Fuzzy Sets and Systems

Random generation of k-interactive capacities
--Manuscript Draft--

Manuscript Number: FSS-D-20-00321R1

Article Type: Full Length Article (FLA)

Keywords: fuzzy measure; capacity; Linear extension; random variate generation; k-order
capacity

Corresponding Author: Gleb Beliakov, PhD

Deakin University
Geelong, AUSTRALIA

First Author: Gleb Beliakov, PhD

Order of Authors: Gleb Beliakov, PhD
Francisco Javier Cabrerizo, PhD
Enrique Herrera-Viedma, PhD

Jian-Zhang Wu

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Abstract

O©CO~NOOOTA~AWNPE

The theory of capacities provides powerful formal methodology to account
for criteria

dependencies in multiple criteria decision problems. The discrete Choquet
and Sugeno

integrals aggregate criteria valuations accounting for criteria synergies
and redundancies.

We address an important problem of randomly generating capacities of
special classes

forsimulation studies and for capacity learning through evolutionary
algorithms. We discuss

two efficient methods suitable fork-interactive capacities.

The results are supported bythe extensive numerical evidence and provide
a useful tool for large scale simulations.

Declaration of Interest Statement

Dear Editors,

we submit our original contribution to this journal.

It is not submitted simultaneously elsewhere, all authors have checked
the manuscript

and agreed to the submission. There are no conflicts of interest.

Manuscript

Random generation of k-interactive capacities

Gleb Beliakov!", Francisco Javier Cabrerizo?, Enrique Herrera-Viedma?, and
Jian-Zhang Wu?

O©CoO~NOOOITA~AWNPE

11 1School of Information Technology, Deakin University, Burwood 3125,
13 Australia

2University of Granada, Spain

16 3School of Business, Ningbo University, Ningbo 315211, China

18 "Corresponding author: gleb@deakin.edu.au

21 November 13, 2020

25 Abstract

28 The theory of capacities provides powerful formal methodology to account for criteria
29 dependencies in multiple criteria decision problems. The discrete Choquet and Sugeno
30 integrals aggregate criteria valuations accounting for criteria synergies and redundancies.
31 We address an important problem of randomly generating capacities of special classes for
simulation studies and for capacity learning through evolutionary algorithms. We discuss
34 two efficient methods suitable for k-interactive capacities. The results are supported by
35 the extensive numerical evidence and provide a useful tool for large scale simulations.
36 keywords: Capacity; Random simulation; k-order capacity; Linear extension.

O©CoO~NOOOITA~AWNPE

1 Introduction

The capacity [5], which is also called fuzzy measure [3,32], or nonadditive measure [27,33],
is a normalised monotone set function which models both criteria importances and their in-
teractions in multiple criteria decision making context. The capacity values quantify the
contributions of all subsets of criteria (called coalitions in games theory) to the decision prob-
lem, while fuzzy integrals, such as the Choquet and Sugeno integrals, aggregate the criteria
valuations into one overall value used to rank the alternatives. Compared to the additive
(probability) measures, which provide the weights of n individual criteria, and hence aggre-
gate them through a weighted sum, capacities make use of non-additivity, which translates
into simple logical interpretation: the sum of values of two (or more) criteria can be larger or
smaller than the value of their respective coalition. We refer to [2,16-18] for more detailed
discussion of capacities.

Decision models based on capacities are sophisticated but suffer from exponential (in terms
of the number of criteria n) complexity, which stems from the size of power sets. Simplifications
to capacities which limit criteria interactions to subsets of small cardinality include k-additive
[15], k-maxitive/minitive [24,34], k-tolerant/intolerant [23], p-symmetric [26] and k-interactive
capacities [4]. These simplifications keep some criteria interactions but reduce significantly the
computational complexity.

Eliciting even a reduced set of capacity values is still rather complicated, as different
approaches may result in quite distinct capacities, and hence will affect the resulting rankings
of the alternatives. Rather than focusing on finding one, best in some sense, capacity, one
can also perform simulation studies in which the capacities are randomly sampled from some
region and the respective rankings of the alternatives are studied. Sensitivity analysis can also
be performed in this way.

Another application of random sampling from a set of capacities is in evolutionary opti-
misation. For example, when using genetic algorithms in order to find a suitable capacity
matching some criteria or data, the operation of mutation requires multiple random genera-
tions of capacities. Therefore it is important to have efficient algorithms to randomly generate
capacities from some particular subsets following a given distribution. The uniform distri-
bution is the most important as it is also a basis for sampling from other distributions (for
example by using acceptance/rejection approach [19]).

