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The time and space assembly line balancing problem (TSALBP) is a realistic multiobjective version of
assembly line balancing industrial problems involving the joint optimization of conflicting criteria such
as the cycle time, the number of stations, and the area of these stations. However, the existing problem
formulation does not consider the industrial scenario where the demand of a set of mixed products is
variable and uncertain. In this work we propose to introduce novel robustness functions to measure how
robust the line configuration is when the production plans demand changes. These functions are based
on the stations overload under future demand conditions and are used as additional a posteriori
information for the non-dominated solutions found by any multiobjective optimization method.
The values of the robustness functions are put together with a novel graphical representation to form
a generic model that aims to offer a better picture of the robustness of the set of Pareto-optimal
solutions.

Real data from the assembly line and production planning of the Nissan plant of Barcelona is
considered for the experimentation. This information is also employed to develop a new TSALBP instance
generator (NTIGen) that can generate problem instances having industrial real-like features. The use of
the robustness information model is illustrated in an experimentation formed by a set of instances
generated by NTIGen. Results show how the use of this robustness information model is necessary for
the decision maker as it allows her/him to discriminate between different assembly line configurations
when future demand conditions vary.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

An assembly line is made up of a number of workstations,
arranged either in series or in parallel. Since the manufacturing of
a production item is divided into a set of tasks which require an
operation time for their execution, a usual and difficult problem,
called assembly line balancing (ALB), is to determine how these
tasks can be assigned to the stations fulfilling certain restrictions
such as precedence relations. The final aim of ALB is to get an
optimal assignment of subsets of tasks to the stations of the plant
(Boysen et al., 2007, 2008). An excellent review on ALB and the
existing solving methods for the different problems is given in
Battaia and Dolgui (2013). Within ALB, a well-known family of
problems is the simple assembly line balancing problem (SALBP)
(Baybars, 1986; Scholl, 1999; Scholl and Becker, 2006). The SALBP
only considers the assignment of each task to a single station in
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such a way that all the precedence constraints are satisfied and no
station workload time is greater than the line cycle time.

As a result of the observation of the ALB operation in an
automotive Nissan plant from Barcelona (Spain), Bautista and Pere
ira (2007) recently proposed a SALBP extension aiming to design a
more realistic ALB model. They considered an additional space
constraint to get a simplified but closer version to real-world
situations, defining the time and space assembly line balancing
problem (TSALBP). The TSALBP presents eight variants depending
on three optimization criteria: m (the number of stations), c¢ (the
cycle time), and A (the area of the stations). In this paper we tackle
the TSALBP-m/A variant! which tries to jointly minimize the number
of stations and their area for a given product cycle time, a complex
and realistic multicriteria problem in the automotive industry.

The multicriteria nature of the TSALBP-m/A (also known as
TSALBP-1/3) favored the application of multiobjective meta-
heuristics (MOMHs) such as multiobjective ant colony optimization

! Originally, this TSALBP variant is referred as TSALBP-1/3 (Bautista and Pereira,
2007). This new notation is introduced in this work for a better understanding.
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(MOACO) (Chica et al., 2010), evolutionary multiobjective optimi-
zation (EMO) (Chica et al., 2011), and memetic algorithms (MAs)
(Chica et al., 2012). These MOMHs are able to return a set of
non-dominated solutions for a known demand of homogeneous
products. However, assembly lines are generally balanced for
producing mixed products and their demand is not usually fixed
and certain. When the assembly line is devoted to produce mixed
products in a given sequence, the operation times of the required
tasks are obtained from the average value of the different products
and their demand. This is a problematic rough estimate of the
actual operation times. If the demand changes, the operation times
also change and a re-balancing could be necessary for the config-
uration. This re-balancing causes production losses as workers,
assigned to a workstation, will have to comply with new tasks
within the station. These workers must be trained in the develop-
ment of the new tasks. This is normally a two weeks learning
process in the Nissan plant at Barcelona.

These difficulties and associated efficiency losses are common
in the automotive industry. This fact has encouraged us to propose
a model for evaluating and analyzing the convenience of the
solutions found by a multiobjective optimization (MOO) method
when these future demand conditions have changed. Normally, a
set of production plans are used to define the demand in future
scenarios. Our proposed model is based on this set of real
production plans by introducing the concept of robustness of a
solution linked to the flexibility of an assembly line configuration
to the demand changes.

Robustness can be applied to many components in an optimi-
zation process: noise in constraints, objective function, or uncer-
tainties in data variables (Roy, 1998, 2010; Beyer and Sendhoff,
2007). Real-world applications, as ALB, normally involve uncer-
tainties because of operating conditions or manufacturing process
(Miettinen et al., 2008). In our case, the interest lies on measuring
the robustness of a specific operating condition, i.e. the operation
times originated by the mixed products demand. The goal is to
identify how much robust the non-dominated solutions for the
TSALBP-m/A are in a set of production plans. Three robustness
functions are defined based on the overloaded stations and the
overloading production plans which occur when the demand
changes and the line configuration are set. The use of overloads
in assembly lines is not new in industrial production but, to our
knowledge, it is a novelty in robust balancing of assembly lines.

The latter robustness measures are used as additional a poster-
iori information associated to each non-dominated solution
returned by the MOO method. We followed this design for our
model because these robustness functions belong to a secondary
importance level with respect to the TSALBP-m/A objectives.
Therefore, the model might be seen as a hierarchical decision
support system where the optimization objectives are the most
important criteria and the robustness is an additional assessment.

