
Supplementary Material

Subspace-constrained deconvolution of auditory evoked potentials

Angel de la Torre1, Joaquin T. Valderrama2,3, Jose C. Segura1, Isaac M. Alvarez1, and Jesús Garcı́a-Miranda4

1Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain.
2National Acoustic Laboratories, Sydney, Australia.
3Department of Linguistics, Macquarie University, Sydney, Australia.
3Department of Algebra, University of Granada, Granada, Spain.
E-mail: atv@ugr.es (A. de la Torre); joaquin.valderrama@nal.gov.au (J.T. Valderrama); segura@ugr.es (J.C. Segura); isamaru@ugr.es (I.M. Al-
varez); jesusgm@ugr.es (J. Garcı́a-Miranda)

Contents
1 Derivation of the LS solution for an over-determined system of linear equations 3

2 Effect of an inappropriate subspace selection 4

3 Noise reduction provided by the subspace-constrained LS estimation 5
3.1 The orthonormal projector Vr and some properties . 5
3.2 Properties of the covariance and autocorrelation matrices . 6
3.3 Demonstration 1: for all A symmetric and positive definite, tr((VrAV T

r)−1) ≤ tr(VrA
−1V T

r) 6
3.4 Demonstration 2: for all A symmetric and positive definite, tr(VrAV T

r) < tr(A) 7
3.5 Demonstration of the noise reduction provided by the subspace-constrained LS deconvolution 8

4 Comparison of subspace-constrained deconvolution vs. LDFDS after deconvolution 8
4.1 Comparison of the traces for white noise . 9
4.2 Comparison of the traces for non-constrained noise . 9
4.3 Comparison of the traces when Rs ≈ I . 10
4.4 Code implementing a Monte Carlo simulation for comparing tr(ΣerLS

) and tr(Σ(eLS)r) 10

5 Code implementing the LS, LS-R and SC-LS procedures 13
5.1 Function “RSLSD LS.m” (conventional LS, with matrix division) . 14
5.2 Function “IRSA LS.m” (conventional LS, with iterative estimation) . 15
5.3 Function “RSLSD LSR.m” (LS and LDFDS reduction, with matrix division) . 16
5.4 Function “IRSA LSR.m” (LS and LDFDS reduction, with iterative estimation) . 17
5.5 Function “RSLSD SCLS.m” (subspace constrained LS, with matrix division) . 18
5.6 Function “IRSA SCLS.m” (subspace constrained LS, with iterative estimation) . 19
5.7 Function “Basis LinLog RRC.m” (transformation from original representation to reduced subspace) 20
5.8 Script “script simuation SCLSDec.m” (comparison of different deconvolution algorithms) 22
5.9 Output of the script “script simuation SCLSDec.m” . 24

1

6 Complementary results: experiments with simulations 25
6.1 Description of the noise used for the simulations . 25
6.2 Comparison of the estimations provided by the different deconvolution methods . 25
6.3 Statistical characterization of the noise and the error . 29
6.4 Comparison of the observed error energy and the expected error energy . 32

7 Complementary results: experiments with real EEGs 34
7.1 Execution time . 34
7.2 Comparison of the estimations provided by the different deconvolution methods . 36
7.3 Individual AEP responses estimated for each subject and grand average . 40

References 46

2

1 Derivation of the LS solution for an over-determined system of linear equations
This derivation could be useful for those readers not familiar with linear regression, multivariate linear regression, approximate
methods for solving over-determined linear systems of equations, or least squares methods.

Let us consider the matrix equation:
y = Ax (1)

where y is a vector of N observations, x is a vector of J unknowns, and A is a (N × J) matrix of coefficients. This matrix equation
is equivalent to a system of linear equations:

y0 = a(0, 0)x0 + a(0, 1)x1 + . . .+ a(0, J−1)xJ−1

y1 = a(1, 0)x0 + a(1, 1)x1 + . . .+ a(1, J−1)xJ−1

y2 = a(2, 0)x0 + a(2, 1)x1 + . . .+ a(2, J−1)xJ−1

y3 = a(3, 0)x0 + a(3, 1)x1 + . . .+ a(3, J−1)xJ−1

. . .

yN−1 = a(N−1, 0)x0 + a(N−1, 1)x1 + . . .+ a(N−1, J−1)xJ−1 (2)
(3)

Assuming that N > J , this system of linear equations is in general over-determined and has no solution (i.e. there is no solution
satisfying simultaneously all the equations). To illustrate the situation, let us consider a system with two unknowns, x0 and x1. The
possible values of the unknowns define a two dimension space, i.e. a plane. Each of the equations in the linear system, with the form:

yn = a(n, 0)x0 + a(n, 1)x1 (4)

defines a straight line in the plane (x0, x1). If there are only two equations, then there are only two lines in the plane and there is a
unique solution (if the lines are not parallel). But in general, if we have more than two equations, the linear system has no solution,
because there is no point (x0, x1) belonging simultaneously to all the lines.

Therefore, in general, we cannot find an exact solution (because it does not exists) but we can find an approximate solution, i.e. a
solution closely satisfying all the equations. If closeness is defined in terms of least squares of the differences between the left- and
right-hand sides of the equations, then we obtain the least squares (LS) approximation to the solution.

Note that this approximate resolution of the over-determined linear system is equivalent to the resolution of a linear system
assuming that the exact solution exists but the equations (or the observations yn) are affected by noise:

y = Ax+ n (5)

or equivalently:

y0 = a(0, 0)x0 + a(0, 1)x1 + . . .+ a(0, J−1)xJ−1 + n0

y1 = a(1, 0)x0 + a(1, 1)x1 + . . .+ a(1, J−1)xJ−1 + n1

y2 = a(2, 0)x0 + a(2, 1)x1 + . . .+ a(2, J−1)xJ−1 + n2

y3 = a(3, 0)x0 + a(3, 1)x1 + . . .+ a(3, J−1)xJ−1 + n3

. . .

yN−1 = a(N−1, 0)x0 + a(N−1, 1)x1 + . . .+ a(N−1, J−1)xJ−1 + nN−1 (6)
(7)

where the observations y and the coefficients A are known, the unknowns to be estimated are the components of x, and the noise
affecting the observations can be statistically described (usually through its covariance matrix) but the specific values affecting the
observation are also unknown.

The LS solution is obtained by minimizing the squared distance between y and Ax with respect to x:

x̂LS = argmin
x

∥y −Ax∥2 = argmin
x

(y −Ax)T (y −Ax) (8)

and the minimization can be obtained by canceling the gradient with respect to x:

∂(y −Ax)T (y −Ax)

∂x
= 0 (9)

3

where the gradient can be expanded (according to equation (84) of [1]) as:

∂(y −Ax)T (y −Ax)

∂x
= −2AT (y −Ax) (10)

Therefore, the cancellation of the gradient provides the equation:

ATy = ATAx (11)

and the well known LS solution is obtained as (see eq. 2.0.4 in [2] or eq. 1.2.5 in [3]):

x̂LS = (ATA)−1 ATy (12)

which requires that the (J × J) matrix (ATA) is non-singular (and can therefore be inverted).
This estimation is commonly found in the literature as the “ordinary least squares” method, in order to distinguish it from the

weighted least squares, the generalized least squares or the the non-linear least squares methods (which can be considered as different
generalizations of the ordinary least squares method) [3].

The LS solution provided in the last equation is optimal (in the sense that it provides an unbiased and minimum variance estimation
of x) under several assumptions: linearity (the model is appropriately described by a system of linear equations); exogeneity (in the
deconvolution problem the exogeneity is verified if the noise and the stimulation sequence are uncorrelated, which can usually be
assumed); homocedasticity (in the deconvolution problem it implies that the noise is stationary and white, and therefore its covariance
matrix is spherical, or equivalently it is a constant multiplied by the (N × N) identity matrix). This last assumption is not verified
in most practical situations, and the LS criterion usually provides a good solution (better as the SNR is higher), but not the optimal
solution. There are optimization criteria appropriate for colored stationary noise (for example, the minimum mean square error
criterion), even though they are out of the scope of this study.

2 Effect of an inappropriate subspace selection
Subspace-constrained least squares deconvolution provides an optimal least squares deconvolution, better than the non-constrained
solution, assumed that the response x is appropriately represented in the subspace, i.e., that can be written as x = V T

r xr.
In order to understand the importance of the appropriate selection of the subspace, let us consider that Vr (with Jr rows and J

columns) is a submatrix of an orthonormal (J × J) matrix V that can be decomposed as:

V =

[
Vr

Vc

]
(13)

where Vc is an orthonormal projector representing the orthogonal complement of the subspace given by Vr. If the response x is
not contained in the subspace given by Vr, then its projection over the orthogonal complement xc = Vcx is not null, and x can be
decomposed as:

x = V T
r xr + V T

c xc (14)

In this case, the synchronous averaging of the EEG can be written as:

z0 = Sk y = Sk S x+ Sk n0 = Rsx+ nA = Rs

(
V T
r xr + V T

c xc

)
+ nA (15)

and therefore (according to equation (12) of the main article) the subspace-constrained deconvolution is:

x̂rLS =
(
Vr Rs V

T
r

)−1
Vr z0 =

(
Vr Rs V

T
r

)−1
Vr Rs

(
V T
r xr + V T

c xc

)
+
(
Vr Rs V

T
r

)−1
Vr nA

x̂rLS = xr +
(
Vr Rs V

T
r

)−1
Vr RsV

T
c xc + nrLS (16)

where we can observe two contributions to the error: the first one associated to the component xc from the orthogonal complement
(out of the subspace) and, the other one associated to the noise. The term associated to xc, causes a biased estimation of the evoked
response, even in the absence of noise (i.e. for high SNR, or for an experiment with a very large number of stimuli K), unless
either (VrRsV

T
c) or xc are null (because (VrRsV

T
r)−1 is a positive definite matrix). The matrix product (VrRsV

T
c) is null if Rs is

a block-diagonal matrix with respect to both subspaces. However, since Rs is Toeplitz, symmetric and positive definite, it is hardly
block-diagonal unless it is the identity matrix (but if Rs = I then a deconvolution is not necessary, and the response can be directly
obtained by synchronous averaging). Therefore, if the response is estimated with a subspace-constrained deconvolution, the response
must lie in the subspace defined by the orthonormal projector Vr (i.e. xc must be null). Otherwise, the solution is biased (even
in absence of noise, or even in the case of infinite number of stimuli). This bias is caused by the transference of energy from the
orthogonal complement towards the reduced subspace due to the Rs autocorrelation matrix. The equation (16) provides an estimate
of the bias.

4

3 Noise reduction provided by the subspace-constrained LS estimation
In this section we demonstrate that, under the assumption of linearity, exogeneity and homocedasticity (valid for a deconvolution
problem affected by uncorrelated-stationary-white noise), the LS-based deconvolution constrained to the subspace given by Vr pro-
vides a better solution than that obtained with a deconvolution performed in the complete representation space. In other words, we
demonstrate that the trace of the covariance matrix of the error affecting the solutions is smaller when the deconvolution is constrained
to the subspace:

tr(Σer LS
) ≤ tr(ΣeLS

) (17)

Before this demonstration, we present some previous definitions and demonstrations.

3.1 The orthonormal projector Vr and some properties
Let us assume an original representation space with J dimensions, and a reduced representation space with Jr dimensions (with
Jr < J), given by an orthonormal transformation Vr. The matrix Vr is a (Jr × J) matrix, with Jr rows and J columns:

Vr = [vi,m] m ∈ {0, . . . , J − 1} i ∈ {0, . . . , Jr − 1} (18)

where each row is a unitary vector orthogonal to all the others:

J−1∑
m=0

vi,mvj,m = δi,j (19)

being δi,j the Kronecker’s delta. Equivalently we can write:

J−1∑
m=0

v2i,m = 1

J−1∑
m=0

vi,mvj,m = 0 if i ̸= j (20)

The orthonormal projector Vr can be considered one submatrix of a complete orthogonal matrix V :

V =

[
Vr

Vc

]
(21)

where Vc is an orthonormal projector over the orthogonal complement of the subspace defined by Vr:

Vc = [vi,m] m ∈ {0, . . . , J − 1} i ∈ {Jr, . . . , J − 1} (22)

and again each row is a unitary vector orthogonal to all the others (either to the other rows of Vc or to any row of Vr).
Since the complete matrix V is orthonormal, its transpose is equal to its inverse:

V T = V −1 V V T = V T V = I (23)

and the transpose is also orthonormal, and the columns of V are also orthonormal vectors:

J−1∑
i=0

vi,mvi,n = δm,n (24)

Finally, since the columns of V are normalized (because both V and V T are orthonormal) we can write:

J−1∑
i=0

v2i,m = 1 (25)

and since the orthonormal projector Vr is a submatrix of V including only the first Jr rows, the norm of the columns of Vr are less
than or equal to 1:

Jr−1∑
i=0

v2i,m ≤ 1 ∀m ∈ {0, . . . , J − 1} (26)

5

3.2 Properties of the covariance and autocorrelation matrices
In addition to the orthonormal projector, the matrices involved in the LS deconvolution procedure (formulated either in the original
or in the reduced representation space) are the normalized autocorrelation matrix of the stimulation sequence Rs or the covariance
matrix of the noise Σn0 or the matrices resulting from the corresponding operations (inversion, projection over the reduced subspace,
synchronous averaging, etc.).

