and predictive control of a

simulated robot arm, Int. J. Neural Syst. 23 (2013).
[26] N. Schweighofer, J. Spoelstra, M.A. Arbib, M. Kawato, Role of the cerebellum in reaching

movements in human. II. A neural model of the intermediate cerebellum, Eur. J. Neurosci.
10 (1998) 95–105.

[27] N. Schweighofer, M.A. Arbib, M. Kawato, Role of the cerebellum in reaching movements in
human. I. Distributed Inverse dynamics control, Eur. J. Neurosci. 10 (1998) 86–94.

[28] J.C. Eccles, Circuits in the cerebellar control of movement, Proc. Natl. Acad. Sci. 58 (1967)
336–343.

[29] M. Ito, Adaptive modification of the vestibulo-ocular reflex in rabbits affected by visual
inputs and its possible neuronal mechanisms, in: R. Granit, O. Pompeiano (Eds.), Progress
in Brain Research, Elsevier, 1979, pp. 757–761.

[30] M. Ito, The Cerebellum and Neural Control, Raven Press, New York, 1984.
[31] M. Ito, Synaptic plasticity in the cerebellar cortex and its role in motor learning, Can. J. Neurol.

Sci.. Le J. Can. Sci. Neurol. 20 (Suppl 3) (1993) S70–S74.
[32] M. Ito, Control of mental activities by internal models in the cerebellum, Nat. Rev. Neurosci.

9 (2008) 304–313.
[33] E. D’Angelo, C.I. De Zeeuw, Timing and plasticity in the cerebellum: focus on the granular

layer, Trends Neurosci. 32 (2009) 10.
[34] Z. Gao, B.J. vanBeugen, C.I. De Zeeuw, Distributed synergistic plasticity and cerebellar

learning, Nat. Rev. Neurosci. 13 (2012) 1–17.
[35] C. Hansel, D.J. Linden, E. D’Angelo, Beyond parallel fiber LTD: the diversity of synaptic and

non-synaptic plasticity in the cerebellum, Nat. Neurosci. 4 (2001) 467–475.
[36] G.A. Jacobson, D. Rokni, Y. Yarom, A model of the olivo-cerebellar system as a temporal

pattern generator, Trends Neurosci. 31 (2008) 617–625.
[37] G.A. Jacobson, I. Lev, Y. Yarom, D. Cohen, Invariant phase structure of olivo- cerebellar

oscillations and its putative role in temporal pattern generation, Proc. Natl. Acad. Sci. 106
(2009) 3579–3584.

[38] R.R. Carrillo, E. Ros, S. Tolu, T. Nieus, E. D’Angelo, Event-driven simulation of cerebellar
granule cells, Biosystems 94 (2008) 10–17.

[39] S. Solinas, T. Nieus, E. D’Angelo, A realistic large-scale model of the cerebellum granular layer
predicts circuit spatio temporal filtering properties, Front. Cell. Neurosci. 4 (2010).

[40] P. Gleeson, V. Steuber, R.A. Silver, S. Crook, NeuroML, in: Computational Systems
Neurobiology, Springer, 2012, pp. 489–517.

[41] M.L. Hines, T. Morse, M. Migliore, N.T. Carnevale, G.M. Shepherd, ModelDB: a database
to support computational neuroscience, J. Comput. Neurosci. 17 (2004) 7–11.

[42] N.C. Rowland, D. Jaeger, Coding of tactile response properties in the rat deep cerebellar

http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref14
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref15
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref15
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref16
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref16
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref16
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref16
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref17
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref17
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref17
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref18
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref18
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref19
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref19
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref19
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref20
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref20
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref20
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref20
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref21
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref22
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref22
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref22
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref23
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref23
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref23
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref24
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref24
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref24
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref24
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref25
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref25
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref25
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref26
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref26
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref26
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref26
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref26
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref27
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref27
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref27
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref27
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref28
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref28
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref28
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref29
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref29
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref29
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref29
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref29
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref30
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref31
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref31
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref31
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref32
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref32
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref32
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref33
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref33
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref33
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref34
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref34
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref35
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref35
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref35
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref36
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref36
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref37
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref37
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref37
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref37
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref38
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref38
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref39
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref39
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref39
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref39
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref40
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref40
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref41
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref41
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref41
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref41
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref42

nuclei, J. Neurophysiol. 94 (2005) 1236–1251.
[43] N.C. Rowland, D. Jaeger, Responses to tactile stimulation in deep cerebellar nucleus

neurons result from recurrent activation in multiple pathways, J. Neurophysiol. 99 (2008)
704–717.