Meanwhile, practitioners are requiring better and easier ways
to understand the truly useful information to make their decisions.
Visualizing the results of a multi-criteria decision making (MCDM)
process is gaining importance and becoming a crucial part of a
global framework: search, preference trade-offs, and interactive
visualization (Bonissone et al., 2009). In our case and to facilitate
the understanding of the robustness information, a novel graphical
representation is firstly introduced in this work. This general-
purpose representation both shows the objective values of the
non-dominated solutions found and embeds the information
provided by the robustness functions. Therefore, the robust
assembly line configuration options for the problem are depicted
at a glance.

A real-like Nissan TSALBP instance generator software (NTIGen)
is also described in order to validate the robustness model in a
diverse set of TSALBP instances and production plans. The design

and implementation of NTIGen is done by using the real data and
industrial features of the Nissan industry plant of Barcelona. The
software is freely available on-line to be used for future research
works. A set of eight instances are used in our experimentation
where the robustness function results and the novel graphical
representation are computed and shown for the non-dominated
solutions returned by a specific MOO method, the advanced
TSALBP-NSGA-II (Chica et al., 2011).

The rest of the paper is structured as follows. In Section 2, the
TSALBP-m/A formulation and the uncertain demand scenario
modeled by production plans are explained. The numerical robust-
ness functions for assembly line balancing are given in Section 3.
The robustness information model and its novel graphical repre-
sentation are introduced in Section 4. The description of the
NTIGen software is shown in Section 5. The experimentation
results are discussed in Section 6. Finally, we present some
concluding remarks in Section 7.

2. Demand variation in the TSALBP-m/A for mixed product
products

We first introduce the TSALBP-m/A (Section 2.1) and then the
real scenario of having a mixed products with changing demand
(Section 2.2).

2.1. Time and space assembly line balancing problem

The manufacturing of a production item is divided into a set J of
n tasks. Each task j requires an operation time for its execution
tj>0 that is determined as a function of the manuf
acturing technologies and the employed resources. Each station
k (k=1,2,...,m) is assigned to a subset of tasks S, (S, =J), called
workload. Each task j can only be assigned to a single station k.

Each task j has a set of direct “preceding tasks” P; which must be
accomplished before starting it. These constraints are normally
represented by means of an acyclic precedence graph, whose
vertices stand for the tasks and where a directed arc (i, j) indicates
that task i must be finished before starting task j on the production
line. Thus, task j cannot be assigned to a station that is ordered
before the one where task i was assigned. Each station k also
presents a station workload time t(Sy) that is equal to the sum of the
tasks' processing time assigned to the station k. SALBP focuses on
grouping tasks in workstations by an efficient and coherent way.

In this simplistic model there is a need of introducing space
constraints in assembly lines' design based on two main reasons:
(a) the length of the workstation is limited in the majority of the
situations and (b) the required tools and components to be
assembled should be distributed along the sides of the line. Hence,
an area constraint may be considered by associating a required
area g; to each task j and an available area A to each station k that,
for the sake of simplicity, we shall assume it to be identical for
every station and equal to A=maxy_12. . mAk Thus, each station k
requires a station area a(Si) that is equal to the sum of areas
required by the tasks assigned to station k.

This leads us to a new family of problems called TSALBP
(Bautista and Pereira, 2007). It may be stated as: given a set of n
tasks with their temporal t; and spatial g; attributes (1<j<n) and a
precedence graph, each task must be assigned to a single station
such that: (i) every precedence constraint is satisfied, (ii) no
station workload time (t(Si)) is greater than the cycle time (c),
and (iii) no area required by any station (a(Sy)) is greater than the
available area per station (A).

TSALBP presents eight variants depending on three optimiza-
tion criteria: m (the number of stations), c (the cycle time) and A
(the area of the stations). Within these variants there are four
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multiobjective problems and we will tackle one of them, the
TSALBP-m/A. It consists of minimizing the number of stations m
and the station area A, given a fixed value of the cycle time c,
mathematically formulated as follows:

0 UBn
ff=m= 3 max X, 1)
k=1 j=12...n
1 n
=A= X 2
0 k:{Tz‘?f(,usmE] @Xjkcs 2

where UBy, is the upper bound for the number of stations m, g; is
the area information for task j, x; is a decision variable taking
value 1 if task j is assigned to station k, and n is the number
of tasks.

We chose this variant because it is realistic in the automotive
industry since the annual production of an industrial plant (and
therefore, the cycle time c) is usually set by some market
objectives. For more information about the problem we refer the
interested reader to Chica et al. (2010, 2012).

2.2. Production plans for modeling changing demand

The latter TSALBP-m/A formulation assumes both a constant
demand and fixed operation times t;. However, real assembly lines
are normally employed to assemble more than one single product,
and when the demand of each product changes, the operation
times of the tasks change in consequence. The demand of a set of
mixed products is defined by means of production plans. In this
work, the engine assembly line of the Nissan Spanish Industrial
Operations (NSIO) plant is the chosen uncertain environment to
define the different production plans.

Nine different engines are assembled in the main line of the
NSIO plant, my,..., mg, having different destinations and assembly
characteristics. The first three engine products are built for 4 x 4
vehicles; products m4 and ms are for VANs; and the remaining four
products are used by medium tonnage trucks. When demand is
balanced (identical for the nine products) and the cycle time is
3 min, the assembly line is divided into 21 workstations having an
average length A, of 4 m each.

In Bautista and Pereira (2007), authors grouped the primary
operations of this assembly line in the so-called Nissan TSALBP
instance having 140 tasks. For each type of engine, operation times
change. In Table 1 the operation times of five tasks are listed for
illustration. The average operation time when having a balanced
demand for the nine products is also shown in the t-average
column.

Of course, it is difficult to always have the same uniform
demand for all the engines within a global demand. Although
the line is supposed to have a fixed daily production of, for
instance, 270 products, the line should be capable of producing
the required products for the specific product demand of a given
production plan. In other words, the production plan of the 270
engines is not constant. Then, the goal is to have an assembly line
configuration that is robust enough for different production plans.