Covariance and autocorrelation matrices are always symmetric and positive semidefinite (i.e. with all the eigenvalues positive
or null). For stationary processes these matrices are, in addition, Toeplitz (all the elements in each direct diagonal are identical).
Therefore, Σn0

is symmetric and positive semidefinite (also Toeplitz in the case of stationary noise); ΣnA
= (SkΣn0

ST
k) is also

symmetric and positive semidefinite (since it is the covariance matrix of the process nA = Skn0), as well as (VrΣnA
V T
r), ΣeLS

and
ΣerLS

. Finally, Rs is symmetric, positive semidefinite and Toeplitz (indeed positive definite, since we assume it is invertible); R−1
s

is also symmetric and positive definite; and in general (VrRsV
T
r), (VrR

−1
s V T

r) and their respective inverses are also symmetric and
positive definite (and usually not Toeplitz due to the orthonormal transformation Vr).

3.3 Demonstration 1: for all A symmetric and positive definite, tr((VrAV
T
r)−1) ≤ tr(VrA

−1V T
r)

Let A be a symmetric and positive definite (J × J) matrix, and Vr an orthonormal projector described as a (Jr × J) matrix with
Jr < J , and let us compare the trace of the projected inverse matrix tr(VrA

−1V T
r) and the trace of the inversion of the projected

matrix tr((VrAV
T
r)−1).

Since the traces are rotationally invariant, the original representation space can be chosen, without loss of generality, verifying
that A is diagonal (therefore with the eigenvalues as the elements in the principal diagonal, all of them positive since A is assumed to
be positive definite):

A = [am,n] am,m = λm > 0 am,n = 0 if m ̸= n (27)

Let the matrices B, C and D be defined as:

B = VrAV T
r C = VrA

−1V T
r D = B−1 =

(
VrAV T

r

)−1
(28)

which are (Jr × Jr) matrices. The elements of B and C are, respectively:

B = [bi,j] bi,j =

J−1∑
m=0

λmvi,mvj,m i, j ∈ {0, . . . , Jr − 1} (29)

C = [ci,j] ci,j =

J−1∑
m=0

λ−1
m vi,mvj,m i, j ∈ {0, . . . , Jr − 1} (30)

and, as can be noted, the elements of the matrix C can easily be computed because, since A is diagonal, its inverse is also diagonal
and its elements are the inverse of the eigenvalues of A.

Again, since the traces are rotationally invariant, the reduced representation space can be chosen, without loss of generality,
verifying that B is diagonal (it implies a rotation within the reduced representation space)1. For this particular representation of the
subspace, since B is diagonal, its inverse D is also diagonal, and the elements of D are:

D = [di,j] di,i = b−1
i,i di,j = 0 if i ̸= j (31)

Therefore, the ith element of the diagonal for matrices D and C are, respectively:

di,i =
1

J−1∑
m=0

λmv2i,m

ci,i =

J−1∑
m=0

λ−1
m v2i,m (32)

and the ratio between the corresponding elements in the diagonal ci,i/di,i is:

ci,i
di,i

=

(
J−1∑
m=0

λ−1
m v2i,m

)(
J−1∑
m=0

λmv2i,m

)
=
∑
m

∑
m′

λ−1
m λm′v2i,mv2i,m′ (33)

1Note that we could select a particular representation of the subspace where B is diagonal, or a particular representation where C is diagonal, but in general it is
not possible satisfying both conditions simultaneously.

6

ci,i
di,i

=
∑
m

λm

λm
v4i,m +

∑
m

∑
m′>m

(
λm

λm′
+

λm′

λm

)
v2i,mv2i,m′ (34)

Since the matrix A is positive definite, all its eigenvalues are positive, and the factor involving the eigenvalues has a lower bound:

λm

λm′
+

λm′

λm
≥ 2 (35)

because:
x+

1

x
≥ 2 ∀x > 0 (36)

and therefore, the ratio between the elements in the diagonal has also a lower limit:

ci,i
di,i

≥
∑
m

v4i,m + 2
∑
m

∑
m′>m

v2i,mv2i,m′ =

(∑
m

v2i,m

)2

= (1)2 = 1 ⇒ ci,i
di,i

≥ 1 (37)

where the last sum is equal to 1 because the rows of Vr are normalized (are unitary vectors).
Therefore, for each element of the diagonal of the matrices D and C we can write:

di,i ≤ ci,i (38)

and since each element in the diagonal is smaller for matrix D, the inequality also applies for their traces:

tr(D) ≤ tr(C) (39)

and taking into account the definitions of C and D, we finally demonstrate the relationship between the traces of (VrAV
T
r)−1 and

(VrA
−1V T

r):
tr((VrAV T

r)−1) ≤ tr(VrA
−1V T

r) (40)

The equality of the traces requires that:
λm

λm′
+

λm′

λm
= 2 ∀m,m′ (41)

and it requires that all the eigenvalues of A are equal, or equivalently, that A is a spherical matrix (i.e. the identity matrix multiplied
by a constant). In this case, obviously both traces are equal (because the matrices are identical). In any other case, the trace of the
inversion of the projected matrix is strictly smaller.

3.4 Demonstration 2: for all A symmetric and positive definite, tr(VrAV
T
r) < tr(A)

Let A be a symmetric and positive definite (J × J) matrix, and Vr an orthonormal projector described as a (Jr × J) matrix with
Jr < J , and let us compare the trace of the matrix tr(A) and the trace of the projected matrix tr(VrAV T

r).
The orthonormal projector Vr can be considered one submatrix of a complete orthogonal matrix V :

V =

[
Vr

Vc

]
(42)

and since the traces are rotationally invariant, the trace of A can be decomposed as:

tr(A) = tr(V AV T) = tr

([
Vr

Vc

]
A
[
V T
r V T

c

])
= tr

([
Vr AV T

r Vr AV T
c

Vc AV T
r Vc AV T

c

])
= tr(Vr AV T

r) + tr(Vc AV T
c) (43)

Finally, since the matrix A is assumed to be positive definite, the traces are positive for both projections, and therefore:

tr(A) = tr(Vr AV T
r) + tr(Vc AV T

c) > tr(Vr AV T
r) (44)

or equivalently:
tr(Vr AV T

r) < tr(A) (45)

Additionally, if the matrix A is symmetric and positive definite, the matrix A−1 is also symmetric and postivie definite, and
therefore we can also write:

tr(VrA
−1V T

r) < tr(A−1) (46)

7

3.5 Demonstration of the noise reduction provided by the subspace-constrained LS deconvolution
In order to demonstrate that the subspace-constrained deconvolution provides a better solution than the non-constrained deconvolu-
tion, we have to demonstrate that the trace of the covariance matrix of the error in the subspace-constrained deconvolution is less than
or equal to that in the non-constrained deconvolution:

tr(ΣerLS
) ≤ tr(ΣeLS

) (47)

As described in the main article, the covariance matrix of the error affecting the LS estimate of x (in the original representation
space) is given by:

ΣeLS
= R−1

s Sk Σn0 S
T
k R−1

s (48)

and in the case of the subspace-constrained LS deconvolution, by:

ΣerLS
= (Vr Rs V

T
r)−1 Vr Sk Σn0 S

T
k V T

r (Vr Rs V
T
r)−1 (49)

where Rs is the normalized autocorrelation matrix of the stimulation sequence and Σn0
is the covariance matrix of the noise. If,

according to the least squares assumptions, the noise is white and stationary, its covariance matrix is spherical, i.e., it is the identity
matrix multiplied by a constant σ2

n (the variance of the noise), and we can then write:

ΣeLS
= R−1

s Sk σ
2
n I S

T
k R−1

s = σ2
n R

−1
s Sk S

T
k R−1

s (50)

ΣerLS
= (Vr Rs V

T
r)−1 Vr Sk σ

2
n I S

T
k V T

r (Vr Rs V
T
r)−1 = σ2

n (Vr Rs V
T
r)−1 Vr Sk S

T
k V T

r (Vr Rs V
T
r)−1 (51)

and since SkS
T
k = Rs/K these expressions can be rewritten as:

ΣeLS
=

σ2
n

K
R−1

s Rs R
−1
s =

σ2
n

K
R−1

s (52)

ΣerLS
=

σ2
n

K
(Vr Rs V

T
r)−1 Vr Rs V

T
r (Vr Rs V

T
r)−1 =

σ2
n

K
(Vr Rs V

T
r)−1 (53)

According to the equation (40), tr((VrAV T
r)−1) ≤ tr(VrA

−1V T
r) and therefore, since Rs is symmetric and positive definite, the

trace of ΣerLS
is bounded:

tr(ΣerLS
) =

σ2
n

K
tr
(
(Vr Rs V

T
r)−1

)
≤ σ2

n

K
tr
(
Vr R

−1
s V T

r

)
(54)

Moreover, the equality requires that Rs is a spherical matrix (since it is a normalized autocorrelation matrix, it would imply that
Rs is the identity matrix). This will never occur in a deconvolution problem, because if Rs = I then the optimal solution is estimated
as the synchronous averaging.

On the other hand, since R−1
s is symmetric and positive definite, and according to the equation (46), tr(VrA

−1V T
r) < tr(A−1),

the right hand of the previous inequality is also bounded:

σ2
n

K
tr
(
Vr R

−1
s V T

r

)
<

σ2
n

K
tr
(
R−1

s

)
= tr(ΣeLS

) (55)

Finally, taking into account the inequalities in equations (54) and (55), we can write:

tr(ΣerLS
) < tr(ΣeLS

) (56)

being therefore demonstrated that the subspace-constrained least squares deconvolution reduces the error in the estimation of the
evoked response.

4 Comparison of subspace-constrained deconvolution vs. LDFDS after deconvolution
The non-constrained LS deconvolution is given by:

x̂LS = R−1
s Sk y = x+R−1

s Sk n0 = x+R−1
s nA (57)

and the covariance matrix of the error affecting the LS estimation is:

ΣeLS
= R−1

s Sk Σn0 S
T
k R−1

s = R−1
s ΣnA

R−1
s (58)

8

Similarly, the subspace-constrained LS deconvolution is given by:

x̂rLS =
(
Vr Rs V

T
r

)−1
Vr Sk y = xr + (Vr Rs V

T
r)−1 Vr Sk n0 = xr + (Vr Rs V

T
r)−1 Vr nA (59)

and the covariance matrix of the error affecting the subspace-constrained LS estimation is:

ΣerLS
= (Vr Rs V

T
r)−1 Vr Sk Σn0

ST
k V T

r (Vr Rs V
T
r)−1 = (Vr Rs V

T
r)−1 Vr ΣnA

V T
r (Vr Rs V

T
r)−1 (60)

Finally, if we apply the latency-dependent filtering and down-sampling (LDFDS), represented by the Vr matrix operator, to the
non-constrained LS solution, the resulting estimation is:

(x̂LS)r = Vr x̂LS = Vr R
−1
s Sk y = Vr x+ Vr R

−1
s Sk n0 = xr + Vr R

−1
s nA (61)

and the covariance matrix of the error affecting this estimation is:

Σ(eLS)r = VrR
−1
s Sk Σn0

ST
k R−1

s V T
r = VrR

−1
s ΣnA

R−1
s V T

r (62)

and in order to demonstrate that the subspace constrained deconvolution provides a better solution than the application of LDFDS
after the deconvolution, we must demonstrate that the trace of the former is smaller or equal:

tr(ΣerLS
) ≤ tr(Σ(eLS)r) (63)

or, equivalently:
tr
(
(Vr Rs V

T
r)−1 Vr Sk Σn0

ST
k V T

r (Vr Rs V
T
r)−1

)
≤ tr

(
VrR

−1
s Sk Σn0

ST
k R−1

s V T
r

)
(64)

4.1 Comparison of the traces for white noise
If, according to the least squares assumptions, the noise is white and stationary, its covariance matrix is spherical and can be written
as Σn0

= σ2
nI . In this case, the covariance matrix for the subspace-constrained solution is:

ΣerLS
= σ2

n (Vr Rs V
T
r)−1 Vr Sk I S

T
k V T

r (Vr Rs V
T
r)−1 =

σ2
n

K
(Vr Rs V

T
r)−1 (Vr Rs V

T
r)(Vr Rs V

T
r)−1

ΣerLS
=

σ2
n

K
(Vr Rs V

T
r)−1 (65)

and the covariance matrix for the LDFDS applied after the deconvolution is:

Σ(eLS)r = σ2
n Vr R

−1
s Sk I S

T
k R−1

s V T
r =

σ2
n

K
Vr R

−1
s Rs R

−1
s V T

r

Σ(eLS)r =
σ2
n

K
VrR

−1
s V T

r (66)

According to the equation (40), tr((VrAV T
r)−1) ≤ tr(VrA

−1V T
r) for whatever A symmetric positive definite, and therefore,

since Rs is symmetric and positive definite, the trace of ΣerLS
is smaller:

tr(ΣerLS
) =

σ2
n

K
tr
(
(Vr Rs V

T
r)−1

)
≤ σ2

n

K
tr
(
Vr R

−1
s V T

r

)
= tr(Σ(eLS)r) (67)

and indeed, the inequality is strict unless Rs = I . Therefore, as expected, for white noise (and if all the other assumptions for the
LS criterion are verified) the subspace-constrained deconvolution is optimal and this solution is better than that obtained by applying
LDFDS after the deconvolution.