[44] T.M. Teune, J. van der Burg, C.I. de Zeeuw, J. Voogd, T.J. Ruigrok, Single Purkinje cell can
innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light
microscopic and ultrastructural triple-tracer study in the rat, J. Comp. Neurol. 392 (1998)
164–178.

[45] W. Zhang, W.D. Linden, Long-term depression at the mossy fiber-deep cerebellar nucleus
synapse, J. Neurosci. 26 (2006) 6935–6944.

[46] A. Delorme, J. Gautrais, R. van Rullen, S. Thorpe, SpikeNET: a simulator for modeling large
networks of integrate and fire neurons, Neurocomputing 26 (1999) 989–996.

[47] L. Watts, Event-driven simulation of networks of spiking neurons, Adv. Neural Inf. Process.
Syst. (1994) 927–934.

[48] M. D’Haene, B. Schrauwen, J. Van Campenhout, D. Stroobandt, Accelerating event-driven
simulation of spiking neurons with multiple synaptic time constants, Neural Comput. 21
(2009) 1068–1099.

[49] T. Makino, A discrete-event neural network simulator for general neuron models, Neural
Comput. Appl. 11 (2003) 210–223.

[50] W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Popula- tions, Plasticity,
Cambridge University Press, 2002.

[51] J.A. Garrido, in: Edlut official website, 2012.
[52] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A.

Morrison, P.H. Goodman, Simulation of networks of spiking neurons: a review of tools and
strategies, J. Comput. Neurosci. 23 (2007) 349–398.

[53] J. Reutimann, M. Giugliano, S. Fusi, Event-driven simulation of spiking neurons with
stochastic dynamics, Neural Comput. 15 (2003) 811–830.

[54] J.A. Garrido, R.R. Carrillo, N.R. Luque, E. Ros, Event and time driven hybrid simulation of
spiking neural networks, in: Advances in Computational Intelligence, Springer, 2011, pp.
554–561.

[55] A. Pouget, P. Dayan, R. Zemel, Information processing with population codes, Nat. Rev.
Neurosci. 1 (2000) 125–132.

[56] S. Wu, S. Amari, H. Nakahara, Population coding and decoding in a neural field: a
computational study, Neural Comput. 14 (2002) 999–1026.

[57] T. Flash, T.J. Sejnowski, Computational approaches to motor control, Curr. Opin. Neurobiol.
11 (2001) 655–662.

[58] B. Amirikian, A.P. Georgopoulos, Modular organization of directionally tuned cells in the
motor cortex: is there a short-range order? Proc. Natl. Acad. Sci. 100 (2003) 12474–12479.

[59] K.R. Boff, J.E. Lincoln, Engineering Data Compendium. Human Perception and Performance.
Vol. 3, Harry G Armstrong. Aerospace Medical Research Lab Wright-Patterson Afb Oh, 1988.

[60] N.V. Swindale, Orientation tuning curves: empirical description and estima- tion of
parameters, Biol. Cybernet. 78 (1998) 45–56.

[61] N.R. Luque, J.A. Garrido, J. Ralli, J.J. Laredo, E. Ros, From sensors to spikes: evolving
receptive fields to enhance sensorimotor information in a robot-arm, Int. J. Neural Syst. 22
(2012) 1250013.

[62] J.D. Victor, Spike train metrics, Curr. Opin. Neurobiol. 15 (2005) 585–592.
[63] M.C. van Rossum, A novel spike distance, Neural Comput. 13 (2001) 751–763.
[64] B. Schrauwen, J. Van Campenhout, BSA, a fast and accurate spike train encoding scheme, in:

Proceedings of the International Joint Conference on Neural Networks, 2003, IEEE, 2003,
pp. 2825–2830.

[65] G.C. Goodwin, Adaptive Prediction and Control, Prentice Hall, NJ, 1984.
[66] R.C. Miall, D.J. Weir, D.M. Wolpert, J.F. Stein, Is the cerebellum a Smith predictor? J.

Mot. Behav. 25 (1993) 203–216.
[67] D.M. Wolpert, R.C. Miall, Forward models for physiological motor control, Neural Netw.