Table 1
Operation times and average time for five tasks belonging to the NSIO engine
assembly line.

Task my my m3 my ms Mg m; Mg My t-average

64.8 61.2 60 54 58.8 552 63 66 57 60
184 18 20 196 19 216 21 204 22 20
19 196 184 20 21 204 18 216 22 20

98 9 105 108 95 11 92 10 102 10
20 196 19 18 204 184 216 21 22 20

O o Ul W=

Table 2
Production units of the engine models for each production plan.

Family Product Production plans
#1 #2 #3 #6 #9 #12 #18
4x4 my 30 30 10 50 70 24 60
my 30 30 10 50 70 23 60
ms 30 30 10 50 70 23 60
VAN my 30 45 60 30 15 45 30
ms 30 45 60 30 15 45 30
Trucks mg 30 23 30 15 8 28 8
my 30 23 30 15 8 28 8
mg 30 22 30 15 7 27 7
mgy 30 22 30 15 7 27 7

There are currently 23 production plans for the nine engines
and one working day at the NSIO. Each program corresponds to a
set of operation times biased by the demand of each of the nine
products. We summarize here the characteristics of each of the 23
production plans. We have grouped them into seven categories
according to the type of engine demand. One representative
production plan is selected for each category to be used in the
computational experimentation developed in Section 6. As said,
the total number of engines assembled in a working day is 270 in
two shifts:

Cat-1 (plan #1): identical demand for each of the nine products
(balanced demand) (30 products per product).

Cat-2 (plan #2): identical demand for each of the three engine
families: 4 x 4, VAN, and trucks (90 per product family).

Cat-3 (plan #3): one of the engine families has low demand while
the demand of the other two families is high and identical.

Cat-4 (plan #6): one of the engine families has high demand
while the demand of the other two families is medium and
identical.

Cat-5 (plan #9): one of the engine families has high demand
while the demand of the other two families is low and
identical.

Cat-6 (plan #12): the demand of the engine families follows an
arithmetic progression.

Cat-7 (plan #18): the demand of the engine families follows a
geometric progression.

The seven representative production plans, one per category, are
shown in Table 2. Definitely, the demand variation of the production
plan for mixed products conditions the average operation times of
the 140 assembly line tasks. In that case, a re-balancing of the
assembly line could be necessary. For example, task 1 has operation
times of 64.8 s5,61.2 5,60, 54’5, 58.85,55.2 5,63 5,66 5, and 57 s for
products my—mg, respectively. On the other hand, production plan
#12 has a demand of 24, 23, 23, 45, 45, 28, 28, 27, and 27 products for
each of the engine products. Consequently, the average time for task
1 in the latter plan is 59.44 s(=(64.8 x 24 +61.2 x 23 + - + 66 x
27 + 57 x 27)/270) in comparison with the 60 s needed by produc-
tion plan #1.

The selected representative production plans are used in this
work to present additional information to the decision maker
(DM) about how robust a new assembly line configuration is under
demand changes, i.e. how good it is with respect to those changes.

3. Robust solutions for assembly line balancing when demand
is uncertain

In Sections 3.1 and 3.2 we provide a brief review of the
outstanding proposals in generic robust optimization as well as
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for the specific application to ALB. Then, in Section 3.3, we
introduce two kinds of robustness functions to be applied to the
assembly line configurations in order to know how the configura-
tion behaves when demand changes.

3.1. Robust optimization in EMO and production

The search for optimal robust designs often appears as a MCDM
problem optimizing conditional expectation and variance. For
example, one of the proposals in this line is the multiobjective six
sigma (DFMOSS) by Shimoyama et al. (2005). In Lim et al. (2006) a
priori information is used to specify the desired robustness of the
final design through a multiobjective evolutionary algorithm with
good nominal performance and maximal robustness.

The work of Deb and Gupta (2006) is the first and one of the
most important contributions in introducing robustness in EMO.
The authors define a robust solution as one which is less sensitive
to the perturbation of the decision variables in its neighborhood.
In MOO problems, this insensitivity must be shown for the non-
dominated solutions with respect to all the objectives and must be
checked for all the Pareto-optimal solutions. Using this concept,
Deb and Gupta (2006) suggest two types of multiobjective robust
solutions: type I and type Il. These two types can be seen as the
two major approaches when dealing with robustness (Ferreira
et al,, 2008): (a) expectation measure, where the original objective
function is replaced by a metric of expectation and performance of
the vicinity and (b) variance measure, where an additional
criterion is appended to the objective function to account for the
deviation of the latter around the vicinity of the design point.

There are also works in production and design problems where
some of the parameters of the problem are uncertain or depend on
future actions (Scheffermann et al., 2009; Tan et al., 2007; Ong
et al.,, 2006). An example of a robust optimization model for a
multi-site production planning problem is developed in Leung
et al. (2007). In this work, the authors assume a future economic
scenario with an associated probability. An optimal production
plan less sensitive to the change in the noisy and uncertain data is
given by a stochastic non-linear programming model.

3.2. Robust optimization for assembly line balancing

The most related work to our problem is the robust optimization
approach for ALB proposed by Xu and Xiao (2010, 2011). They deal
with the mixed ALB problem where the exact quantity of products to
be manufactured is unknown. The objective is to minimize the
workload variance over all the stations in the line. For that goal
two ways of solving the problem are provided: by using a min-max
indicator which minimizes the maximum workload variance among
all the input data scenarios and by considering a a-worst approach.
The authors claim to be the first ones to propose a a-worst scenario-
based robust criteria and to apply it for ALB. This criteria can generate
flexible robust solutions as there is a permitted tolerance threshold
for each solution. A basic genetic algorithm is presented where the
objective function to be minimized is either min-max or a-worst
scenario criterion. As we will explain later in Section 4, one of the
main differences of our contribution with the latter one is not to
include the robustness criterion within the search process.