It turns out that random generation of capacities with uniform distribution is a very chal-
lenging problem. The difficulties are related to the high dimensionality of the space containing
capacities and a complicated structure of the set of capacities. It is known [7] that the set of
all capacities is a polytope with an extremely large number of vertices related to the Dedekind
numbers M(n) (the OEIS sequence A000372: 2,3,6,20, 168, 7581, 7828354, 2414682040998,
56130437228687557907788, . ..), and hence it is infeasible to use convex combinations of its
vertices, for example. General methods of uniformly sampling polytopes [29, 30] are also
infeasible in such a high dimension.

The structure of the polytopes of capacities P, called the order polytopes, is established
[6,7,16]. It allows one to perform the decomposition of P into simplices (of equal volume) [8],
then randomly pick up one simplex and finally generate a random point within that simplex
(the last step is almost trivial [13,29]). The catch here is the extremely large cardinality of the
simplicial partition, given by the OEIS sequence A046873, which reads (starting from n = 1)
1, 2, 48, 1680384, 14807804035657359360,.... Hence these simplices cannot be explicitly

O©CoO~NOOOITA~AWNPE

enumerated for n > 4.

Two very recent works provide efficient algorithms for generating randomly capacities of
certain types. The MinimalsPlus method in [8] uses random walks to select simplices randomly
without enumerating them explicitly. This method is applicable to both general capacities and
to p-symmetric capacities. Another method is applicable to an important class of 2-additive
capacities [25]. It is based on simplicial partition of that set in Mobius representation.

In this paper we focus on another type of k-order capacities, the k-interactive capacities
presented in [4], which can also be used to sample k-tolerant/intolerant capacities [22] as
special cases. In k-interactive capacities the values of the set function are fixed in some way
for all subsets of cardinality larger than or equal to k. In particular in the way that maximises
capacity entropy [21]. The criteria interactions are unrestricted in subsets of lower cardinality,
but are predetermined (although not zeros as in the case of k-additive capacities) for subsets
of cardinality higher than k. This way the complexity of capacities is reduced in the same
spirit as in all k-order capacities.

We provide two methods to randomly generate k-interactive capacities. Both methods
rely on the relation between randomly generating a capacity and randomly selecting a linear
extension in the corresponding partial order. The selected linear extension corresponds to one
simplex in the simplicial partition of the (appropriately scaled) order polytope P [31], and
hence we focus on selecting linear extensions uniformly.

A closely related problem is generating random monotone data sets for testing and bench-
marking monotone classification and approximation algorithms was considered in a series of
papers [9-12]. There weak order extensions (as opposed to linear extensions in [8]) were
generated uniformly by using lattices of ideals of the posets together with Markov chains.

One method is based on the MinimalsPlus method from [8]. Here we use an initialisation
procedure described in [8] followed by a random walk for a number of steps (also referred to
as Markov chain). We apply this method to a modified Boolean lattice which corresponds to
k-interactive capacities. The second method is based on the concept of topological sort [20],
which is used to derive a linear extension of a partial order. The rationale is to improve on the
initialisation step in [8] in order to have more uniformly distributed inputs to the subsequent
random walk. Clearly, the better is the input, the less steps in the random walk are needed to
achieve a uniformly distributed output. We apply suitable modifications after the topological
sort which result in picking up a linear extension randomly, although not completely uniformly.
The next step is to determine which linear extension to use based on the sampling history,
which effectively makes the sample uniform. The formulation and then numerical studies of
both mentioned methods constitute the main contributions of this paper.

This paper is organized as follows. After the introduction, we present some facts about the
capacities, their special types and their representations. Section 3 is devoted to the random
generation method based on MinimalsPlus. In Section 4 we discuss the second mentioned
random sampling method in detail. Section 5 presents the numerical studies and compares
the efficiency of both approaches. Section 6 contains conclusions.

2 Preliminaries

We consider the set of decision criteria N = {1,2,...,n}, n > 2, its power set P(N). Let |S]
denote the cardinality of a subset S C N. The definitions below can be found in the following
references [2,3,8,16,18,25,35].

O©CoO~NOOOITA~AWNPE

Definition 1. A capacity on N is a set function p : P(N) — [0,1] such that (i) u(0) = 0,
u(N)=1; (ii) YVA,B C N, A C B implies pu(A) < u(B).