4.2 Comparison of the traces for non-constrained noise
The case of a noise with a non-constrained covariance matrix is out of the least squares assumptions. However, some analysis of this
situation is interesting.

If the error covariance matrices are expressed as a function of ΣnA
:

ΣerLS
= (Vr Rs V

T
r)−1 Vr ΣnA

V T
r (Vr Rs V

T
r)−1 Σ(eLS)r = VrR

−1
s ΣnA

R−1
s V T

r (68)

9

the study of the traces for a unconstrained noise can be analyzed by considering random (J×J) symmetric positive definite matrices
for Rs and ΣnA

and random Jr × J orthonormal matrices for Vr, and comparing the traces for a sufficiently large number of
repetitions. A Monte Carlo simulation has been prepared to compare the traces for a number of repetitions with randomly generated
Rs, ΣnA

and Vr matrices (see below the MatLab/Octave code implementing it), and it has been observed that most of the times the
inequality tr(ΣerLS

) ≤ tr(Σ(eLS)r) is verified, but sometimes it is not. Therefore, the proposed subspace-constrained deconvolution
is guaranteed to improve the solution based on LDFDS after deconvolution only for stationary white noise, and even though the
former usually improves the result provided by the later, the improvement is not always guaranteed in a general case. This is not
surprising, since the least squares criterion assumes white noise (and the optimal solution for non-white noise requires the minimum
mean square error criterion instead of the least squares error, which is out of the scope of this study).

4.3 Comparison of the traces when Rs ≈ I

An interesting particular case (for unconstrained noise) is obtained when Rs ≈ I . As previously discussed, the autocorrelation matrix
is only equal to the identity matrix in the case of responses not overlapping in the evoked potentials experiment (but in this case, the
optimal LS solution would be obtained as a synchronous averaging of the EEG). However, the analysis of the traces is interesting in
the case of Rs ≈ I , because in the case of a randomized (and not resonant) stimulation sequence, we usually can assume that Rs is
close to the identity matrix.

If we introduce the substitution Rs = I in the error covariance matrices, for the subspace-constrained solution we have:

ΣerLS
= (Vr I V

T
r)−1 Vr Sk Σn0

ST
k V T

r (Vr I V
T
r)−1 = (Vr V

T
r)−1 Vr Sk Σn0

ST
k V T

r (Vr V
T
r)−1 = I Vr Sk Σn0

ST
k V T

r I

ΣerLS
= Vr Sk Σn0

ST
k V T

r (69)

and similarly, for the LDFDS applied after the deconvolution we have:

Σ(eLS)r = Vr I Sk Σn0 S
T
k I V T

r = Vr Sk Σn0 S
T
k V T

r (70)

and, as can be observed, both covariance matrices are, in this case, identical (independently of the noise statistics), and therefore, the
traces are equal. For this reason, since usually Rs is close to the identity matrix, one could expect that both solutions are close (i.e.
the difference between both solutions is expected to be small compared with the error due to the noise).

4.4 Code implementing a Monte Carlo simulation for comparing tr(ΣerLS
) and tr(Σ(eLS)r)

The following MatLab/Octave code (function “func trace SigmaA SigmaB.m”) generates random matrices Rs, ΣnA
and Vr with

configurable sizes according to J and Jr, and compares the traces of the error covariance matrices tr(ΣerLS
) and tr(Σ(eLS)r) for a

number of repetitions. In order to allow Rs to be close to a spherical matrix, a configuration parameter “White K” is included (if
the parameter is set to 0, Rs is random; as the parameter increases, Rs is closer to a spherical matrix, i.e. with more homogeneous
eigenvalues).

The function can be run with the script “script trace SigmaA SigmaB.m”, also provided below, which configures the parameters
and call the function for several sizes of the subspace. Figure 1 includes some histograms of the trace ratio generated with this code.
As observed, the trace ratio is usually smaller than one, but not always.

10

%%%
% func_trace_SigmaA_SigmaB.m
% MatLab/Octave function for comparing the traces of the covariance matrices SigmaA and SigmaB associated to the
% error for these cases:
% * Solution A: LS deconvolution and then subspace projection
% * Solution B: subspace-constrained LS deconvolution
% SigmaA = V1*inv(Rs) * SigNA * inv(Rs)*V1’
% SigmaB = inv(V1*Rs*V1’) * (V1*SigNA*V1’) * inv(V1*Rs*V1’)
% - Rs, SigNA symmetric, positive definite, JxJ matrices
% - V1 orthonormal projector, JrxJ matrix (with Jr<J) (V’ is transpose)
% This function generates random matrices Rs, V1, SigNA according to the configuration, computes SigmaA and SigmaB
% and computes the ratio tr(SigmaB)/tr(SigmaA). The process is repeated acording to the parameter Nrep, and a
% histogram of the trace ratio is provided. The probability P(tr(SigmaB)>tr(SigmaA)) and the trace-ratio distribution
% are provided as output parameters
%%%
% Arguments:
% J and Jr: number of dimensions of the original/reduced repres. space
% Nrep: number of repetitions in the simulation
% White_K: a matrix White_K*I (identity) is added to the random Rs (as White_K is larger, Rs is closer to spherical).
%%%
function [p,Tr_ratio]=func_trace_SigmaA_SigmaB(J,Jr,Nrep,White_K)

Tr_ratio=zeros(Nrep,1); % for saving the trace ratio of each case
for n=1:Nrep

if mod(n,1000)==0, fprintf(’n=%d of %d\n’,n,Nrep); end;
% generation of random Rs and SigNA (symmetric and positive definite):
Rs=func_matrix_covar(J); SigNA=func_matrix_covar(J);
Rs=Rs+eye(J)*White_K; % as White_K larger, Rs closer to spherical
% generation of randon V1, (Jr x J) orthonormal projector to subspace:
V1=func_matrix_ON(J); V1=V1(1:Jr,:);
% SigmaA = V1*inv(Rs) * SigNA * inv(Rs)*V1’
A = V1/Rs; % efficient implementation of A = V1*inv(Rs);
SigmaA = A*(SigNA*A’);
% SigmaB = inv(V1*Rs*V1’) * (V1*SigNA*V1’) * inv(V1*Rs*V1’)
Rsr = V1*(Rs*V1’); SigNAr=V1*(SigNA*V1’); % Rsr = V1*Rs*V1’; SigNAr = V1*SigNA*V1’;
SigmaB=(Rsr\SigNAr)/Rsr; % efficient implementation of SigmaB=inv(B)*SigNAr*inv(B);
% trace ratio
ratio = trace(SigmaB)/trace(SigmaA); Tr_ratio(n)=ratio;

end
figure(1); clf; hist(Tr_ratio,40);
xlabel(’tr(\Sigma_B)/tr(\Sigma_A)’); ylabel(’number of cases’); grid on;
p=sum(Tr_ratio>1)/Nrep; % pci=sqrt(p*(1-p)/Nrep)*1.96; pci: 95% confidence interval of p
result=sprintf(’J=%d Jr=%d Wh-K=%g N=%d p(trB>trA)=%f %%’,J,Jr,White_K,Nrep,p*100);
title(result); fprintf(’%s\n’,result);
end
%%%
function M=func_matrix_covar(J) % random JxJ sym positive definite matrix
V=func_matrix_ON(J); % random orthonormal matrix
rs=abs(randn(J,1)); % random positive eigenvalues
M0=diag(rs); % corresponding diagonal matrix (posit defin)
M=V*(M0*V’); % rotated with V: symm. posit. definite.
end
%%%
function V=func_matrix_ON(J) % provides a random JxJ orthonormal matrix V
A0=randn(J); A0=A0+A0’; % random symmetric matrix
[V,˜]=eig(A0); % the eigenvectors are an Orthonormal basis
end
%%%

%%%
% script_trace_SigmaA_SigmaB.m
% MatLab/Octave script using the function: func_trace_SigmaA_SigmaB(J,Jr,Nrep,White_K) to compare the traces of
% SigmaA and SigmaB defined as:
% SigmaA = V1*inv(Rs) * SigNA * inv(Rs)*V1’
% SigmaB = inv(V1*Rs*V1’) * (V1*SigNA*V1’) * inv(V1*Rs*V1’)
% for different configurations, using "func_trace_SigmaA_SigmaB()"
%%%
clear;
Nrep=10000; White_K=0.8; lim_x=0.6;
for Jr=1:4

func_trace_SigmaA_SigmaB(8,Jr,Nrep,White_K);
figure(1); xlim([0 2]); a1=gca;
f2=figure(Jr+10); clf; copyobj(a1,f2); close(1);

end
%%%

11

Figure 1: Histograms of the trace ratio tr(ΣerLS
)/ tr(Σ(eLS)r) for random Rs, ΣnA

and Vr matrices simulated with the function
“func trace SigmaA SigmaB.m”. The probability of observing cases where tr(ΣerLS

) > tr(Σ(eLS)r) is indicated.

12

5 Code implementing the LS, LS-R and SC-LS procedures
The three criteria for least squares deconvolution (LS, LS-R and SC-LS) have been implemented as MatLab/Octave functions, either
with matrix division (as proposed in the RSLSD algorithm) or with the iterative estimation (as proposed in the IRSA algorithm).
Therefore, 6 MatLab/Octave functions have been prepared:

• Function “RSLSD LS.m” (conventional LS deconvolution implemented with matrix division)

• Function “IRSA LS.m” (conventional LS deconvolution implemented with iterative estimation)

• Function “RSLSD LSR.m” (LS deconvolution implemented with matrix division, and LDFDS-based dimensionality reduction)

• Function “IRSA LSR.m” (LS deconvolution implemented with iterative estimation, and LDFDS-based dimensionality reduc-
tion)

• Function “RSLSD SCLS.m” (subspace-constrained LS deconvolution implemented with matrix division)

• Function “IRSA SCLS.m” (subspace-constrained LS deconvolution implemented with iterative estimation)

The code is provided in the next sections. The input of these functions are the EEG, the trigger vector (a list of the sample
indexes corresponding to the beginning of each event in the evoked potential experiment) and some other parameters depending on
the particular implementation (the length of the response J in the case of LS; the Vr transformation in the case of LS-R or SC-LS;
the maximum number of iterations and convergence criterion in the case of IRSA estimations). The output of these functions are
the estimated response (in the original representation space in the case of LS, in the reduced representation space in the case of
LS-R or SC-LS). The functions also provide the execution time in the case of the RSLSD implementations. In the case of the IRSA
implementation, in addition, the execution time per iteration, the convergence parameter α and the required number of iterations are
also provided. The functions “RSLSD LS.m” and “IRSA LS.m” are similar to those presented in [4], but including an optimization
in the initialization: some computations are performed with 32-bit fixed-point precision (instead of 64-bit floating-point). This does
not affect the accuracy, since the EEG is a digitized signal represented as a 16-bit fixed-point integer (and is strongly affected by the
background noise, significantly greater than the quantization noise); additionally, the stimulation signal can be accurately represented
with 1-bit fixed-point precision. This optimization saves around 10 seconds in the execution time of the complete test (far all the ISI
configurations).