Another way of considering uncertainty in ALB is by assuming
that task times are uncertain and not deterministic. In Gurevsky
et al. (2012) authors deal with the SALBP-E when having variable
task processing times and propose a way to find a compromise
between minimizing the objective function and a stability ratio for
the solutions. A related stability study is done in Gurevsky et al.
(2013) but for the case of the GALBP (a problem where each
workstation is equipped with blocks).

In recent works, Dolgui and Kovalev (2012) propose an ALB
model with uncertain operation execution times. Operation execu-
tion times are uncertain in the sense that their sets belong to a
given set of scenarios. The difference with the TSALBP formulation
is that task time uncertainty is modeled by upper and lower
bounds associated to a specific station. Following this research
line, Hazir and Dolgui (2013) have recently presented two robust
SALBP-2 models which present interval uncertainty for operation
times. A decomposition based algorithm is developed and com-
bined with enhancement strategies to solve both problem models.

Finally, we should remark an existing genetic algorithm for a
bi-criteria ALB problem which considers flexible operation times
(Hamta et al., 2011). The used meta-heuristic is single-objective
and makes use of a weighted combination for both objectives. The
authors use the traditional SALBP formulation and create ranges of
tasks’ processing times by adding four units as the upper
bound value.

3.3. A proposal to evaluate the robustness of an assembly line
configuration

Solving the TSALBP when the mixed products demand is
uncertain belongs to the robust optimization case where the
operating conditions change after the optimal solution is found
(Ferreira et al., 2008). In our case, the operating conditions are the
operation times originated by the different mixed products
demands represented by the production plans of Section 2.2.
The overall goal is to find a set of non-dominated solutions for
the TSALBP-m/A and calculate their robustness for all the possible
production plans. In the next paragraphs we will present our
proposal for evaluating this robustness.

Let E be the set of possible production plans based on the
demand variation and ¢° a reference production plan, our evalua-
tion proposal is based on determining the workload of the set K of
stations of an assembly line configuration in the plans of E.

First, being 52 the tasks assignment to the station k in &°
(normally, the balanced plan), the workload of this station k is
obtained for all the production plans ecE: t(Sg,e).

Then, the relative station overloads with respect to the avail-
able cycle time c are calculated for all the existing production plans

e by applying Eq. (3)

max {0, t(SY, £)—c}

oSV, e) = c

vkeK, VeeE. 3
From these overload values, the average and maximum station
overload values are also calculated through Egs. (4) and (5)
IE|

Y w(S),e) Vkek, “)

1
A== 3

Omax(SY) = r?EaEx{w(sO, e)) Vkek. (5)

Analogously, the average and maximum overloading values for
each production plan are obtained by applying Egs. (6) and (7)

IK]|
w(e) = 1 Y o(S,e) VeeE, (6)
K1 =
Omax(€) = MaX(w(Sy. )} VeeE. @)

The latter values allow us to define and calculate the proposed
robustness functions. We can distinguish two types: (a) based on
the overload size (Section 3.3.1) and (b) based on the number of
overloaded stations (Section 3.3.2).
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3.3.1. Robustness functions based on the overload size

The robustness of an assembly line configuration can be
measured by the overload size of the stations in the configuration
in all the production plans. Higher station overload sizes mean less
robust configurations. We propose two functions. The first one, R,
considers the average overload of all the stations for all the
production plans

1 1K 1 I

> aSH= = X wle). 8)

Ry =f(@) = — 2
1= = 1, 2, R

The second function, R,, reflects the maximum overload value
in the stations of the configuration and the defined production
plans. It could be seen as the worst possible scenario within the set
of production plans

Ry = fl@ma) = Max {(Sg,e)} = MaX{omex(Se), omax(e)). )

3.3.2. Robustness functions based on the number of overloaded
stations

Another way of determining the robustness of an assembly line
configuration is by counting the number of overloaded stations
and/or the number of overloading production plans. Given a
station keK, a production plan ecE, a configuration line
(59,59, ...,S?n) for a reference production plan £°, and a cycle time
¢, we can state that there is an overload in (k,S%, e, c) iff

t(SY, &) > cow(S),e) >0 VkeK, VeeE. (10)

Associated to the concept of overload, the sets of overloaded
stations for a plan, overloading production plans, and total over-
loads are respectively defined as follows:

D(e) = (VkeK|w(S2, ) > 0} VeeE, 11
D(S9) = {VeeE|w(S),e) > 0} VkeK, (12)
D = {veeEAVkeK|a(SD, £) > 0}. (13)

Finally, taking into account sets D(e), D(Sz), and D, three
functions are defined as follows. The third one (Eq. (16)) will be
the third robustness function to be used in this study.

® QOverloaded stations rate

ID(e)
K]

S(e) = €[0,1] VeeE. (14)

® QOverloading plans rate

IDSP)

850 = "

€[0,1] VkeK. (15)

® Total number of overloads rate

_._ IDI
3_5_me[0,1] (16)

3.3.3. An illustrative example

Table 3 shows an example of five stations from an assembly line
in four different production plans. Average and maximum over-
load values, @ and wmax, are included in the table. It can be
observed that all the production plans overload at least one of the
stations. The second station is more robust than the rest since it is
never overloaded. The first and second proposed robustness
functions, R; and R,, which face the average and maximum
overload values in all the stations and production plans, take
value 1.17 and 4.2, respectively. Overloaded and overloading rates
highlight how many stations and production plans are overloaded

Table 3
Overload values using time units and robustness functions for five stations of a
configuration line when having four different production plans.