The value of p(A) is a reflection of the decision maker’s perception of the importance of this
criteria subset A in the decision problem. The interaction phenomenon of multiple decision
criteria can be represented by means of the Shapley simultaneous interaction index or other
interaction indices [35].

The non-additivity of capacities is interpreted in this way: an additive capacity implies
that the decision criteria are all independent; a superadditive (or supermodular) capacity
indicates that all criteria are mutually complementary, whereas a subadditive (submodular)
capacity indicates that the criteria are substitutive, redundant.

The decision maker’s preference on the set of decision criteria can be expressed by adopting
a particular type of capacity, such as k-additive, k-tolerant and intolerant, and k-maxitive
and minitive capacity. For brevity, we do not introduce their specific definitions, which can
be found in [3]. We only present the definition of k-interactive capacities, which is the topic
of this contribution.

Definition 2. A capacity p on N is called k-interactive if for some chosen 1 < k < n and
K €10,1]

Al — k-1
n—k—1

Note that the formula in Definition 2 is obtained by applying the maximum entropy prin-
ciple [4] which maximises the average contribution of the n — k — 1 smallest inputs. The
k-interactive capacities significantly reduce both the number of parameters and the mono-
tonicity constraints, and make it feasible to fit capacities to data for larger n.

For this type of capacity the values u(B) = K for all subsets B with cardinality |B| =
kE + 1 are fixed at K. Thus the discrete derivatives, also called marginal contributions,
Ai(A) = 2E for |A| > k. These conditions significantly reduce the number of variables
and constraints. They also simplify the expression for the Choquet integral with respect to a
k-interactive capacity

p(A) = K + (1 - K),for all A,|A| > k.

1- K n—k—1
——— > xu + Kzpop
+ > pu(A)ga(x).

ACN,a<k

CM(X) =

We see that the contribution of the n—k—1 smallest inputs is averaged with the arithmetic
mean while the interactions are explicitly accounted for the remaining inputs. The k-tolerant
capacities arise as the special cases. The interactions in the subsets larger than or equal to
k still do take place, but they are determined by the interactions in smaller subsets and the
values of k, K.

The set of all capacities, which called the order polytope P, is determined by the d = 2™ —2
non-negative values j(A) and the n2"~! non-redundant monotonicity constraints. Note that
the values p(A) constitute a poset, which corresponds to the Boolean lattice B,,.

The structure of P was studied in various works, including [6-8, 16,25,26,31]. It is known
that this polytope has simplicial partition, and each simplex corresponds to a linear extension
of P(N). A linear extension of a poset P is a linear order (i.e. chain) compatible with the
order relations in P.

O©CoO~NOOOITA~AWNPE

The number of linear extensions of the Boolean lattice B, is given by the OEIS sequence
A046873, which makes it prohibitively expensive to construct the partition explicitly. On the
other hand, if one has a reliable method of picking linear extensions randomly (and uniformly)
without enumerating them all, then one can generate random capacities by generating random
points in the unit simplex (which is by sorting the components of a random point in the unit
cube and taking linear spacings), and assigning those components to u(A) in the order of the
selected linear extension. Therefore we now focus on randomly picking linear extensions.

3 Generation by MinimalsPlus method

A recently published approach for random capacity generation is based on random sampling
from the set of linear extensions of a poset [8]. In its essence, there is a set of possible linear
extensions of the Boolean lattice B,,, to which the capacities are related through an order-
preserving function u : B, — [0,1], 1£(0,0,...,0) =0, u(1,1,...,1) = 1. The number of such
linear extensions is extremely large (OEIS sequence A046873), and their enumeration is a
P-complete problem, and hence computationally infeasible. The MinimalsPlus is a method
of randomly selecting a linear extension without the need to generate all of them, based on a
heuristic followed by a Markov chain. The Markov chain is based on the classical Karzanov-
Khachiyan chain, in which with probability 0.5 two consecutive elements at random position
are swapped unless one precedes the other. The detailed description of the algorithms and a
study of their computational complexity are presented in [8].

The Markov chain approach was also used in [10-12] for a related problem of generating
uniformly weak order extensions (which can be seen as linear extensions on the equivalence
classes of the partitions of the posets).