In addition to these functions, the code of the function providing the LDFDS transformation from the original representation to
the reduced representation, Vr, is also included (function “Basis LinLog RRC.m”). This function was proposed and described in
detail in [5].

A MatLab/Octave script providing a demonstration using these functions is also included (“script simulation SCLSDec.m”). The
script reads a binary file with an AEP response to be used in the simulations. A noisy EEG is synthesized according to the configu-
ration of the script (ISI configuration, number of stimuli, amplitude of the noise, length of the response, etc.) and the deconvolution
is performed according to the different methods. The script provides several figures (with the response used as reference, the syn-
thesized noisy EEG and the AEP estimations obtained with the different deconvolution procedures) and some results related to the
quality of the AEP estimations and the execution time.

The functions, together with the script, a binary file with the reference AEP response used for the simulations and a “Readme.txt”
file are provided within a directory, allowing the readers to perform their simulations according to different configurations. In order
to run the simulation, the script must be run with MatLab or Octave in the directory where the functions, the script and the binary file
are stored. The script provides the results in the command-line, as well as the output figures.

The results and the figure with the estimated AEPs are reported at the end of this section for one execution of the script. Since the
simulation includes the addition of random noise, and since the execution time depends on the computational load of the computer
where the simulation is executed, the results provided by the script fluctuate for each simulation.

13

5.1 Function “RSLSD LS.m” (conventional LS, with matrix division)

%%%
% function [xi ,t_run] = RSLSD_LS(y,m,J)
% Randomized Stimulation with Least Squares Deconvolution: direct
% deconvolution (infinite iterations) with matrix inversion
% xi = Rsˆ(-1) z0 xi = Rs\z0;
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% J (Length of the averaging window in samples)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2021
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%
function [xi ,t_run] = RSLSD_LS(y,m,J)
% Initialization
tic; % time-stamp beginning of function
N=length(y);
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0_int=int32(zeros(J,1)); rs0_int=uint32(zeros(J,1));
s(N,1) = uint8(0); m=cast(m,’uint32’); s(m)=1; % stimulation signal
gain=1e6/max(abs(y));
y1=int32(y*gain);
for j=1:J

idx=j+m-1;
z0_int(j)=sum(y1(idx)); % cross-corr between EEG and stim. signal
rs0_int(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=double(z0_int)/Es/gain; % first averaged response
rs0=double(rs0_int)/Es; % normalized autocorrelation stim. signal
Rs=zeros(J,J);
for i=1:J

j=1:J; idx=abs(j-i)+1;
Rs(i,j)=rs0(idx); % autocorrelation matrix

end
xi=(Rs\z0); % direct deconvolution by matrix inversion
t_run=toc; % total execution time
return;
%%%

14

5.2 Function “IRSA LS.m” (conventional LS, with iterative estimation)

%%%
% function [xi ,t_run,t_iter,Niter,alpha] = IRSA_LS(y,m,I,SNR,J,OUTPUT)
% IRSA, matrix implementation with matrix product in fft domain
% (this is possible because Rs is a Toeplitz-symmetric matrix)
% Fast version: alpha / converg. criterion optimized (120dB num. error)
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% I (maximum number of iterations)
% SNR (SNR for numerical error in convergence criterion)
% J (Length of the averaging window in samples)
% OUTPUT (flag for presenting results at iterations)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% t_iter (time required for each iteration)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2021
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%
function [xi ,t_run,t_iter,Niter,alpha] = IRSA_LS(y,m,I,SNR,J,OUTPUT)
% Initialization
tic; % time-stamp beginning of function
N=length(y);
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0_int=int32(zeros(J,1)); rs0_int=uint32(zeros(J,1));
s(N,1) = uint8(0); m=cast(m,’uint32’); s(m)=1; % stimulation signal
gain=1e6/max(abs(y));
y1=int32(y*gain);
for j=1:J

idx=j+m-1;
z0_int(j)=sum(y1(idx)); % cross-corr between EEG and stim. signal
rs0_int(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=double(z0_int)/Es/gain; % first averaged response
rs0=double(rs0_int)/Es; % normalized autocorrelation stim. signal
RS=real(fft([rs0; 0; flipud(rs0(2:end))])); % FT of autocorrelation
Z0=fft([z0; zeros(J,1)]); Zi=Z0; Xi=zeros(2*J,1); % FT of z0, zi and xi
lambda_1=max(RS(1:2:J)); lambda_2=max(RS(2:2:J));
max_mu=0.5*(lambda_1+lambda_2); % bound for max eigenvalue of autoc. matrix
alpha=1.9/max_mu; % selected alpha (close to maximum value)
ener_z0=Z0’*Z0; % energy of RSA solution used for convergence
thr_conv=10ˆ(-SNR/20); % threshold for convergence criterion
% Iterations
t_iter=toc; % time-stamp for iterations
for i=1:I % loop for iterations

Xi=Xi+alpha*Zi; % AEP estimate in freq. domain
P=RS.*Xi; % matrix product in freq. domain
P1=real(ifft(P)); % this two lines are important in order to truncate
P=fft([P1(1:J); zeros(J,1)]); % the estimation of the P in time domain
Zi=Z0-P;
ener_zi=Zi’*Zi; % energy of the correction at current it.
ratio=sqrt(ener_zi/ener_z0); % ratio of correction vs initialization
if ratio<thr_conv, break; end; % convergence criterion (loop broken)
if OUTPUT==1, fprintf(’It.%d: ratio:%.16f alpha=%.5f\n’,i,ratio,alpha); end;

end
Niter=i;
xi=real(ifft(Xi)); % the result is transformed to time domain
xi=xi(1:J); % ...and truncated to remove the non-causal part
t_run=toc; % total execution time
t_iter=(t_run-t_iter)/i; % execution time for each iteration
return;
%%%

15

5.3 Function “RSLSD LSR.m” (LS and LDFDS reduction, with matrix division)

%%%
% function [xi ,t_run] = RSLSD_LSR(y,m,V)
% Randomized Stimulation with Least Squares Deconvolution: direct
% deconvolution with matrix inversion
% The AEP is transformed to the reduced representation space given by V
% xi = Rsˆ(-1) z0 xi = Rs\z0;
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% V orthonormal transform. for reduced representation
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2021
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%
function [xi_ssp ,t_run] = RSLSD_LSR(y,m,V)
% Initialization
tic; % time-stamp beginning of function
[˜,J]=size(V);
N=length(y);
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0_int=int32(zeros(J,1)); rs0_int=uint32(zeros(J,1));
s(N,1) = uint8(0); m=cast(m,’uint32’); s(m)=1; % stimulation signal
gain=1e6/max(abs(y));
y1=int32(y*gain);
for j=1:J

idx=j+m-1;
z0_int(j)=sum(y1(idx)); % cross-corr between EEG and stim. signal
rs0_int(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=double(z0_int)/Es/gain; % first averaged response
rs0=double(rs0_int)/Es; % normalized autocorrelation stim. signal
Rs=zeros(J,J);
for i=1:J

j=1:J; idx=abs(j-i)+1;
Rs(i,j)=rs0(idx); % autocorrelation matrix

end
xi=(Rs\z0); % direct deconvolution by matrix inversion
xi_ssp=V*xi; % projection
t_run=toc; % total execution time
return;
%%%

16

5.4 Function “IRSA LSR.m” (LS and LDFDS reduction, with iterative estimation)

%%%
% function [xi ,t_run,t_iter,Niter,alpha] = IRSA_LSR(y,m,V,I,SNR,J,OUTPUT)
% IRSA, matrix implementation with matrix product in fft domain
% (this is possible because Rs is a Toeplitz-symmetric matrix)
% Fast version: alpha / converg. criterion optimized (120dB num. error)
% The AEP is transformed to the reduced representation space given by V
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% V orthonormal transform. for reduced representation
% I (maximum number of iterations)
% SNR (SNR for numerical error in convergence criterion)
% J (Length of the averaging window in samples)
% OUTPUT (flag for presenting results at iterations)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% t_iter (time required for each iteration)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2021
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%
function [xi_ssp ,t_run,t_iter,Niter,alpha] = IRSA_LSR(y,m,V,I,SNR,OUTPUT)
% Initialization
tic; % time-stamp beginning of function
[˜,J]=size(V);
N=length(y);
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0_int=int32(zeros(J,1)); rs0_int=uint32(zeros(J,1));
s(N,1) = uint8(0); m=cast(m,’uint32’); s(m)=1; % stimulation signal
gain=1e6/max(abs(y));
y1=int32(y*gain);
for j=1:J

idx=j+m-1;
z0_int(j)=sum(y1(idx)); % cross-corr between EEG and stim. signal
rs0_int(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=double(z0_int)/Es/gain; % first averaged response
rs0=double(rs0_int)/Es; % normalized autocorrelation stim. signal
RS=real(fft([rs0; 0; flipud(rs0(2:end))])); % FT of autocorrelation
Z0=fft([z0; zeros(J,1)]); Zi=Z0; Xi=zeros(2*J,1); % FT of z0, zi and xi
lambda_1=max(RS(1:2:J)); lambda_2=max(RS(2:2:J));
max_mu=0.5*(lambda_1+lambda_2); % bound for max eigenvalue of autoc. matrix
alpha=1.9/max_mu; % selected alpha (close to maximum value)
ener_z0=Z0’*Z0; % energy of RSA solution used for convergence
thr_conv=10ˆ(-SNR/20); % threshold for convergence criterion
% Iterations
t_iter=toc; % time-stamp for iterations
for i=1:I % loop for iterations

Xi=Xi+alpha*Zi; % AEP estimate in freq. domain
P=RS.*Xi; % matrix product in freq. domain
P1=real(ifft(P)); % this two lines are important in order to truncate
P=fft([P1(1:J); zeros(J,1)]); % the estimation of the P in time domain
Zi=Z0-P;
ener_zi=Zi’*Zi; % energy of the correction at current it.
ratio=sqrt(ener_zi/ener_z0); % ratio of correction vs initialization
if ratio<thr_conv, break; end; % convergence criterion (loop broken)
if OUTPUT==1, fprintf(’It.%d: ratio:%.16f alpha=%.5f\n’,i,ratio,alpha); end;

end
Niter=i;
xi=real(ifft(Xi)); % the result is transformed to time domain
xi=xi(1:J); % ...and truncated to remove the non-causal part
xi_ssp=V*xi; % projection
t_run=toc; % total execution time
t_iter=(t_run-t_iter)/i; % execution time for each iteration
return;
%%%

17

5.5 Function “RSLSD SCLS.m” (subspace constrained LS, with matrix division)

%%%
% function [xi_ssp ,t_run] = RSLSD_SCLS(y,m,V)
% Randomized Stimulation with Least Squares Deconvolution
% Subspace Constrained version (fast implementation)
% Direct deconvolution with matrix inversion
% Rs_ssp = V Rs V’ z0_ssp = V z0
% xi_ssp = Rs_sspˆ(-1) z0_ssp xi_ssp = Rs_ssp\z0_ssp;
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% V (Transformation matrix, Jred x J components)
% Output parameters: xi_ssp (AEP estimate in the subspace representation)
% t_run (time required for algorithm execution)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2021
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%
function [xi_ssp ,t_run] = RSLSD_SCLS(y,m,V)
% Initialization
tic; % time-stamp beginning of function
[Jred,J]=size(V); % dimensions of the representation space and subspace
N=length(y);
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0_int=int32(zeros(J,1)); rs0_int=uint32(zeros(J,1));
s(N,1) = uint8(0); m=cast(m,’uint32’); s(m)=1; % stimulation signal
gain=1e6/max(abs(y));
y1=int32(y*gain);
for j=1:J

idx=j+m-1;
z0_int(j)=sum(y1(idx)); % cross-corr between EEG and stim. signal
rs0_int(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=double(z0_int)/Es/gain; % first averaged response
rs0=double(rs0_int)/Es; % normalized autocorrelation stim. signal
rs0ext=[flipud(rs0(2:end)); rs0]; % extended autocorrelation
% Estimation of the matrix to be inverted Rs_ssp
Aux=zeros(J,Jred);
for i=1:Jred

a=conv(V(i,:),rs0ext,’same’);
Aux(:,i)=a’;

end
Rs_ssp=V*(Aux);
% Subspace constrained deconvolution
z0_ssp=V*z0;
xi_ssp=(Rs_ssp\z0_ssp);
t_run=toc; % total execution time
return;
%%%