Plans Stations Overload values

ky ko k3 kq ks (e) ®max(&) o(e)
Plan #1 2 0 0 0 0 0.4 2 0.2
Plan #2 1 0 1.5 6.3 0 1.76 6.3 0.6
Plan #3 3 0 0 0 1.4 0.88 3 04
Plan #4 2 0 0 2 4.2 1.64 42 0.6

Overload values

@(SY) 2 0 0375 2075 14
wmax(sﬁ) 3 0 1.5 6.3 4.2
5(Sp) 04 0 0.25 0.5 05

and overload this line, respectively. The third robustness fun
ction is also computed from the values in the table: R3=6=9/
20=0.45.

4. Visualization model to include robustness information for
the non-dominated solutions

In all the works reviewed in Section 3, robustness is always
included as a part of the search process. Unlike such previous
works, the approach followed in this study is not to embed this
robustness information into the search but to use it as a posteriori
information when the MOO method has finished its run and has
found a set of non-dominated solutions. Our approach has the
advantage of not increasing the computational costs derived from
the solution neighborhood calculation as well as its independence
with respect to the MOO method used.

4.1. Using the robustness information for the TSALBP-m/A

As the inclusion of the robustness information model is done a
posteriori, any of the existing MOMHs to solve the TSALBP-m/A
(Chica et al., 2011, 2012) and even future methods can be used to
illustrate the behavior of our proposal. The chosen MOMH is
devoted to find and present a set of non-dominated solutions to
the DM. Robustness functions R;, R,, and R3 are calculated for all
the non-dominated solutions, offering a ranking of the most
robust solutions for the problem among those included in the
obtained Pareto set approximation.

However, the set of non-dominated solutions is normally large
and the application of the robustness functions implies a list of
numerical values for Ry, R,, and R3 which could be unmanageable.
It is already known that selecting a solution from a long list of
objective vectors is complicated for human beings (Larichev, 1992;
Benson and Sayin, 1997). Generally in EMO, attainment surfaces
(Knowles, 2005; Lopez-lIbafiez et al, 2010) and even more
advanced graphical tools have been proposed to offer a better
understanding of the Pareto front quality assessment, sometimes
more useful than numerical values (Blasco et al., 2008; Lotov and
Miettinen, 2008; Obayashi and Sasaki, 2003).

Besides a list of robustness function values, we propose the
introduction of the robustness information in the graphical repre-
sentation of the Pareto front approximation by means of robust-
ness attainment surfaces. These robustness attainment surfaces
can represent more than just one function value. In the case of the
TSALBP-m/A, we have included R, and R; in the representation.
We did not additionally include R; in order to avoid saturating the
DM with excessive information. Moreover, R; is less discriminative
than the others. Beyond the particular robustness functions
considered, the goal of our visualization model is not to include
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Fig. 1. Example of a robustness attainment surface where each non-dominated
solution is represented by a point. The robustness information is encoded by the
diameter of the point and its color.

every possible robustness function but only the real valuable
information for the DM. The graph of Fig. 1 shows an example
with a set of 14 non-dominated solutions and their robustness
information for a given problem instance.

Each non-dominated solution is represented by a circle, whose
diameter is proportional to the robustness value given by Rs, and
the color illustrates the value of R, (green: low overload value and
good robustness; red: high overload value and poor robustness).
This way of using graphs associated to valuable MCDM informa-
tion is done in many fields as scientific information analysis
(Vargas-Quesada and de Moya-Anegon, 2007) or description of
gene expression profiles in bioinformatics (Romero Zaliz et al.,
2008).

We can thus see that such a graphical representation of
robustness is complementary to the list of R values. In fact, when
the number of non-dominated solutions increases, the graphical
representation of the robustness is more interpretable for the DM.
In addition, it is also more informative as spatial information can
be analyzed when using this kind of representation since the DM
is able to discover robust Pareto front regions where all the
non-dominated solutions are robust, or non-robust regions where
their solutions are not (see the example in Fig. 1).

4.2. Scalability issues of the model

Our proposed graphical representation model is generic and
can be applied not just to the TSALBP but to any MOO problem in
which presenting the robustness of a set of non-dominated
solutions is an added value for the final decision of the DM. In
that sense, there is a chance to design a representation software
package in which the user can customize her/his representation.

Concretely, the DM will be allowed to perform the following
actions before launching the MOMH for the specific problem in
order to adjust the settings of the final graphic:

® Selecting the desired robustness functions: From a set of
available robustness functions, the DM is able to select the
robustness measures to be integrated in the visualization
model. This is the same operation we performed in the current
contribution. We just selected two of the three available
robustness functions.

® Representing more than two robustness functions: If the DM
desires to represent more than two robustness functions in the
visualization model the tool will provide a way to show as

Robustness attainment surfaces

’ R2
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Fig. 2. Example of the scalability of a robustness attainment surface when having
six different robustness functions.

many as she/he likes. An example of graph depicting six
different robustness functions is shown in Fig. 2. In this graph,
four functions (R, R4, Rs and Rg) are horizontally represented in
pairs below the X-axis.

® Zooming in dense solution areas: In some problems, many
solutions with similar objective values might appear. The DM
can zoom in the area and inspect the solutions found by the
MOMH. In addition, if there are more than one unique solution
for the same objective values the user will be able to navigate
through them.

5. NTIGen: a Nissan TSALBP instance generator software
5.1. Justification and basics of NTIGen

The main goal of the NTIGen software is to create real-like
TSALBP instances with different features to serve as a benchmark
for showing our robustness approach and for any future research
work. Although there are ALB instances available on-line and even
a SALBP instance generator (Otto et al., 2011), there is no any
existing source where TSALBP instances can be generated and
referred.