Once a linear extension is generated, the values of the capacities on that extension are
generated as random points on a 2" — 2-simplex, by using a sorting procedure, see [13]. This
way, provided the distribution of random linear extensions is uniform, we get the uniform
distribution over the set of capacities. It is therefore sufficient to test the uniformity of the
linear extensions method, namely check the experimental probability of each linear extension.
This is feasible only for small n though, and then needs to be extrapolated to larger n. We
verified the uniformity up to n = 4 and obtained encouraging results for n = 5 by using over
100 million trials.

Let us now look at k-interactive capacities. Recall that the capacity values for |A| > k are
fixed in some way, in particular as p(A) = K + (1 — K) |’2L_k’i_11 for some number K € (0, 1]
selected in advance. One special case is when K = 1, which corresponds to (k + 1)-tolerant
capacities. If we replace the values u(A), |A| = k+1,...,n with their respective equivalence
classes, we can construct the partial order illustrated on Figure 1.

This partial order is suitable to the MinimalsPlus algorithm, although we do not require
randomness for the values p(A),|A| = k+1,...,n, which are predetermined. Hence we take
only the subset of u(A), |A| =0,1,...,k+1 as the input to MinimalsPlus (excluding the chain
in the upper part of Figure 1), generate the capacity values and then scale them linearly so
that u(A) = K when |A| = k+ 1. We note that this order corresponds to an appropriately
scaled down version of an order polytope.

The efficiency of the MinimalsPlus method depends on its initialisation, before executing
the Markov chain process. Indeed, the more uniform distribution is generated at the initial-
isation steps, the fewer steps of the Markov chain are needed to converge to the stationary

O©CoO~NOOOITA~AWNPE

. {1.2,3.4,5,6}
. IA|=5

{1,2,3}

{12} .

My < . @ > G

Figure 1: A 3-interactive capacity for n = 6 and the implied partial order. The sizes of the
circles reflect the values of the respective capacities. Since all p(A) are the same for every
fixed cardinality |A| = 4, 5,6, they are treated as equivalent and hence represented by single
nodes.

distribution, and hence shorter CPU time. Our experiments detailed in Section 5 point to
some difficulties the MinimalsPlus method encounters when generating linear extensions of
some partial orders (for different combinations of n and K, hence we developed an alternative
approach presented in the next section.

4 Generation by topological sort

Another way of picking a linear extension of a poset is by topological sorting [20]. Suppose
we have a poset P, or a directed acyclic graph DAG. Topological sorting is a procedure that
generates a linear order such that if there is an edge between vertices v and v, then v < v in
that ordering. The oldest topological sort method is due to Kahn [20], which is implemented in
most unix-based computer systems, as a useful routine to perform objects linking. A different

O©CoO~NOOOITA~AWNPE

algorithm is based on depth-first search from the nodes of the DAG in arbitrary order.

For our purposes Kahn’s method is not suitable, as it consistently generates almost the
same linear extensions, and hence we focused on the depth-first search. We construct the DAG
represented by the list of pairs of vertices related by inclusion in the power set P(N), and
excluding those pairs easily obtained by transitivity. We ensure that the algorithm is always
presented the nodes in arbitrary order by randomising the input pairs. This way we hope to
obtain a variety of linear extensions as the outputs of the depth-first topological sort.

While indeed the linear extensions generated in that way seemed random, by no means
they were representative of the whole set of linear extensions. The topological sort algorithm
used in our studies has definite preference for a particular (although large) subset of linear
extensions. We detail how we performed the tests in Section 5.

In order to obtain wider variety of linear extensions we used the following result: If the
DAG allows for more than one topological ordering, and one has found one ordering, then
it is possible to form the second ordering by swapping two consecutively placed vertices not
connected by an edge. It is therefore possible to construct up to O((2" — 2)!) other linear
extensions from one linear extension found by the topological sort procedure.

As a matter of fact, the Markov chain in the MinimalsPlus method is also based on this
observation and in that method two consecutive elements of the current linear extension are
swapped (with some probability) unless this move contradicts the partial order. Similarly we
also execute the Markov chain as in MinimalsPlus, although we do that for fewer steps.

The presented approach allows us to obtain a much broader variety of linear extensions.
But it cannot be used directly for capacity generation. Firstly, the distribution is still non-
uniform (although much closer to being uniform than by using topological sort on its own),
and secondly, the linear extensions generated in that way are correlated.