18

5.6 Function “IRSA SCLS.m” (subspace constrained LS, with iterative estimation)

%%%
% function [xi_ssp ,t_run, t_iter] = IRSA_SCLS(y,m,V,I,SNR,OUTPUT)
% IRSA, matrix implementation
% Fast version: alpha / converg. criterion optimized (120dB num. error)
% Subspace Constrained version:
% Subspace version of Rs and z0 used in the recursion
% Rs_ssp = V Rs V’ z0_ssp = V z0
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% V (Transformation matrix, Jred x J components)
% I (maximum number of iterations)
% SNR (SNR for numerical error in convergence criterion)
% OUTPUT (flag for presenting results at iterations)
% Output parameters: xi_ssp (AEP estimate in the subspace representation)
% t_run (time required for algorithm execution)
% t_iter (time required for each iteration)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2021
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%
function [xi_ssp ,t_run, t_iter, Niter, alpha] = IRSA_SCLS(y,m,V,I,SNR,OUTPUT)
% Initialization
tic; % time-stamp beginning of function
[Jred,J]=size(V); % dimensions of the representation space and subspace
N=length(y);
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0_int=int32(zeros(J,1)); rs0_int=uint32(zeros(J,1));
s(N,1) = uint8(0); m=cast(m,’uint32’); s(m)=1; % stimulation signal
gain=1e6/max(abs(y));
y1=int32(y*gain);
for j=1:J

idx=j+m-1;
z0_int(j)=sum(y1(idx)); % cross-corr between EEG and stim. signal
rs0_int(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=double(z0_int)/Es/gain; % first averaged response
rs0=double(rs0_int)/Es; % normalized autocorrelation stim. signal
rs0ext=[flipud(rs0(2:end)); rs0]; % extended autocorrelation
% estimation of eigenvalues of Rs and convergence parameter alpha
RS=real(fft([rs0; 0; flipud(rs0(2:end))])); % FT of autocorrelation
lambda_1=max(RS(1:2:J)); lambda_2=max(RS(2:2:J));
max_mu=0.5*(lambda_1+lambda_2); % bound for max eigenvalue of autoc. matrix
alpha=1.9/max_mu; % selected alpha (close to maximum value)
% Estimation of the matrix to be inverted Rs_ssp
Aux=zeros(J,Jred);
for i=1:Jred

a=conv(V(i,:),rs0ext,’same’);
Aux(:,i)=a’;

end
Rs_ssp=V*(Aux);
% Subspace constrained deconvolution
z0_ssp=V*z0;
ener_z0=z0_ssp’*z0_ssp; % energy of RSA solution used for convergence
thr_conv=10ˆ(-SNR/20); % threshold for convergence criterion
% Iterations
xi=zeros(Jred,1); % initial estimation of the response
zi=z0_ssp;
t_iter=toc; % time-stamp for iterations
for i=1:I % loop for iterations

xi=xi+alpha*zi; % AEP estimate
zi=z0_ssp-Rs_ssp*xi; % Average residual estimation
ener_zi=zi’*zi; % energy of the correction at current iteration
ratio=sqrt(ener_zi/ener_z0); % ratio of correction vs initialization
if ratio<thr_conv, break; end; % convergence criterion (loop broken)
if OUTPUT==1

fprintf(’It.%d: ratio:%.16f alpha=%.5f\n’,i,ratio,alpha);
end

end
Niter=i;
xi_ssp=xi;
t_run=toc; % total execution time
t_iter=(t_run-t_iter)/i; % execution time for each iteration
return;
%%%

19

5.7 Function “Basis LinLog RRC.m” (transformation from original representation to reduced sub-
space)

%%%
% function [V] = Basis_LinLog_RRC(J,Kdec) (revised Nov-2019)
%
% Basis_LinLog_RRC() constructs an orthonormal basis of functions (V),
% uniformly distributed in the lin-log-scaled time, with one function
% per sample at small latency and Kdec functions per decade at large
% latency.
% Root-raised-cosine (RRC) function is used for each element of the basis.
% This function is used in digital communications because it provides
% an appropriate limitation of the bandwidth with a relatively short
% duration in the impulsive response.
% The resulting functions are orthonormalized with Gram-Schmidt.
% The resulting basis is contained in a [J_red,J] matrix, with J_red<J.
% The matrix V contains J_red rows, each one with a vector of J components.
% The application of the basis V to a function x (V*x) provides a
% representation in a reduced representation space. The application of the
% transpose V’ to the reduced representation (V’*(V*x)) provides a
% reconstruction from the reduced representation into the original time
% representation that is equivalent to a latency-dependent low-pass
% filtering of the response.
%
% INPUT: [J] Number of samples in the original representation
% [Kdec] Number of functions per decade
% OUTPUT: [V] Orthonormal basis of functions provided as a matrix
%
% Example: V = Basis_LinLog_RRC(500,25);
%
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama (2019)
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%
function [V] = Basis_LinLog_RRC(J,Kdec)
%%%% Check for correct input of data
if(J<40||J<Kdec||Kdec<5||Kdec>500)

error(’Error: V=Basis_LinLog_RRC(J,Kdec); (J>=40,J>=Kdec,5<=Kdec<=500)’)
end
%%%% Initialization of variables
j=0:(J-1); % Time-axis, linear scale (in samples)
jr_samp=Kdec*log10(j*log(10)/Kdec+1); % Time-axis, compressed scale
jr=0:(jr_samp(end)-1); % Samples in compressed scale (functions in basis)
K=length(jr); % K: Number of functions of the base
%%%% Function template: raised cosine function
Npt_sym=40; % number of points per symbol period in raised-cosine
N_per=14.6; % number of periods to each side of the raised-cosine
alpha=0.20; % roll-off factor (low-pass filtering effect)
[h,tau]=sr_rcos(Npt_sym,N_per,alpha);
%%%% Set of functions of the base before amplitude normalization (V0)
V0 = zeros(length(jr),length(j)); % V0: K functions with J*5 samples
for k=1:K

% Functions are placed at jr(k) latency (linearly distr in compr. scale)
V0(k,:)=interp1(tau,h,jr(k)-jr_samp,’linear’,0);

end
%%%% Gram-Schmidt orthonormalization
V=OrthoNorm_Gauss_fast(V0,K);
return;
%%%
% function [h,tau] = sr_rcos(Npt_sym,n_per,alpha)
%
% This function prepares the samples of a square root raised cosine filter
% See Proakis, J. (1995). Digital Communications. McGraw-Hill Inc. or
% https://en.wikipedia.org/wiki/Root-raised-cosine_filter)
% Proakis and wikipedia formulas are identical except for a factor Ts
% In this implementation Ts=1;
% Input parameters:

(continue in the next page....)

20

% Npt_sym samples per symbol (or symbol period expressed in samples)
% n_per number of periods to the left and to the right of maximum
% alpha roll off factor (between 0 and 1)
% output:
% h impulsive response
% tau normalized time, t/Ts
% example:
% [h,tau]=sr_rcos(20,6,0.35)
function [h,tau] = sr_rcos(Npt_sym,N_per,alpha)
if alpha == 0, alpha = realmin; end
tau = (-N_per:1/Npt_sym:N_per); h=zeros(size(tau));
% (A) response for t=0:
cond1=tau==0;
h(cond1)=1+alpha*(4/pi-1);
% (B) response for denominator=0:
denom0=1-(4.*alpha.*tau).ˆ2;
cond2=abs(denom0) < sqrt(eps);
phi=pi/(4*alpha);
h(cond2)=alpha/(sqrt(2))*((1+2/pi)*sin(phi) + (1-2/pi)*cos(phi));
% (C) response for all the other samples:
cond3=˜(cond2|cond1);
t1=tau(cond3);
phi1=pi*t1*(1-alpha); phi2=pi*t1*(1+alpha);
denom=pi*t1.*denom0(cond3);
h(cond3)=(sin(phi1) + 4*alpha*t1.*cos(phi2))./(denom);
return;
%%%
% V=OrthoNorm_Gauss_fast(V0,K)
% Orthonormalization, Gauss Method (fast implementation)
% Input parameters:
% V0 matrix with vectors to be orthonormalized
% K number of vectors
% Output paramter:
% V matrix with orthonormalized vectors
function V=OrthoNorm_Gauss_fast(V0,K)
% prenormalization
for k=1:K, v=V0(k,:); V0(k,:)=v/sqrt(dot(v,v)); end;
P=V0*V0’; % Gaussian elimination of [V0*V0’ | V] = [P | V0]
M_all=eye(K); % Matrix operations to be applied to P for Gaussian elimination
for j1=1:K-1

M_tmp=eye(K);
for j2=(j1+1):K

M_tmp(j2,j1)=-P(j2,j1); M_tmp(j2,j2)=P(j1,j1);
P(j2,:)=P(j2,:)*P(j1,j1)-P(j1,:)*P(j2,j1);

end
M_all=M_tmp*M_all;
M_tmp=eye(K);
M_tmp(j1+1,j1+1)=1/P(j1+1,j1+1);
M_all=M_tmp*M_all;
P(j1+1,:)=P(j1+1,:)/P(j1+1,j1+1);

end
V=M_all*V0; % Matrix operations applied to V0
% Final normalization
for k=1:K, v=V(k,:); v=v/sqrt(dot(v,v)); V(k,:)=v; end;
%%%

21

5.8 Script “script simuation SCLSDec.m” (comparison of different deconvolution algorithms)

%%%
% script_simuation_SCLSDec.m
%%%
% This script compares different criteria and implementations for least
% squares (LS) deconvolution:
% * conventional LS deconvolution (LS),
% * LS deconv. transformed to the reduced representation space (LS-R)
% * and subspace-constrained LS deconv. (SC-LS)
% The criteria are implemented with matrix division (RSLSD) and with
% iterative estimation (IRSA).
% The execution of this script requires the following functions:
% Basis_LinLog_RRC.m Provides the transformation V for the subspace
% IRSA_LS.m IRSA (iterative) implementation of LS
% IRSA_LSR.m IRSA (iterative) implementation of LS-R
% IRSA_SCLS.m IRSA (iterative) implementation of SC-LS
% RSLSD_LS.m RSLSD (matrix div.) implementation of LS
% RSLSD_LSR.m RSLSD (matrix div.) implementation of LS-R
% RSLSD_SCLS.m RSLSD (matrix div.) implementation of SC-LS
% And additionally, a response used for the simulation
% response_30_60_subj1.mat
% A noisy EEG is synthesized from the reference response according to the
% script configuration; the different deconvolution methods are compared.
% It requires signal processing toolbox
% For Octave users, run: pkg load signal
%%%
clear,clc;

%% Configuration parameters for simulation
fs=14700; % sampling rate 14700 Hz
NOISE_GAIN=4; % noise level
%J=round(1000e-3*fs); % length of the response 14700, for 1 second
J=round(500e-3*fs); % length of the response: 7350 for 500 ms
isi_min=30e-3; % 30 ms
isi_max=60e-3; % 60 ms
%n_stim=15200; % number of stimuli 15200
n_stim=500; % number of stimuli 500
OUTPUT_IRSA=0; % flag for reporing algorithm evolution
CONVERG_CRITERION=120; % convergence criterion for IRSA_matrix_fft_fast, 120 dB
Imax=10000; % maximum number of iterations for IRSA
Kdec=40; % resolution of the LDFDS transformation (samples/decade)
V=Basis_LinLog_RRC(J,Kdec); % LDFDS transformation for subspace

%% Stimulation sequence
isi=rand(n_stim,1)*(isi_max-isi_min)+isi_min; % random distribution of isi, uniform
stim_ind = round(cumsum(isi)*fs); % indexes of stimulus start
N=max(stim_ind)+fs; % number of samples
s=zeros(N,1);
s(stim_ind)=1;

%% Response to be used in simulation (response to be estimated)
load(’response_30_60_subj1.mat’);
x(J+1)=0; x=x(1:J); % this guarantees a response length equal to J
x=V’*(V*x); % LDFDS applied to x to remove components out of the subspace
t_plot=(0:(J-1))/fs;
figure(1)
semilogx(t_plot*1000,x); xlabel(’time (ms)’); ylabel(’amplitude’);
title(’Response to be estimated (time log-scaled)’);
grid on; xlim([0.1 1000*J/fs]);
figure(2)
plot(t_plot*1000,x); xlabel(’time (ms)’); ylabel(’amplitude’);
title(’Response to be estimated (time in linear scale)’);
grid on; xlim([0 1000*J/fs]);

(continue in the next page....)