Assembly lines in the automotive industry present a set of
industrial features which condition the task and graph distribution
of the problem instance. The user must be allowed to incorporate
these industrial real-like features to the generated instances and
these instances should be similar to the original Nissan instance
context (Chica et al, 2012). Concretely, the developed NTIGen
software includes the following features, which are illustrated in
Fig. 3:

® Checkpoints: They are assembly line points in which workers
test the quality and completeness of a set of operations
previously finished. If we consider these checkpoints as new
tasks, the representation of a checkpoint in an assembly line
graph is given by a task having a high number of preceding
tasks (for instance, task 11 in Fig. 3).

® Tasks without precedences: In real industrial scenarios, such
tasks are justified if there are operations unconditioned by
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other operations. They are commonly found in the engine and
trim lines of the car manufacturing. In Fig. 3, tasks 1, 3, 8, 7, and
10 have no precedences.

® Final tasks: Tasks in an assembly line which are associated to
the most external and final operations of the product. They are
represented as tasks with no successors in the precedence
graph (tasks 12-14 in Fig. 3).

® [solated tasks: They can be performed at any part of the
assembly of an item. An example of these kinds of tasks are
those related with additional parts of a product which can be
incorporated to the global product at any station. Task 4 in Fig. 3
is an isolated task as it has no precedence relations.

® QOperations aggregation: This process comes up when some
operations need the same tools or are done by the same
worker. In this case, several tasks of the same stage are put
together in just one task.

® QOperations breaking up: If possible, it is used in the industrial
context to detail the implementation of an operation in different
operating tasks. It is useful for balancing an assembly line when
the cycle time is reduced.

<
(O~

Fig. 3. A precedence graph with 13 tasks showing examples of different kinds of
tasks in an industrial context: chains of tasks, initial and final tasks, isolated tasks,
and checkpoints.

<?xml version="1.0" ?>

<TSALBP-GEN>

® Chains of tasks: They appear when there are strongly linked
operations, normally in the same station or stage. A chain of
tasks represents natural sequences of operations within the
assembly process (see tasks 1, 2, 5, and 6 in Fig. 3).

5.2. Tuneable parameters of the generator

The features introduced in the previous section can be para-
meterized by the NTIGen user to generate a customizable instance.
NTIGen is also fed by a set of stages with some initial tasks. By
default, these stages and tasks correspond to the original Nissan
instance with 140 tasks and 21 workstations (Chica et al., 2012)
although they can be modified by the user before launching the
application. The user can set all the desired features by changing
the parameters of an XML file (see Fig. 4). The most important
input parameters are the following:

Number of tasks (n): This is an important parameter of the
instance that enormously conditions its complexity. From the
initial set of tasks, new operating tasks are generated by breaking
up them until reaching the user needs. If we need less tasks than
the original ones, they are merged at random. The new generated
tasks are required to belong to the same or close stages than their
original ones.

Processing times (t;): The processing time of each task ¢; is
randomly disrupted by a normal distribution within a user-defined
interval. When creating or merging tasks, the processing times for
the resulting tasks are reduced or duplicated, respectively. This is
done to maintain the original situation of the Nissan instance.

Production plans: The production plans are always set to the
NSIO original plans, described in Section 2.2. The processing times
of the tasks for the different engine products are created by
randomly modifying the original processing time ¢; within the
range [0.9 t;, 1.1¢].

Cycle time (c): It is also disrupted independently from the
processing times of the tasks. As done with ¢, the disruption is
created within a user-defined interval. In our case, the new cycle
time is set to a value within [0.75c, 1.25c].

Required operation area (a;): Task areas are specified by
two-dimensional units, i.e. length (q;) and width (b;). The first

<!-- Settings for generating real-world TSALBP instance-->

<name> nissan 320 </name>

<!-- general values as seed or number of desired tasks -->

<seed> 56399 </seed>
<noTasks> 320 </noTasks>

<!-- values for generating operating times -->
<lowerTimeFactor> 0.90 </lowerTimeFactor>
<upperTimeFactor> 1.10 </upperTimeFactor>

<!-- percentage of initial (no predecessors) and final tasks (no successors) -->

<initialTasks> 0.1 </initialTasks>
<finalTasks> 0.1 </finalTasks>

<!-- tasks which are checkpoints (many successors and predecessors) -->
<no0fCheckPoints minPreds="5" maxPreds="10"> 5 </no0fCheckPoints>

<!-- tasks which have not got any precedence relation -->

<isolatedTasks> 5 </isolatedTasks>

<!-- list of possible widths for areas -->

<areaWidths>
<width value="0.5"/>
<width value="0.75"/>
<width value="1"/>
<width value="1.5"/>
<width value="1.75"/>

Fig. 4. An XML configuration file to set the input parameters of the NTIGen software.
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Table 4
Main characteristics of the generated TSALBP problem instances.
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Features NTIGen instances
P1 P2’ P3 P4 P5 P6 P7 P8
Random seed 24151 N/A 117 017 21277 113 683 56399 5869 73553
No. of tasks 100 140 190 220 280 320 376 420
Cycle time 199.97 180 207.07 222.42 221.62 169.552 186.65 137.751
0s 0.5 0.9 0.7 0.5 0.3 0.6 0.25 0.95
Precedences 156 293 314 304 407 435 548 608
Precs. window 5 N/A 5 1 2 1 3 2
v 35.95 24 41.75 151.45 224.29 274228 901.34 1003.77
AV 500 513.86 266.67 300 400 200 300 133.33
Initial tasks 14 1 6 33 59 32 87 6
Final tasks 8 5 7 20 42 31 49 8
Isolated tasks 2 0 5 3 0 5 0 3
Checkpoints 3 N/A 0 6 7 1 12 0
T Original NISSAN instance.
dimension, a;, is the truly useful variable for the TSALBP optimiza-  pape 5
tion. In the original instance, b; is always set to one distance unit. Used parameter values for the advanced TSALBP-NSGA-II.
To generate a new instance, the squared area of each task is always
maintained by the generator but b; is randomly changed to a set Parameter Value Parameter Value
valug. In our case, the set is given by {0.5, 0.75,...,2.25}. This set of Random seed 112 Stopping criteria 300's
possible b; values can be modified by the user of the NTIGen Population size 100 Ishibuchi's similarity 10
software. Therefore, the length of each task a; used for the based mating 7, 5 values
optimization, is different for each generated TSALBP instance. As Cfoslsoveff probability 08 Mutation probability 0.1
. . . . . a values Ior
done with the processing times, g; is reduced or duplicated when scramble mutation (0,08)

increasing or decreasing the number of tasks to try to maintain the
original Nissan situation.