To deal with these two issues we took the following approach. Let us make a record of
the linear extensions already generated, including the number of times each extension was
generated. To check how many times a given extension was generated we can compute the
hash function of the linear extension and maintain the history in an array of frequencies of
the generated linear extensions. Thus we can now decide whether the algorithm should return
a linear extension based on its frequency, and hence we can make the distribution of outputs
more uniform (in fact this is very similar to acceptance/rejection methodology). Secondly,
we do not accept all linear orders obtained by swapping the consecutive vertices in the linear
extension after one topological sort (as they are correlated), but only one of them, specifically
the one which has not been seen before. Thus every topological sort (initiated from a random
node) results in just one randomly chosen linear extension.

Let us formalise this algorithm.

Remark 1. The Algorithm 1 is simplified for readability. It assumes the array H is maintained
by indexing its entries through the hash value of S, and hence the complexity of accessing
H(S)is O(1). In C++ standard library there is data structure for this called unordered_map.
Algorithm 1 also uses a method of returning an item with a given probability, without knowing
how many items to choose from there are. It is called reservoir weighted sampling [14], which
returns a sample of size k from population of size m, not knowing m in advance in a single
pass. Its expected running time is O(klog(m)).

Remark 2. If we are not concerned about correlated linear extensions, we can make the Al-
gorithm 1 return a sample of linear extensions of size k after each topological sort. The
linear extensions can be stored and then the population is randomised, thus breaking any

O©CoO~NOOOITA~AWNPE

Algorithm 1: Random generation of linear extension

Input: Partial order P

Output: Random linear extension

Assumption: The history of previously generated linear extensions H maintained as
an array indexed by hash values.

Step 1. Construct the DAG by listing the pairs of elements of P related directly (not
by transitivity). Randomise the list of pairs.

Step 2. Perform topological sort on DAG followed by Markov chain. The output is
array S.

Return S with probability proportional to

(S)+1
Step 3. for k in1:|P|—1do
if pair (S[k], S|k + 1]) not in DAG then
Swap(S[k], S[k + 1]) /* now S is another linear extension */
return S with probability proportional to VIGES] S)
Swap(S[k], S[k + 1]) /* swap back */
end
end

correlations. That would increase its efficiency by performing topological sort less frequently.

Remark 3. A different expression for probability of accepting a linear extension can be used.
The square of the expression in Algorithm 1 will result in more aggressive equalising the
frequencies H(S). In our experience that was necessary only for n < 5, as for larger n the
number of possible linear extensions grows extremely quickly and almost all values H(.S) were
1.

5 Numerical experiments

In this section we describe our numerical experiments benchmarking the two presented meth-
ods of generating linear extensions randomly and uniformly for a variety of partial orders
identified by parameters n and k. Specifically we measure the quality of the resulting distri-
bution and numerical efficiency of each method through CPU time.

To measure the quality of the distribution we calculate its statistical distance from the
uniform distribution. When the number of the linear extensions L is known, that calculation
is simple

H(S;)

Y

where T is the total number of generated linear extensions and H(.S;) is the number of times
the linear extension .S; was returned by the algorithm. For example for any n and k£ = 2 we
always have L = n!, and for k = n — 1 L is given by the OEIS sequence A046873. However
in most cases the number of linear extensions will not be known, or can be so large that it
is not readily computable (compare to the OEIS sequence A046873). In the case of unknown
but relatively small L we approximate it experimentally by taking the largest number found
by any of our methods in a long run (T ~ 10%). But when L is larger than T our expectation

O©CoO~NOOOITA~AWNPE

is to observe most, if not all, H(S;) = 1, which would point to some degree of uniformity of
the resulting distribution, and hence we take L =T

Our experiments were performed on the following hardware: Linux workstations with 3.2
GHz Intel 64-bits processor, 32 GB of RAM. The results are summarised in Table 1. As we
can see, for relatively small problems both methods presented perform similarly. Although
we should mention that we needed to use longer Markov chain in MinimalsPlus method in
order to get an acceptable closeness to uniform distribution. The topological sort initialisation
required fewer subsequent Markov steps. Shorter Markov chains (about 100 steps) resulted
in a significant degradation of the quality of the distribution generated by MinimalsPlus, but
did not drastically affect that of the topologial sort.

For larger problems with the numbers of linear extensions well above 10*° we could not ver-
ify closeness to uniform, but we observed that each of the 10® linear extensions was generated
once only, hence pointing toward uniformity.