22

%% Simulation of EEG: y=s*x+noise
y0=filter(x,1,s);
y=y0+randn(size(y0))*std(y0)*NOISE_GAIN;
SNR_EEG=10*log10(var(y0)/var(y-y0));
figure(3)
t_plotN=(0:(N-1))/fs;
figure(3)
plot(t_plotN,y); xlabel(’time (s)’); ylabel(’amplitude’);
title(sprintf(’EEG (SNR-EEG: %.2f dB)’,SNR_EEG))
figure(4)
plot(t_plotN,y); xlim([0 1])
xlabel(’time (s)’); ylabel(’amplitude’);
title(sprintf(’EEG (first second) (SNR-EEG: %.2f dB)’,SNR_EEG))

%% Deconvolution (with predefined alpha and number of iterations)
fprintf(’Running RSLSD_LS....\n’)
[x1,t_run1] = RSLSD_LS(y,stim_ind,J);
fprintf(’Running IRSA_LS....\n’)
[x2,t_run2] = IRSA_LS(y,stim_ind,Imax,CONVERG_CRITERION,J,OUTPUT_IRSA);
fprintf(’Running RSLSD_LSR....\n’)
[x3,t_run3] = RSLSD_LSR(y,stim_ind,V);
fprintf(’Running IRSA_LSR....\n’)
[x4,t_run4] = IRSA_LSR(y,stim_ind,V,Imax,CONVERG_CRITERION,OUTPUT_IRSA);
fprintf(’Running RSLSD_SCLS....\n’)
[x5,t_run5] = RSLSD_SCLS(y,stim_ind,V);
fprintf(’Running IRSA_SCLS....\n’)
[x6,t_run6] = IRSA_SCLS(y,stim_ind,V,Imax,CONVERG_CRITERION,OUTPUT_IRSA);
fprintf(’\n--------END OF IRSA/RSLSD ALGORITHMS---------------\n\n’)

%% Results: figure
figure(5)
x3=V’*x3; x4=V’*x4; x5=V’*x5; x6=V’*x6; % transformed to original representation
semilogx(t_plot*1000,[x+3.5 x6+2.5 x5+2 x4+1.5 x3+1 x2+0.5 x1]);
xlabel(’time (ms)’); ylabel(’amplitude’);
title(’Estimated responses’);
legend(’Response (ref.)’,’SC-LS iter.’,’SC-LS mat.div.’, ...

’LS-R iter.’,’LS-R mat.div.’,’LS iter.’,’LS mat.div.’);
legend(’Location’,’eastoutside’);
grid on; xlim([0.2 1000*J/fs]);

%% Results: difference among responses
% SNR using the clean response as reference
SNR1_a=10*log10(var(x)/var(x1-x)); SNR2_a=10*log10(var(x)/var(x2-x));
SNR3_a=10*log10(var(x)/var(x3-x)); SNR4_a=10*log10(var(x)/var(x4-x));
SNR5_a=10*log10(var(x)/var(x5-x)); SNR6_a=10*log10(var(x)/var(x6-x));
% SNR using SC-LS mat.div. (RSLSD_SCLS) as reference
SNR1_b=10*log10(var(x6)/var(x1-x6)); SNR2_b=10*log10(var(x6)/var(x2-x6));
SNR3_b=10*log10(var(x6)/var(x3-x6)); SNR4_b=10*log10(var(x6)/var(x4-x6));
SNR5_b=10*log10(var(x6)/var(x5-x6));
fprintf(’SNR of estimated responses, using the clean response as reference:\n’)
fprintf(’ SC-LS iter.: %.5f dB\t\t SC-LS mat.div.: %.5f dB\n’,SNR6_a,SNR5_a)
fprintf(’ LS-R iter.: %.5f dB\t\t LS-R mat.div.: %.5f dB\n’,SNR4_a,SNR3_a)
fprintf(’ LS iter.: %.5f dB\t\t LS mat.div.: %.5f dB\n’,SNR2_a,SNR1_a)
fprintf(’SNR of estimated responses, using SC-LS iter. as reference:\n’)
fprintf(’ SC-LS mat.div.: %.5f dB\n’,SNR5_b)
fprintf(’ LS-R iter.: %.5f dB\t\t LS-R mat.div.: %.5f dB\n’,SNR4_b,SNR3_b)
fprintf(’ LS iter.: %.5f dB\t\t LS mat.div.: %.5f dB\n’,SNR2_b,SNR1_b)
fprintf(’Total execution time:\n’)
fprintf(’ SC-LS iter.: %.5f s\t\t SC-LS mat.div.: %.5f s\n’,t_run6,t_run5)
fprintf(’ LS-R iter.: %.5f s\t\t LS-R mat.div.: %.5f s\n’,t_run4,t_run3)
fprintf(’ LS iter.: %.5f s\t\t LS mat.div.: %.5f s\n’,t_run2,t_run1)

return

23

Figure 2: Output figure provided by the script “script simuation SCLSDec.m” with the estimated AEP responses. The figure includes
the clean AEP response used as reference for the simulations, and the LS, LS-R and SC-LS deconvolutions provided either with the
matrix division procedure (RSLSD) or the iterative procedure (IRSA).

5.9 Output of the script “script simuation SCLSDec.m”
The script provides some figures with the reference AEP response used for the simulation, a portion of the synthesized noisy EEG,
and the AEP estimations provided by the deconvolution procedures. Figure 2, generated by the script, represents the clean AEP
response used as reference for synthesizing the EEG in the simulations, and the AEP estimations provided by the different methods.
Since the LS-R and the SC-LS estimations provide the response x̂r in the reduced representation space, this figure represents the
LS-R and SC-LS estimations transformed to the original representation space, i.e. x̂ = V T

r x̂r.
The script also provides some results in the command line, including a SNR estimation using the clean AEP response as reference

(in order to evaluate the quality of the estimations), a SNR estimation using the SC-LS iterative estimation as reference (in order to
evaluate the differences among the deconvolution procedures) and the execution time. An example of the script output is provided
below:

SNR of estimated responses, using the clean response as reference:
SC-LS iter.: 27.22830 dB SC-LS mat.div.: 27.22909 dB
LS-R iter.: 27.17594 dB LS-R mat.div.: 27.17683 dB
LS iter.: 11.09427 dB LS mat.div.: 11.09429 dB

SNR of estimated responses, using SC-LS iter. as reference:
SC-LS mat.div.: 96.89309 dB
LS-R iter.: 45.92197 dB LS-R mat.div.: 45.92412 dB
LS iter.: 11.11060 dB LS mat.div.: 11.11060 dB

Total execution time:
SC-LS iter.: 0.24781 s SC-LS mat.div.: 0.23361 s
LS-R iter.: 0.90770 s LS-R mat.div.: 3.67420 s
LS iter.: 0.86884 s LS mat.div.: 3.73644 s

24

Figure 3: Power spectral density of the noise used for the simulations. The noise has a 3 dB pass-band in the range [1.5 - 800] Hz.
In the left panel, the frequency axis is logarithmically scaled; in the right panel, the frequency axis is in linear scale.

6 Complementary results: experiments with simulations

6.1 Description of the noise used for the simulations
The figure 3 represents the power spectral density of the noise used for the simulations. This is a band-pass noise, with a pass-band
[1.5 800] Hz, obtained from a white noise filtered with an appropriate 1st order Butterworth band-pass filter (the slope of the power
spectral density is +20 dB/decade at low frequencies, -20 dB/decade at high frequencies, and the response is flat in the pass-band, as
can be observed in the left panel of the figure).

6.2 Comparison of the estimations provided by the different deconvolution methods
In this section, the responses obtained with the different deconvolution methods in the simulation experiments are compared. The
figure 4 shows the AEP responses for one repetition of the simulation, including the clean AEP responses (used as reference), and
the LS, LS-R and SC-LS estimations. Responses corresponding to the different ISI configuration (from 480-960 ms to 15-30 ms)
are included. Since the LS-R and the SC-LS estimations provide the response x̂r in the reduced representation space, this figure
represents the LS-R and SC-LS estimations transformed to the original representation space, i.e. x̂ = V T

r x̂r. As can be observed,
the LS estimation is more affected by noise than the LS-R and SC-LS estimations, and the estimations provided by LS-R and SC-LS
are very similar.

Figure 5 represents the error observed for the LS (top), LS-R (center) and SC-LS (bottom) estimations, i.e. the difference between
the estimation and the reference (clean) response. The errors plotted in this figure corresponds to the estimations represented in the
figure 4. As can again be observed, the error is more important for the LS estimation than for the LS-R and SC-LS estimations, and
very similar between these two estimations.

In order to compare the LS, LS-R and SC-LS estimations, the difference between SC-LS and LS, and that between SC-LS and
LS-R have been plotted in figure 6. As observed, the SC-LS and the LS estimations are quite different, while the difference between
the SC-LS and the LS-R estimations is significantly smaller than the error affecting them (the figure in the center represents the
differences in the same scale, while the figure in the bottom represents a detail, with an appropriate scale). The error affecting the
SC-LS and LS-R estimations is more than 20 times larger than the difference between them (or equivalently, the difference is more
than 26 dB below the estimation error). This suggests that, regarding the quality of the estimated responses, both SC-LS and LS-R
provide results that are equivalent from a practical point of view.

25

Figure 4: AEP responses obtained in the simulations for one of the 100 repetitions. The figure includes the clean responses used
as reference, the LS estimations (conventional LS deconvolution in the original representation space), the LS-R estimations (by
applying the dimensionality reduction based on LDFDS to the LS estimation) and the SC-LS estimations (subspace-constrained LS
deconvolution).

26

Figure 5: Error for the LS (top), LS-R (center) and SC-LS (bottom) estimations obtained in the simulations for one repetition. Error
is obtained by subtracting the reference (clean) response to the estimations provided by each method.

27

Figure 6: Difference between the SC-LS and the LS estimations (top) and between the SC-LS and the LS-R estimations (center).
The plot in the bottom is a detail of the last comparison (note that the scale represents an amplitude of 0.1 µV).

28

6.3 Statistical characterization of the noise and the error
The statistical characterization of the error is obtained by transforming the covariance matrix of the noise Σn0

, according to the matrix
operations applied to the EEG signal y, in order to obtain the covariance matrix Σe of the error affecting the estimation. This requires
the estimation of the (N ×N) covariance matrix Σn0 , its transformation (with the averaging matrix Sk) into the (J × J) covariance
matrix of the averaged noise ΣnA

, and the manipulation of this matrix using Rs, its inverse, and the Vr matrices, according to the
equations (58), (60) and (62).

The manipulation of a (N × N) matrix is not practical with the typical lengths of an EEG (several million samples). However,
assumed that the noise is a stationary process, its covariance matrix is Toeplitz and therefore it can be represented with its covariance
function (or its autocorrelation function assumed it is a zero-mean process). Additionally, since the matrix S is a convolution matrix,
the product ΣnA

= Sk Σn0 S
T
k is also Toeplitz, and therefore ΣnA

can be represented from its autocorrelation function, which can
be estimated by convolution products involving the stimulation sequence and the autocorrelation function of the noise.

The figure 7 represents the autocorrelation function of the noise (corresponding to Σn0
, in the top) and that of the averaged noise

(corresponding to ΣnA
, in the bottom). These plots correspond to 1 of the 100 repetitions in the simulation experiments, and for the

15-30 ms ISI condition. The shape of the autocorrelation noise is consistent with the 1st order 1.5-800 Hz bandpass filtered white
noise used in the simulations. The shape of the averaged autocorrelation noise is consistent with the ISI interval of this example.
From the autocorrelation function of the averaged noise, a reasonable estimation of ΣnA

can be obtained, and this estimation can be
used for the estimation of the covariance matrix of the error Σe under the different approaches.

The figure 8 represents the diagonal of the Σe matrices and the response estimations corresponding to this example. In the case
of the LS estimation, the covariance matrix of the error is a (J × J) matrix, and the diagonal contains J components (14700 in this
example), as observed in the plot in the top. The trace is 40.38 µV 2 in this case. In the case of the LS-R and SC-LS estimations, the
covariance matrices are (Jr×Jr) matrices and the diagonals contain 117 components. The traces are 9.44 and 9.39 µV 2, respectively,
for LS-R and SC-LS, as indicated in the plot in the center. These estimations of the expected energy of the error are significantly
smaller than that for the LS estimation. The traces are, in addition, very similar for LS-R and SC-LS, even though slightly smaller
for SC-LS (i.e. the expected error energy is slightly smaller for SC-LS than for LS-R).