Apart from the operating tasks and their corresponding pro-
cessing times and areas, NTIGen generates the precedence graph
of the instance. These precedence relations are created between
tasks of the same stage (generating chains) or different stages
within a maximum window, set by the user, in order to link tasks
which are industrially close. The minimum and maximum number
of preceding tasks for a checkpoint in a problem instance can be
set prior the instance generation. The same definition can be done
for the number of initial, final, and isolated tasks.

NTIGen creates precedence relations until it reaches the
required complexity of the graph which is another important
feature of an ALB instance (Bhattacharjee and Sahu, 1990). This
complexity of the precedence graph is also a user parameter and it
is measured by the order strength (OS) of the graph (Dar-El, 1975).
The OS is calculated from the graph in transitive closure. The
transitive closure of a set of direct precedences E is given by
ET = {(i,j)lieV,jeF]}, with V being the set of nodes and F; the set of
indirect successors of the task i. The OS represents the number of
ordering relations of the graph in a transitive closure with respect
to all possible ordering relations (Eq. 17)

_IET
T n(n-1)
2

The OS varies between [0,1]. If OS is equal to O the instance has
no precedence relations but if OS takes value 1, there is just one
feasible sequence of tasks.

The result after running the NTIGen software is a structured
text file describing the generated instance with the list of tasks,
their operating times and area, and their precedence relations. The
precedence relations form the transitive reduction of the graph in
order to minimize computational resources.

In addition, by changing the number of tasks, their processing
time and area we can generate instances having different time
variability (TV) and area variability (AV). Descriptors about the
generated instance are listed after its creation to show the

0S 17)

complexity of the graph, TV, AV, and the number of checkpoints,
isolated, initial, and final tasks.

5.3. Description of the used TSALBP instances

By using the NTIGen software, a set of eight new TSALBP real-like
instances have been created to be used in this study. The features of
these real-like instances are shown in Table 4. The NTIGen software
and this set of TSALBP instances are publicly available at (http://
www.prothius.com/TSALBP).

Notice that, the number of precedences in Table 4 has been
calculated from the transitive reduced graph. Besides, the random
seed numbers for the pseudo-random generator have been ran-
domly obtained from the list of the first 2'7-1 prime numbers in
order to ensure that all instances are reproducible.

6. Experiments and analysis of the robustness results

In this section we present the results of the experimentation and
the analysis of them. The goal is to show how robustness functions
are used a posteriori for providing an important additional informa-
tion about the convenience of selecting some non-dominated
solutions for the TSALBP-m/A instead of others according to their
robustness.

To generate the non-dominated solutions considered in the
experiments we have selected the advanced TSALBP-NSGA-II (Chica
et al,, 2011) as MOO method. The advanced TSALBP-NSGA-II will
generate the non-dominated solution sets for all the TSALBP
instances described in Section 5.3 and the production plans of
Section 2.2 when demand changes. The parameters of the algo-
rithm are presented in Table 5. We would also like to remark that
the complete TSALBP framework is available on-line at (http://
www.prothius.com/TSALBP) for ensuring the reproducibility of the
experimentation.


http://www.prothius.com/TSALBP
http://www.prothius.com/TSALBP
http://www.prothius.com/TSALBP
http://www.prothius.com/TSALBP
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The obtained results and the robustness attainment surfaces of
the non-dominated solutions are presented in Figs. 5-10. The
figures collect the number of non-dominated solutions (cardin-
ality), a table with the values of Rq, R, and Rs, which denote the
robustness of each solution in the Nissan production plans, and the
robustness attainment surfaces.

In these robustness attainment surfaces, function R, is symbo-
lized by the green-red color map (a solution will have a red
colored point when R, is over 3% of the total cycle time although
this value can be changed). Rs is represented by the diameter of
each non-dominated solution. Then, smaller and reddish points
mean lower robustness. As explained in Section 4, the graphical
information of the model is complementary to the robustness
functions and they both constitute the proposed model. In this
section we will show how a valuable analysis can be derived
from it.

The first instance tackled by the algorithm is P1 (Fig. 5) where
only two non-dominated solutions are found. However, even
when having small non-dominated solution sets, the robustness
information is important for the DM. Solution #2 reports robust-
ness values of R;=0.149, R,=3.33, and R3=0.12. These values
mean that, when demand varies, the assembly line should support
an average station overload of 0.149 time units (R;), 3.33 time
units in the most overloaded station (R;), and that a 12% of the
stations are overloaded (R3). Solution #2 is thus less robust than
solution #1. Then, if a DM can afford stations with an area of 5.4,
solution #1 shall be the best option.

P2 is the original Nissan instance having 140 tasks. The number
of non-dominated solutions obtained by the algorithm is five (see
Fig. 6). The graphical points and the numerical values of Ry, R,, and
Rs allow us to conclude that solutions #1 and #2, those with
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objective values (19,5) and (18,6.09), respectively, are less robust
than the remainder when demand changes. The DM is able to
rapidly infer from the attainment surface of Fig. 6 that, if the
number of stations (and then, workers) is not restricted, the best
approach in terms of robustness is always choosing a solution with
more than 19 stations.