We observed that applying the rejection step in Algorithm 1 (Step 3) based on history was
largely redundant, and that the output of the topological sort followed by just 100 Markov
chain steps was sufficient. The very large number of possible linear extensions L implies a
very small chance the outputs of a reasonably random process can be repeated. This means
that alternative methods measuring uniformity of the distribution in a polytope P, like the
ones discussed in [28], should be used to verify the quality of the distribution.

In terms of CPU time, the topological sort initialisation requires fewer subsequent Markov
steps, because it provides a broader set of linear orders than MinimalsPlus, and as a conse-
quence exhibits faster generation times while maintaining due randomness.

Table 1: The CPU time in 1000s of seconds per 10® random samples and the distance from
uniform Dist (x1073) for the two methods, the length of the Markov chain is 5000 for Minplus
and 1000 for Tsort, to guarantee stated distance from uniform in that range of parameters.
The "?" indicates the cases where the distance cannot be found due to extremely large number
of linear extensions, and where each sample was generated only once, indicating some closeness
to uniform.

k [2 3 4

method Minplus Tsort Minplus Tsort Minplus Tsort

n Dist CPU | Dist CPU || Dist CPU | Dist CPU | Dist CPU | Dist CPU

3 0.2 0.115| 0.2 0.087

4 2 0118 | 0.7 0.089 7 13.24 4 2.1

5 4 1959 | 0.2 1.61 34 17.21 10 3.18 7 19.59 ? 4

6 11 19.40 4 2.58 7 19.26 7?7 3.53 7 20.42 7 5.39

7 2.8 19.23 1 3.57 7 19.26 7?7 4.05 7?2233 7 8.09

8 80 19.12 9 3.62 7 19.41 7 4.69 7 25.80 7 12.43

9 480 19.42 29 3.77 7 19.77 7?7 5.69 7 30.86 7 19.26

10 330 19.34 27 3.82 7 20.34 7 6.80 7 40.45 7 30.68

11 57 19.97 30 3.86 7 21.09 7?7 8.14 7 61.26 7 47.54

12 7 19.61 7 3.89 72226 7?7 9.72 7 81.15 7 T2.88
9

O©CoO~NOOOITA~AWNPE

6 Conclusions

We proposed two methods for random generation of k-interactive capacities, based on gen-
eration of linear extensions for a specified partially ordered set. The methods differ in their
initialisation step. The first method is based on the recently reported MinimalsPlus method,
and the second one is based on the topological sort procedure. Both methods are followed by
a Markov chain until the distribution becomes uniform. The required length of the Markov
chain is smaller for the topological sort based procedure, and hence this method has better
computational efficiency. The extensive numerical experiments confirmed the uniformness of
the resulting distributions. Applications of the methods presented are envisaged in simulation
studies and capacity learning by stochastic optimisation.

There are also other problems and types of capacities to which the presented methods
can be extended. The p—symmetric capacities [26] and sparse capacities (where only a lim-
ited number of Mébius values are non-zero) are two immediate cases. Random generation
of supermodular capacities (which form a subset of an order polytope) also used a similar
procedure [1]. Finally, random generation of monotone data sets [10-12] can also benefit from
the proposed technique.

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 71671096),
the K.C.Wong Magna Fund in Ningbo University and by the Spanish Ministry of Economy
and Competitiveness with FEDER funds (grant TIN2016-75850-R).

References

[1] G. Beliakov. On random generation of supermodular capacities. IEEE Transactions on
Fuzzy Systems, doi: 10.1109/TFUZZ.2020.3036699:1-6, 2021.

[2] G. Beliakov, H. Bustince Sola, and T. Calvo. A Practical Guide to Averaging Functions.
Springer, New York, 2016.

[3] G. Beliakov, S. James, and J.-Z. Wu. Discrete Fuzzy Measures: Computational Aspects.
Springer, Cham, Switzerland, 2020.

[4] G. Beliakov and J.-Z. Wu. Learning fuzzy measures from data: simplifications and opti-
misation strategies. Information Sciences, 494:100-113, 2019.

[5] G. Choquet. Theory of capacities. Annales de l'institut Fourier, 5:131-295, 1954.

[6] E. Combarro and P. Miranda. Identification of fuzzy measures from sample data with
genetic algorithms. Computers € Operations Research, 33(10):3046-3066, 2006.

[7] E. F. Combarro, I. Diaz, and P. Miranda. On random generation of fuzzy measures. Fuzzy
Sets & Systems, 228(4):64-77, 2013.