The plot in the bottom represents the reference AEP response, as well as the LS, LS-R and SC-LS estimations. The legend
includes the SNR corresponding to each estimation. The SNRs have been calculated either from the traces (i.e. using the expected
energy error from the trace of the corresponding Σe covariance matrices) or directly from the signals (i.e. using the error signal
calculated as the difference between the estimated and the reference signals). In this example, the SNRs estimated from the traces
are 11.59, 17.91 and 17.93 dB for LS, LS-R and SC-LS, respectively. The SNRs directly measured from the signals are 11.08, 16.48
and 16.57 dB, respectively for LS, LS-R and SC-LS. These results show the consistency between the SNR estimations (or the error
energy estimations) derived either from the traces of the error covariance matrices or directly measured from the signals.

29

Figure 7: Autocorrelation functions of the noise (top) and the averaged noise (bottom) estimated for one of the 100 repetitions in the
simulation experiments, for the 15-30 ms ISI condition. The plots in the right side include a detail of the autocorrelation functions.

30

Figure 8: Diagonal of the covariance matrix of the error for the LS estimation (top) and for the LS-R and SC-LS estimations (center).
The traces of these covariance matrices are also indicated. The reference response, and the estimations provided by the LS, LS-R and
SC-LS estimations are represented in the bottom. The legend includes the SNR of each solution estimated from the expected value
of the error energy (using the traces) or directly measured from the responses (using the difference between the estimated response
and the reference response). These plots corresponds to the example in the previous figures, for ISI configuration 15-30 ms.

31

Table 1: SNR mean (standard deviation in parenthesis) in dB, for the LS, LS-R and SC-LS estimations, obtained in simulations with
100 repetitions for each ISI condition. The SNR measurements are based on the observed error energy (top table) and the expected
error energy (using the trace of the covariance matrix of the error, bottom table).

(A) SNR based on measured error energy
ISI LS LS-R SC-LS
condition mean (std.dev) dB mean (std.dev) dB mean (std.dev) dB
480-960 ms 9.335 (0.101) 23.288 (0.624) 23.285 (0.622)
240-480 ms 9.236 (0.096) 22.765 (0.622) 22.791 (0.614)
120-240 ms 9.599 (0.114) 21.905 (1.059) 21.959 (1.063)
60-120 ms 7.617 (0.152) 17.758 (1.192) 17.793 (1.164)
30-60 ms 11.508 (0.208) 19.434 (1.076) 19.483 (1.076)
15-30 ms 11.580 (0.268) 17.926 (1.014) 17.951 (1.018)
Average 9.812 (1.391) 20.513 (2.438) 20.544 (2.430)

(B) SNR based on expected error energy (covariance matrix trace)
ISI LS LS-R SC-LS
condition mean (std.dev) dB mean (std.dev) dB mean (std.dev) dB
480-960 ms 9.351 (0.002) 23.181 (0.014) 23.188 (0.014)
240-480 ms 9.252 (0.012) 22.672 (0.023) 22.686 (0.023)
120-240 ms 9.589 (0.008) 21.778 (0.035) 21.810 (0.035)
60-120 ms 7.614 (0.004) 17.645 (0.041) 17.688 (0.041)
30-60 ms 11.472 (0.008) 19.180 (0.045) 19.209 (0.045)
15-30 ms 11.610 (0.008) 17.928 (0.030) 17.948 (0.030)
Average 9.815 (1.379) 20.397 (2.238) 20.421 (2.230)

6.4 Comparison of the observed error energy and the expected error energy
In the simulation experiments, where the reference clean response x is available, the error can easily be estimated as e = x̂ − x.
and the different procedures can easily be compared in terms of the measured or observed error energy. Interestingly, since the
transformation Vr is orthonormalized, for the estimations involving the dimensionality reduction (LS-R and SC-LS), the energy of
the error can equivalently be estimated in the original representation (e = V T x̂r−x) or in the reduced representation (er = x̂r−V x).
Alternatively the expected error energy can be estimated as the trace of the covariance matrix of the error tr(Σe), that can be estimated
from ΣnA

and the equations (58), (60) and (62), respectively, for LS, SC-LS and LS-R estimations.
Table 1 represents the SNR estimations for the simulation experiments obtained with the measured error energy (top) and with the

expected error energy, derived from the traces of the covariance matrices, (bottom). The results are consistent for both, the measured
and the expected error energies, but those based on the expected energy errors are significantly more stable (the standard deviations
are significantly smaller). As can be observed in this table, the LS-R and SC-LS methods provide a significant improvement in the
quality of the estimated responses with respect to the LS method (more than 10 dB). These results also suggest a slight improvement
of SC-LS with respect to LS-R.

Table 2 compares the quality of LS-R vs. LS and SC-LS vs. LS-R. The comparison is based in the SNR increase, and is evaluated
with a paired Student’s t-test. The results in the top correspond to SNR comparison based on the measured error energy, while the
results in the bottom correspond to SNR based on expected error energy (using covariance matrices of the error). The comparison of
LS-R vs. LS reveals an average improvement greater than 10 dB, consistent for both, measured and expected estimations of the error
energy. The comparison of SC-LS vs. LS-R shows a very slight improvement (around 0.025 dB), which is not useful in practice,
but is statistically significant (statistical significance evaluated with p is not clear for some ISI conditions with the measured error
estimations, but the improvement are always significant with the expected error energies).

Even though the SNR increase observed for SC-LS with respect to LS-R is statistically significant, this improvement is irrelevant
in practice. The relevance of the SNR improvement can be evaluated in terms of the required increase of recording time necessary to
achieve the observed SNR improvement: for example an improvement of 3 dB can be obtained by doubling the EEG length, since
10 · log10(2) =3 dB; similarly, an improvement of 0.025 dB can be obtained by increasing the length of the EEG in a factor 1.006,
or equivalently by increasing the EEG length in a 0.6 % (in our case, by recording 688 seconds of EEG instead of 684 seconds).

32

Table 2: SNR improvement provided by LS-R with respect to LS (left) and by SC-LS with respect to LS-R (right), in dB, obtained
in simulations with 100 repetitions for each ISI condition. The SNR improvements are based on the observed error energy (top table)
and the expected error energy (using the trace of the covariance matrix of the error, bottom table). The table includes mean, standard
deviation and the p parameter in a paired Student’s t-test.

(A) SNR comparison based on measured error energy
ISI LS-R vs. LS SC-LS vs. LS-R
condition mean (std.dev) dB p mean (std.dev) dB p
480-960 ms 13.953 (0.596) 1.1e-137 -2.5e-3 (0.061) 0.68
240-480 ms 13.529 (0.603) 8.3e-136 0.025 (0.175) 0.15
120-240 ms 12.307 (1.003) 5.5e-110 0.054 (0.203) 9.4e-3
60-120 ms 10.140 (1.070) 5.5e-99 0.035 (0.176) 0.050
30-60 ms 7.926 (0.894) 3.8e-96 0.049 (0.108) 1.5e-5
15-30 ms 6.346 (0.799) 1.9e-91 0.025 (0.077) 1.7e-3
Average 10.700 (2.958) <1e-320 0.031 (0.144) 2.2e-07

(B) SNR comparison based on expected error energy (covariance matrix trace)
ISI LS-R vs. LS SC-LS vs. LS-R
condition mean (std.dev) dB p mean (std.dev) dB p
480-960 ms 13.830 (0.013) 1.4e-300 0.006 (4.4e-4) 4.0e-117
240-480 ms 13.419 (0.018) 2.0e-287 0.014 (8.1e-4) 3.8e-124
120-240 ms 12.188 (0.038) 6.1e-250 0.033 (1.1e-3) 1.2e-149
60-120 ms 10.031 (0.037) 2.1e-242 0.043 (4.9e-4) 6.2e-194
30-60 ms 7.708 (0.040) 9.2e-228 0.028 (5.6e-4) 4.5e-171
15-30 ms 6.318 (0.023) 2.7e-244 0.020 (4.2e-4) 7.5e-168
Average 10.582 (2.83) <1e-320 0.024 (0.012) 7.5e-211

33

Response length J (samples)
102 103 104

E
xe

cu
tio

n
tim

e
(s

)

100

101

102

Intel Core i7-3770 3400.0 MHz, 8GB RAM (2013)

LS-R (RSLSD)
LS-R (IRSA-290dB)
LS-R (IRSA-120dB)
SC-LS (RSLSD)
SC-LS (IRSA-290dB)
SC-LS (IRSA-120dB)

Response length J (samples)
102 103 104

E
xe

cu
tio

n
tim

e
(s

)

100

101

102

Intel Core i3-10100 3600.0 MHz, 16GB RAM (2021)

LS-R (RSLSD)
LS-R (IRSA-290dB)
LS-R (IRSA-120dB)
SC-LS (RSLSD)
SC-LS (IRSA-290dB)
SC-LS (IRSA-120dB)

Figure 9: Total execution time per subject of the different algorithms as a function of the response length J . In the left panel,
execution times measured with Computer 1 (a 2013 system with an Intel Core i7-3770 3400.0 MHz processor and 8GB RAM); in the
right panel, execution times measured with Computer 2 (a 2021 system with an Intel Core i3-10100 3600.0 MHz and 16GB RAM).

7 Complementary results: experiments with real EEGs

7.1 Execution time
The execution time for the experiments involving real EEGs is reported in the figure 9 and the table table 3. The execution times
were measured with two different computers: the first one is a system manufactured in 2013, with an Intel Core i7-3770 processor at
3400.0 MHz and with 8 GB of memory installed in the RAM, while the second one is a system manufactured in 2021, with an Intel
Core i3-10100 processor at 3600.0 MHz and with 16 GB of memory installed in the RAM.

The figure 9 compares the total execution time per subject as a function of the response length, for both computers. The total
execution time includes the execution time for all the test configuration (for the different ISI conditions). As can be observed in
these plots, the subspace-constrained deconvolution provides a reduction in the execution time with both computers. As expected,
the deconvolution procedure is faster with the new computer (even though the improvement is very small in the case of subspace-
constrained deconvolution).

The table 3 includes the execution time required for the algorithm initialization and for each iteration (in the case of iterative
algorithms). Results include mean execution time per subject and standard deviations. The execution times are very similar for the
LS and LS-R algorithms (because the computational load for the LDFDS dimensionality reduction is very small compared with the
the LS estimation). The execution times for the subspace-constrained deconvolution are significantly smaller that those for LS and
LS-R. The execution times for the different implementation of SC-LS are very similar among them (around 16 seconds for estimating
the AEP responses of each subject in all the ISI conditions with Computer 1; around 13 seconds with computer 2).

34

Table 3: Execution time per subject in the experiments with real EEGs. The columns correspond to the different deconvolution
algorithms and the rows to the different ISI conditions. The tables provide (A) the initialization time, (B) average time per iteration
(in the iterative algorithms) and (C) total execution time, measured with Computer 1 (a 2013 system with an Intel Core i7-3770
3400.0 MHz processor and 8GB RAM) and Computer 2 (a 2021 system with an Intel Core i3-10100 3600.0 MHz and 16GB RAM).

Computer 1 - (A) Initialization time, in seconds: mean (std.dev)
ISI LSMD LSIt LSIt LS-RMD LS-RIt LS-RIt SC-LSMD SC-LSIt SC-LSIt

(ms) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB)

480-960 20.23 (0.22) 0.51 (0.01) 0.51 (0.01) 20.50 (0.31) 0.50 (0.01) 0.50 (0.01) 0.59 (0.01) 0.59 (0.01) 0.59 (0.01)
240-480 20.91 (0.32) 0.82 (0.02) 0.80 (0.01) 20.74 (0.26) 0.81 (0.02) 0.79 (0.01) 1.01 (0.01) 1.02 (0.02) 1.01 (0.01)
120-240 21.58 (0.40) 1.29 (0.01) 1.26 (0.01) 21.34 (0.29) 1.28 (0.02) 1.26 (0.01) 1.74 (0.02) 1.75 (0.02) 1.75 (0.02)
60-120 22.10 (0.71) 2.02 (0.02) 1.99 (0.01) 22.18 (0.84) 2.01 (0.03) 1.98 (0.02) 2.47 (0.03) 2.47 (0.02) 2.47 (0.02)
30-60 22.99 (0.32) 3.08 (0.03) 3.05 (0.02) 22.99 (0.43) 3.07 (0.02) 3.05 (0.02) 3.52 (0.03) 3.53 (0.03) 3.55 (0.03)
15-30 25.87 (0.53) 5.98 (0.22) 5.86 (0.24) 25.82 (0.26) 5.85 (0.26) 5.76 (0.28) 6.31 (0.26) 6.29 (0.26) 6.24 (0.27)
Computer 1 - (B) Time for each iteration, in microseconds: mean (std.dev)
ISI LSMD LSIt LSIt LS-RMD LS-RIt LS-RIt SC-LSMD SC-LSIt SC-LSIt

(ms) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB)