Instances P3 and P5 are the cases in which the most homo-
geneous and robust solutions are found. In both instances, almost
all the solutions seem to be robust enough for the production
plans. There are even some solutions with no station overload
(Ry=R,=R3=0). As these instances do not provide any difference
with respect to their robustness values, we have not included their
graphical representations in the section to focus our analysis just
on those instances presenting a higher robustness variability.

On the contrary, the rest of the problem instances present
important robustness differences among the solutions, thus show-
ing the importance of our proposed model. For example, there are
seven non-dominated solutions for instance P4 (Fig. 7). Among
them, there are two solutions which are less robust than the
remainder. These are solutions #1 and #2 with 15 and 16 stations,
respectively. In the latter pair of solutions, the 11% and 5.2% of the
stations are overloaded by different production plans (Rs function)
and the worst overloaded stations have an overload of 3.48 and
4.21 time units (Ry).

Problem instances P6, P7, and P8 are those having the highest
number of tasks (320, 376, and 420) and reflect more robustness
differences. The advanced TSALBP-NSGA-II has produced non-
dominated sets with a high number of solutions: 14 in P6 and 11
in P7-P8. The robustness attainment surfaces are again comple-
mentary to numerical data. The graphical representation is neces-
sary to easily find the most robust solutions (Figs. 8-10). In these
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Fig. 5. Robustness attainment surface (representing R, and R3) and robustness values for the non-dominated solutions when solving the NTIGen instance of 100 tasks (P1).
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Robustness attainment surface: NTIGen(P4)
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Fig. 7. Robustness attainment surface (representing R, and R3) and robustness values for the non-dominated solutions when solving the NTIGen instance of 220 tasks (P4).
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Fig. 8. Robustness attainment surface (representing R, and R3) and robustness values for the non-dominated solutions when solving the NTIGen instance of 320 tasks (P6).
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Fig. 9. Robustness attainment surface (representing R, and R3) and robustness values for the non-dominated solutions when solving the NTIGen instance of 376 tasks (P7).

instances it is also possible to discover different robust areas in the
Pareto front.

In view of the robustness function values for problem instances
P6 and P7 (Figs. 8 and 9) as well as the counterpart figures, the
most robust solutions for instance P6 are those having a number of
stations between 25 and 29. The least robust ones are those with
less than 20 stations as well as those between 21 and 23. More-
over, having the information that solutions #3 and #4 with 20 and
21 stations are more robust than their closest solutions is valuable
for the DM. In this case, if the number of stations (workers) is not
totally restricted, he/she can choose the most robust solution from
the set of all non-dominated ones.

The least robust solutions of instance P7 are solutions #1, #2,
and #6. These solutions have high values (low robustness) with
respect to the others. Since the robust solutions are distributed
along the entire surface of the Pareto front, the DM could select an
assembly line configuration without taking into account these
least robust options but always having more than 18 stations.

The last instance is P8 and we can find significant robustness
differences among the non-dominated solutions. Solutions #1, #3
and #4 have very high Ry, R, and Rs values and then, they are not
recommended if the DM is looking for robust configuration lines
for demand changes. If implementing these solutions, there could
be overloaded stations with more than four time units each. If the
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Fig. 10. Robustness attainment surface (representing R, and R3) and robustness values for the non-dominated solutions when solving the NTIGen instance of 420 tasks (P8).

number of stations (and then, workers) is restricted, the DM can
choose solution #2 having 24 stations which is more robust under
an uncertain environment. Apart from this solution, solutions with
more than 31 stations (#9, #10, and #11) are the most robust in
comparison with the others.

In summary, there are important differences in terms of
robustness in all the instances but P3 and P5. In particular, the
graphical representation by means of robustness attainment
surfaces helped to find robust solutions close to others which
are not. Examples of this fact are instances P2, P5, P7, and P8
where the DM can guide her/his decision to robust solutions
without a loss of optimized objective values and without the need
of additional computations within the MOO method run.

7. Concluding remarks

The existing TSALBP formulation and previous ALB works do
not cover an important real scenario where the same assembly
line is devoted to produce mixed products and their demand is not
fixed. In this paper we have presented a new robustness model to
add important information in the MCDM process by evaluating the
most robust assembly line configurations when future demand
conditions can vary. The model comprises robustness functions
and a graphical representation.

Three robustness functions, Rq, R,, R3, are defined based on the
number of overloaded stations and the size of these overloads.
The graphical representation of the robustness information makes
use of the color and size of each non-dominated solution point to
form the robustness attainment surfaces of the Pareto fronts.

The proposed model was used to analyze the non-dominated
solutions provided by the state-of-the-art MOO method for the
TSALBP-m/A, the advanced TSALBP-NSGA-II, although the nature of
the robustness model allows the use of any other MOO method
instead. The results of the application of the robustness model are
clear. There are some solutions which are less robust than others
when demand changes and the DM can take advantage of this
information before making her/his decision.

Furthermore, the inclusion of the robustness information
within the graphical representation of the Pareto front has shown
a practical use as it clearly presents which solutions are robust and
robustness areas of interest at a glance. The DM is now able to
analyze the robustness information and identify robust Pareto
front regions and their assembly line configuration alternatives.

In addition, the NTIGen software was presented to allow
researchers to create realistic TSALBP instances and production
plans for future research. The generated TSALBP instances contain
many real-like industrial features, e.g. checkpoints, isolated tasks,
initial and final tasks, chains of tasks, or stages, which make the

NTIGen software a practical tool for simulating the industrial
conditions of an assembly line.

Some future works arise from this contribution: (i) to include
the robustness information within the search process of the MOO
method and (ii) to design a global visualization framework also
representing the assembly line configurations and the relations
between the different alternative solutions.
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