10

O©CoO~NOOOITA~AWNPE

8]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

E. F. Combarro, J. Hurtado de Saracho, and I. Diaz. Minimals plus: An improved algo-
rithm for the random generation of linear extensions of partially ordered sets. Information
Sciences, 501:50-67, 2019.

B. De Baets, H. De Meyer, and K. De Loof. On the cycle-transitivity of the mutual rank
probability relation of a poset. Fuzzy Sets and Systems, 161:2695-2708, 2010.

K. De Loof, B. De Baets, and H. De Meyer. On the random generation and counting
of weak order extensions of a poset with given class cardinalities. Information Sciences,
177:220-230, 2007.

K. De Loof, B. De Baets, and H. De Meyer. On the random generation of monotone data
sets. Information Processing Letters, 107:216-220, 2008.

K. De Loof, H. De Meyer, and B. De Baets. Exploiting the lattice of ideals representation
of a poset. Fundamenta Informaticae, 71:309-321, 2006.

L. Devroye. Non-uniform Random Variate Generation. Springer Verlag, New York, 1986.

P. S. Efraimidis and P. G. Spirakis. Weighted random sampling with a reservoir. Infor-
mation Processing Letters, 97:181-185, 2006.

M. Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy
Sets and Systems, 92(2):167-189, 1997.

M. Grabisch. Set Functions, Games and Capacities in Decision Making. Springer, Berlin,
New York, 2016.

M. Grabisch, I. Kojadinovic, and P. Meyer. A review of methods for capacity identification
in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R
package. Furopean Journal of Operations Research, 186(2):766-785, 2008.

M. Grabisch and C. Labreuche. A decade of application of the Choquet and Sugeno
integrals in multi-criteria decision aid. Annals of Operations Research, 175(1):247-286,
2010.

W. Hormann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Variate
Generation. Springer, Berlin, 2004.

A. B. Kahn. Topological sorting of large networks. Communications of the ACM, 5:558—
562, 1962.

J.-L. Marichal. Entropy of discrete Choquet capacities. Furopean Journal of Operations
Research, 137(3):612-624, 2002.

J.-L. Marichal. Tolerant or intolerant character of interacting criteria in aggregation by
the Choquet integral. Furopean Journal of Operational Research, 155(3):771-791, 2004.

J.-L. Marichal. k-intolerant capacities and Choquet integrals. Furopean Journal of Op-
erational Research, 177(3):1453-1468, 2007.

11

O©CoO~NOOOITA~AWNPE

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

R. Mesiar and A. Kolesarova. k-maxitive aggregation functions. Fuzzy Sets and Systems,
346:127-137, 2018.

P. Miranda and P. Garcia-Segador. Combinatorial structure of the polytope of 2-additive
measures. [EEE Transactions on Fuzzy Systems, 10.1109/TFUZZ.2019.2945243.

P. Miranda, M. Grabisch, and P. Gil. p-symmetric fuzzy measures. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(supp01):105-123, 2002.

E. Pap. Null-additive Set Functions. Kluwer Academic Pub, Dordrecht, 1995.

A. Petrie and T. R. Willemain. An empirical study of tests for uniformity in multidimen-
sional data. Computational Statistics € Data Analysis, 64:253-268, 2013.

P. A. Rubin. Generating random points in a polytope. Communications in Statistics-
Simulation and Computation, 13(3):375-396, 1984.

R. L. Smith. Efficient monte carlo procedures for generating points uniformly distributed
over bounded regions. Operations Research, 32(6):1296-1308, 1984.

R. Stanley. Two poset polytopes. Discrete Computational Geometry, 1:9-23, 1986.

M. Sugeno. Theory of Fuzzy Integrals and Its Applications. PhD thesis, Tokyo Institute
of Technology, 1974.

J.-Z. Wu and G. Beliakov. Nonadditivity index and capacity identification method in the
context of multicriteria decision making. Information Sciences, 467:398-406, 2018.

J.-Z. Wu and G. Beliakov. k-minitive capacities and k-minitive aggregation functions.
Journal of Intelligent and Fuzzy Systems, 37(2):2797-2808, 2019.

J.-Z. Wu and G. Beliakov. Nonmodularity index for capacity identifying with multiple
criteria preference information. Information Sciences, 492:164-180, 2019.