9 (1996) 1265–1279.
[68] A.J. Bastian, Learning to predict the future: the cerebellum adapts feedforward movement

control, Curr. Opin. Neurobiol. 16 (2006) 645–649.

http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref42
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref43
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref43
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref43
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref43
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref44
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref44
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref44
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref44
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref44
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref44
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref44
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref45
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref45
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref45
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref46
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref46
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref46
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref46
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref47
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref47
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref47
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref48
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref48
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref48
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref48
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref49
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref49
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref49
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref50
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref50
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref50
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref52
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref52
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref52
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref52
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref52
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref53
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref53
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref54
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref54
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref54
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref54
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref54
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref55
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref55
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref55
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref56
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref56
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref57
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref57
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref57
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref58
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref58
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref58
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref58
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref59
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref59
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref60
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref60
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref60
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref61
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref61
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref61
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref61
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref62
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref63
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref64
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref64
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref64
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref64
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref64
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref65
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref66
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref66
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref66
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref67
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref67
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref67
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref68
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref68

[69] E.J. Hwang, R. Shadmehr, Internal models of limb dynamic and the encoding of limb state,
J. Neural Eng. 2 (2005) 266–278.

[70] E. Nakano, H. Imamizu, R. Osu, Y. Uno, H. Gomi, T. Yoshioka, M. Kawato, Quantitative
examinations of internal representations for arm trajectory planning. Minimum
commanded torque change model, J. Neurophysiol. 81 (1999) 2140–2155.

[71] E. Todorov, Optimality principles in sensorimotor control (review), Nat. Neurosci. 7 (2004)
907–915.

[72] E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, McGraw- Hill
Professional Publishing, New York, 2000.

[73] M. Kawato, K. Furukawa, R. Suzuki, A hierarchical neural-network model for control and
learning of voluntary movement, Biol. Cybernet. 57 (1987) 169–185.

[74] J.A. Garrido, N.R. Luque, E. D’Angelo, E. Ros, Distributed cerebellar plasticity implements
adaptable gain control in a manipulation task: a closed-loop robotic simulation, Front.
Neural Circuits 7 (2013).

[75] B. Siciliano, O. Khatib, Springer Handbook of Robotics, Springer, 2008.
[76] P. van der Smagt, Benchmarking cerebellar control, Robot. Auton. Syst. 32 (2000) 237–251.
[77] A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, G. Hirzinger, The DLR

lightweight robot: design and control concepts for robots in human environments, Int. J.
Ind. Robot 34 (2007) 376–385.

[78] G. Hirzinger, J. Butterfab, M. Fischer, M. Grebenstein, M. Hähnle, H. Liu, N. Shäfer, I.
Sporer, A mechatronics approach to the design of light-weight arms and multifingered
hands, in: ICRA, 2000, pp. 46–54.

[79] R.E. Kettner, S. Mahamud, H. Leung, N. Sittko, J.C. Houk, B.W. Peterson, A.G. Barto,
Prediction of complex two-dimensional trajectories by a cerebellar model of smooth
pursuit eye movement, J. Neurophysiol. 77 (1997) 2115–2130.

[80] H. Hoffmann, G. Petkos, S. Bitzer, S. Vijayakumar, Sensor-assisted adaptive motor control
under continuously varying context, 2007.

[81] N. Schweighofer, K. Doya, M. Kawato, Electrophysiological properties of inferior olive
neurons: a compartmental model, J. Neurophysiol. 82 (1999) 804–817.

Fig. 1. Cerebellar architecture. Color representation indicates signals from different sources such
as different cuneate receptive fields or proprioceptors. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref69
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref69
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref69
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref70
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref70
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref70
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref70
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref70
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref71
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref71
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref71
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref72
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref72
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref73
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref73
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref73
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref74
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref74
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref74
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref74
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref75
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref76
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref76
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref77
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref77
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref77
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref77
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref79
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref79
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref79
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref79
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref81
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref81
http://refhub.elsevier.com/S0921-8890(14)00152-3/sbref81

Fig. 2. Population coding of input (proprioceptors) signals. The joint angle position (input signal)
provided by a joint encoder which covers the joint range is translated into a population coding
whilst a certain trajectory is followed using a set of tuning receptive fields (Gaussian like curves)
which represent the current injected into spiking neurons by different sensory receptors
(proprioceptors). Each proprioceptor’s value (output signal) is integrated using an integrate-and-
fire neuron model and determines the activity response of an input neuron (as is the case of
Mossy Fiber neurons belonging to the cerebellar circuitry). Lower plots illustrate how two
trajectories (encoder angle varying in time) defined in a single joint produce spiking patterns
when the contributions to the integrate neurons are integrated through the sensory receptive
fields.