12

Manuscript

Authors’ responses to the comments on
F'SS-D-20-00321

November 13, 2020

Ref.: Ms. No. FSS-D-20-00321 entitled “Random generation of k-interactive
capacities” (by Gleb Beliakov, et al) submitted to Fuzzy Sets and Systems.

The authors thank the reviewers and the AE for their very useful comments. Be-
low we detail some of the changes made to the manuscript addressing the reviewers’
concerns.

AE:

Two experts have reviewed your manuscript. Both have a very positive opinion and
recommend its acceptance, provided some minor modifications are made. Reviewer 1
indicates a few misprints and typos. Rev2 mentions a formal problem, and suggests
a possible way to fix it. Please, try to address their comments and submit your
revised version at your earliest convenience. Thanks for your submission!

Thank you, we have thoroughly revised the manuscript. We also added additional
relevant references.

Reviewer #2:

The paper is written clearly with almost no problems. It presents two methods
for generating linear extensions of posets with improved heuristic to generate these
extensions (more) uniformly. (The extensions are then used to generate k-interactive
capacities.) The methods are tested by numerical experiments. I recommend it for
publication in Fuzzy Sets and Systems journal.

(Numbering of lines provided in the manuscript is shifted. Please count it directly
from text.)

1) Dedekind numbers are/is A000372 OEIS sequence. (Could be mentioned in
the paper.)

2) p. 2, 1. -10: the number starting 561. .. should be splittted. (Typography.)

3) p. 2, L. -5 —-4: simple (the; (no space between (and the); (Typography.)

4) p. 4, 1. 9: larger than k ; (not or equal to, see Definition 2)

5) One line before Preliminaries section: Section 6 contains conclusions.
6) p. 6, 1. 12: parenthesis, (k + 1)-tolerant ;

Thank you, all the issues have been corrected.

Reviewer #2:

The authors introduce two procedures for the random generation of k-interactive
capacities based on two different ways of randomly generating linear extensions of
a poset: the so-called MinimalsPlus method and an algorithm based on topological
sorting. The paper is well-written and motivated, clear and easy to read. The
numerical simulations presented by the authors support their claim that the method
based on topological sorting is superior to MinimalPlus on the particular posets
considered in the paper.

However, there is a small modification that should be made before the paper
is ready for publication. The method proposed in the manuscript for generating
k-interactive capacities from linear extensions relies on the observation made by the
authors that these capacities form a poset polytope. This is not strictly so. Order
polytopes are known to have 0,1-valued vertices (see [1]) and this does not seem to
be the case with k-interactive capacities in general. This can probably be sorted out
if, for the random generation, the values of the capacity are normalised so that the
first "fixed" value (for sets of size k+1) becomes 1, and then they are "scaled back".
In any case, I think that this should be noted in the paper and the way of tackling
the problem should be clearly explained.

Correct, we use a scaled down version of order polytopes. We made a comment
on that in the paper now.

In addition, I think it is worthwhile to mention that it would be interesting,
as future work, to study if the new method of generating linear extensions works
equally well for other types of posets.

Thank you, indeed the partial sort method can be used for other sorts of appli-
cations, such as generation of p-symmetric capacities and their variations, sparse
capacities, and also geneation of monotonic data sets. We added several new refer-
ences 1n respect.

[1] Two poset polytopes. Richard P. Stanley. Discrete Computational Geometry
volume 1, pages 9-23 (1986)

Once again let us thank all the reviewers for their detailed comments and valuable
suggestions.

Manuscript

Click here to access/download
LaTeX Source Files
main.tex

https://www.editorialmanager.com/fss/download.aspx?id=370964&guid=bdf16685-53ec-4bb5-a02f-c4fea826b946&scheme=1

Manuscript

Click here to access/download
LaTeX Source Files
sample.bib

https://www.editorialmanager.com/fss/download.aspx?id=370965&guid=c2836a79-3b1f-4e5d-8dd8-8e743c740adb&scheme=1

Manuscript Click here to access/download;Figure;fuzzy_measure_plot6.png %

. {1,2,3,45,6}

‘ |A|=5

IAI=4

/

12 & v @ - .

{1.2,3) 14,56}

{5.6}

M & . S)

https://www.editorialmanager.com/fss/download.aspx?id=370966&guid=c626f039-7ec8-40f8-bf67-86b95896122f&scheme=1
https://www.editorialmanager.com/fss/download.aspx?id=370966&guid=c626f039-7ec8-40f8-bf67-86b95896122f&scheme=1