Fig. 3. (A) Benchmark trajectory to be performed consisting of sinusoidal components. The
trajectory is shown in both joint coordinate and Cartesian coordinates (eight-like trajectory). The
receptive fields are distributed covering the whole range determined by the joint coordinates. (B)
Implemented cerebellar control loop. The cerebellum infers a corrective model that produces
effective corrective commands in order to compensate the existing mismatch between the
crude inverse dynamic robot model and the actual base dynamic plant model. The desired arm
states are generated according to the Cartesian trajectory to be followed (positions (𝑄𝑑),

velocities (𝑄̇𝑑) and accelerations (𝑄̈𝑑)) by the trajectory generator (a crude inverse kinematic model
representing the output of the associative cortex and other motor areas). These desired arm states
in joint coordinates are used at each time step to compute desired torque commands (crude
inverse dynamic robot model). They are also used as input to the cerebellum which produces
the predictive corrective commands (τcorrective) which are added to these crude torque commands
(τdesired). The final total torque addition is supplied to the robot plant. The difference between
the actual robot trajectory and the desired one is used to calculate the climbing fiber activity
which is supplied to the cerebellum as a teaching input signal (for adapting PF–PC synaptic
weights).

Fig. 4. Cerebellar activity monitoring one second simulation snapshot at the beginning of the
learning process (left plots) and at the end of the learning process (right plots). Left Y axes are
used for the neuron number in the network. The bottom legend indicates how these neurons are
related to different joints and agonist or antagonist micro-complexes by using different colors.
Plots C–F include two overlapped representations, the spike patterns related to the left Y axis and
a continuous line referred to the right Y axis at each plot. (A) (B) Translation of the desired/actual
joint positions/velocities into mossy fiber activity at the beginning of the learning process (A) and
at the final learning stage (B). (C) (D) Evolution of the climbing fiber activity during the learning
process and its corresponding error current proportional to the actual position and velocity error.
(C) High error current translated into spikes at the initial learning stage. (D) Lower error current
translated into spikes at the end of the learning process. (E) (F) Cerebellar output during the learning
process and the corresponding generated analog corrective action. (E) Cerebellar output at the
beginning of the learning process. No spikes are elicited at the DCNs, the corrective actions are

zero. (F) Cerebellar output at the end of the learning process. The spike output activity is translated
into corrective actions for each robot joint. Each couple of micro-complexes is related to a certain
robot joint (agonist and antagonist terms). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Robotic performance (system behavior) in a manipulation task. The manipulation of a 10
kg payload whilst executing an eight-like trajectory reveals the inner robot dynamics. The
benchmark trajectory execution takes one second in each trial. (A) Snapshot of the execution of
the eight-like trajectory in joint coordinates (position) belonging to the initial learning stage (top
plots) and the final learning stage (bottom plots). (B) Snapshot of the execution of the eight-like
velocity trajectory in joint coordinates (velocity) belonging to the initial learning stage (top plots)
and the final learning stage (bottom plots). (C) Averaged Mean Absolute Error (during each trial)
obtained along the learning process computing the addition of the individual MAEs corresponding
to each robot joint. Four different simulations with different initial random values at PF–PC synaptic
weights have been used. The shadowed area is defined between the maximum and minimum
values among the four simulations in each trial. The red curve is the average of the four

simulations. (D) Cartesian coordinate evolution during the learning process. At the initial
learning stage, the LWR is not capable of properly handling the attached payload. At the final
learning stage, the cerebellum is able to provide the appropriate corrective torque values
achieving almost the aimed target trajectory. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Independent Learning vs. Incremental Learning. (A) Manipulation of 10, 6, and 2.5 kg
independently. The learning process is reset (synaptic weights at PF–PC are randomly chosen at

the end of the learning process of each payload). (B) Manipulation of 10, 6, and 2.5 kg
consecutively. The learning process is not reset at the end of the each payload learning. The learning
is not destructive; the incoming learning process takes advantage of the previous learning process as
indicated by the lower initial starting MAE error after switching between contexts (objects under
manipulation). The zoom in the graph shows how the system behaves when these new objects
are presented again (300 iterations each). This demonstrates that the learning is done with only
low interference between the object model dynamics being learned (abstracted). (C) Normalized
initial error values (obtained in the ten-first trial errors per payload, 10 kg initial error has been taken
as the worse possible scenario) obtained at the beginning of the learning process with independent
learning (left plots) and consecutive or incremental learning (right plots). The normalized
average and standard deviation of MAE values (of the last 100 trials of each learning process)
with independent learning (left plot) and consecutive or incremental learning (right plot) are
also shown. In any case, incremental learning outperforms independent learning. (D)
Incremental learning. Switching payloads every 50 trials (between 10 kg/6 kg in the left plot and
6 kg/2.5 kg in the right plot). It is shown how the learning can simultaneously abstract two
different payloads (two different dynamic models) only marginally interfering with each other.

Fig. 7. Real time monitoring. The total computation time has to remain below 2 ms, because the
communication between the neural simulator and the robot platform (real or simulated) is
sliced in intervals of 2 ms.

Fig. A.1. Possible consequences of the interface delay: snapshot of the cerebellar torque
supplied to a LWR robot [77] (after being kept constant for several milliseconds as indicated in
different traces).