480-960 - 1251 (164) 1229 (170) - 1102 (139) 1217 (130) - 11.39 (0.12) 14.03 (3.37)
240-480 - 1195 (48) 1176 (85) - 1155 (38) 1200 (116) - 15.25 (4.18) 11.18 (0.60)
120-240 - 1169 (55) 1151 (55) - 1150 (29) 1129 (51) - 12.41 (2.57) 11.78 (2.20)
60-120 - 1141 (37) 1116 (38) - 1130 (27) 1149 (43) - 13.36 (2.52) 11.44 (1.41)
30-60 - 1130 (20) 1131 (26) - 1130 (24) 1123 (18) - 13.01 (1.65) 13.35 (3.36)
15-30 - 1117 (24) 1123 (21) - 1115 (13) 1125 (27) - 12.51 (1.97) 12.68 (2.41)
Computer 1 - (C) Execution time (including initialization and iterations), in seconds: mean (std.dev)
ISI LSMD LSIt LSIt LS-RMD LS-RIt LS-RIt SC-LSMD SC-LSIt SC-LSIt

(ms) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB)

480-960 20.23 (0.22) 0.63 (0.02) 0.55 (0.01) 20.50 (0.31) 0.61 (0.01) 0.53 (0.01) 0.59 (0.01) 0.59 (0.01) 0.59 (0.01)
240-480 20.91 (0.32) 1.79 (0.06) 1.09 (0.05) 20.74 (0.26) 1.75 (0.04) 1.09 (0.05) 1.01 (0.01) 1.03 (0.02) 1.02 (0.01)
120-240 21.58 (0.40) 3.75 (0.16) 2.03 (0.07) 21.34 (0.29) 3.71 (0.10) 2.01 (0.06) 1.74 (0.02) 1.77 (0.02) 1.75 (0.02)
60-120 22.10 (0.71) 7.05 (0.20) 3.60 (0.10) 22.18 (0.84) 6.99 (0.22) 3.65 (0.12) 2.47 (0.03) 2.52 (0.02) 2.49 (0.02)
30-60 22.99 (0.32) 13.48 (0.33) 6.66 (0.14) 22.99 (0.43) 13.47 (0.36) 6.63 (0.12) 3.52 (0.03) 3.65 (0.04) 3.59 (0.03)
15-30 25.87 (0.53) 17.16 (0.26) 13.05 (0.20) 25.82 (0.26) 17.00 (0.30) 12.97 (0.28) 6.31 (0.26) 6.42 (0.24) 6.32 (0.26)
All 133.69 (1.92) 43.86 (0.47) 26.98 (0.36) 133.58 (1.64) 43.53 (0.46) 26.88 (0.34) 15.63 (0.30) 15.98 (0.28) 15.76 (0.27)

Computer 2 - (A) Initialization time, in seconds: mean (std.dev)
ISI LSMD LSIt LSIt LS-RMD LS-RIt LS-RIt SC-LSMD SC-LSIt SC-LSIt

(ms) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB)

480-960 12.39 (0.08) 0.37 (0.01) 0.28 (0.01) 12.38 (0.05) 0.29 (0.01) 0.29 (0.01) 0.34 (0.00) 0.34 (0.00) 0.34 (0.00)
240-480 13.02 (0.22) 0.50 (0.01) 0.49 (0.01) 12.85 (0.06) 0.50 (0.01) 0.49 (0.01) 0.62 (0.00) 0.62 (0.01) 0.61 (0.01)
120-240 13.22 (0.10) 0.80 (0.01) 0.78 (0.01) 13.20 (0.05) 0.79 (0.01) 0.78 (0.01) 1.07 (0.01) 1.06 (0.01) 1.06 (0.01)
60-120 13.40 (0.05) 1.30 (0.01) 1.29 (0.01) 13.50 (0.26) 1.31 (0.03) 1.28 (0.01) 1.57 (0.01) 1.57 (0.02) 1.57 (0.01)
30-60 14.54 (0.07) 2.44 (0.01) 2.41 (0.02) 14.53 (0.07) 2.43 (0.01) 2.40 (0.01) 2.71 (0.03) 2.70 (0.02) 2.70 (0.02)
15-30 18.35 (0.14) 6.19 (0.02) 6.02 (0.05) 18.33 (0.15) 6.19 (0.08) 6.12 (0.03) 6.43 (0.02) 6.43 (0.04) 6.44 (0.04)
Computer 2 - (B) Time for each iteration, in microseconds: mean (std.dev)
ISI LSMD LSIt LSIt LS-RMD LS-RIt LS-RIt SC-LSMD SC-LSIt SC-LSIt

(ms) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB)

480-960 - 754 (25) 757 (47) - 749 (18) 774 (45) - 8.19 (1.25) 8.65 (1.50)
240-480 - 748 (5.9) 756 (17) - 747 (11) 753 (17) - 7.69 (1.23) 7.71 (1.07)
120-240 - 746 (5.6) 743 (10) - 744 (3.9) 741 (8.2) - 7.46 (1.31) 6.98 (1.19)
60-120 - 747 (3.5) 741 (7.8) - 748 (3.7) 742 (4.1) - 7.45 (0.66) 6.72 (0.53)
30-60 - 739 (1.9) 738 (4.3) - 740 (2.4) 739 (4.3) - 7.45 (0.50) 7.67 (0.71)
15-30 - 742 (2.6) 741 (2.0) - 742 (4.4) 742 (1.5) - 7.47 (0.29) 7.54 (0.65)
Computer 2 - (C) Execution time (including initialization and iterations), in seconds: mean (std.dev)
ISI LSMD LSIt LSIt LS-RMD LS-RIt LS-RIt SC-LSMD SC-LSIt SC-LSIt

(ms) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB)

480-960 12.39 (0.08) 0.37 (0.01) 0.31 (0.01) 12.38 (0.05) 0.36 (0.01) 0.32 (0.02) 0.34 (0.00) 0.34 (0.00) 0.34 (0.00)
240-480 13.02 (0.22) 1.11 (0.03) 0.67 (0.03) 12.85 (0.06) 1.11 (0.02) 0.67 (0.03) 0.62 (0.00) 0.62 (0.01) 0.62 (0.01)
120-240 13.22 (0.10) 2.37 (0.07) 1.28 (0.04) 13.20 (0.05) 2.36 (0.06) 1.27 (0.04) 1.07 (0.01) 1.08 (0.01) 1.07 (0.01)
60-120 13.40 (0.05) 4.60 (0.11) 2.36 (0.06) 13.50 (0.26) 4.61 (0.09) 2.36 (0.06) 1.57 (0.01) 1.61 (0.02) 1.58 (0.01)
30-60 14.54 (0.07) 9.23 (0.12) 4.77 (0.08) 14.53 (0.07) 9.23 (0.12) 4.76 (0.09) 2.71 (0.03) 2.77 (0.02) 2.72 (0.02)
15-30 18.35 (0.14) 13.61 (0.04) 10.76 (0.20) 18.33 (0.15) 13.61 (0.10) 10.85 (0.19) 6.43 (0.02) 6.50 (0.04) 6.49 (0.04)
All 84.92 (0.44) 31.29 (0.21) 2

¯
0.15 (0.26) 84.79 (0.28) 31.29 (0.23) 20.24 (0.27) 12.74 (0.04) 12.92 (0.03) 12.82 (0.05)

35

7.2 Comparison of the estimations provided by the different deconvolution methods
Figure 10 represents the responses obtained for the LS, LS-R and SC-LS estimations (using the matrix-division based algorithms)
for subject 1 and different ISI conditions. As in the simulations, these AEP estimations are more affected by the noise in the case of
LS, and are similar in the case of LS-R and SC-LS.

In order to compare the estimations provided by the LS, LS-R ad SC-LS methods, the differences are represented in figure 11.
The figure in the top represents the difference between the SC-LS and the LS estimations, and the figure in the bottom represents the
difference between SC-LS and the LS-R estimations. The SNR of the difference has been averaged for the different ISI conditions.
This SNR has been estimated as the ratio between the energy of the signal and the energy of the difference, and is 10.39 dB in the
comparison SC-LS vs. LS, and 29.71 dB in the comparison SC-LS vs. LS-R (note that the amplitude scale is 1 µV in the top figure,
but 0.1 µV in the bottom figure). According to the estimated SNR for the difference, we can say that the difference between the SC-
LS and LS-R estimations are about 30 dB below the signal energy for the estimations based on real EEGs, which is in accordance with
the results obtained with the simulations (reported in figure 6). The difference is significantly smaller than the expected background
noise.

Figure 12 compares the SC-LS estimations obtained for subject 1 with the different algorithms (based on matrix-division or
iterative). The top figure represents the difference between the matrix-division estimations and the iterative estimations using 120
dB as convergence criterion, while in the bottom figure the iterative estimations apply 290 dB as convergence criterion. As can be
observed, the iterative estimations converge to the matrix-division estimations, and in average, the energy of the differences are 95
and 265 dB below the energy of the signal, when the 120 and 290 dB criteria are considered, respectively.

36

Figure 10: AEP responses for subject 1, estimated with LSMD (top), LS-RMD (center) and SC-LSMD (bottom).

37

Figure 11: Difference between the SC-LS and the LS estimations (top) and between SC-LS and LS-R estimations (bottom) obtained
with the algorithms based on matrix division. These plots correspond to subject 1 (and the responses presented in the figure 10). Note
that the scale is 1 µV for the top figure but 0.1 µV for the bottom figure.

38

Figure 12: Difference for the SC-LS based estimations. Comparison between the estimations obtained with SC-LSMD and SC-
LSIt-120dB (top). Comparison between the estimations obtained with SC-LSMD and SC-LSIt-290dB (bottom). These plots correspond to
subject 1. Note that the scale is 10−4 µV for the top figure and 10−13 µV for the bottom figure.

39

Table 4: SNR relative to SC-LSMD (i.e. using this AEP estimation as reference). The SNR is estimated as the ratio between the signal
energy and the energy of the difference between the estimations to be compared. The table includes mean and standard deviation (in
parenthesis) of the estimated SNR.

ISI LSMD LSIt LSIt LS-RMD LS-RIt LS-RIt SC-LSMD SC-LSIt SC-LSIt

(ms) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB)

480-960 10.18 (2.42) 10.18 (2.42) 10.18 (2.42) 35.06 (5.61) 35.06 (5.61) 35.06 (5.61) - 282.52 (1.22) 112.27 (0.70)
240-480 9.63 (2.55) 9.63 (2.55) 9.63 (2.55) 32.16 (5.50) 32.16 (5.50) 32.16 (5.50) - 266.61 (0.58) 96.59 (0.55)
120-240 10.67 (3.71) 10.67 (3.71) 10.67 (3.71) 24.97 (6.49) 24.97 (6.49) 24.97 (6.49) - 265.05 (1.49) 95.31 (1.46)
60-120 12.24 (2.32) 12.24 (2.32) 12.24 (2.32) 28.13 (7.31) 28.13 (7.31) 28.13 (7.31) - 264.26 (1.25) 94.45 (1.23)
30-60 13.44 (2.24) 13.44 (2.24) 13.44 (2.24) 30.30 (5.24) 30.30 (5.24) 30.30 (5.24) - 265.18 (2.21) 95.60 (2.41)
15-30 12.30 (2.70) 12.30 (2.70) 12.30 (2.70) 34.22 (3.88) 34.22 (3.88) 34.22 (3.88) - 146.92 (3.24) 96.70 (3.08)
Average 11.41 (2.89) 11.41 (2.89) 11.41 (2.89) 30.81 (6.50) 30.81 (6.50) 30.81 (6.50) - 248.42 (46.35) 98.49 (6.51)

Table 5: Comparison among the estimations provided by the different procedures. For each pair of methods the SNR associated to
the difference between the respective estimations is evaluated as the ratio between the signal energy and the energy of the difference.
For example, the energy of the difference between LSIt-290dB and LSIt-120dB is 98.19 dB below the energy of the AEP response.

LSMD LSIt LSIt LS-RMD LS-RIt LS-RIt SC-LSMD SC-LSIt SC-LSIt

(RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB) (RSLSD) (IRSA-290dB) (IRSA-120dB)

LSMD (RSLSD) - 248.02 98.19 11.56 11.56 11.56 11.41 11.41 11.41
LSIt (IRSA-290dB) 248.02 - 98.20 11.56 11.56 11.56 11.41 11.41 11.41
LSIt (IRSA-120dB) 98.19 98.20 - 11.56 11.56 11.56 11.41 11.41 11.41
LS-RMD (RSLSD) 11.56 11.56 11.56 - 247.79 97.87 30.81 30.81 30.81
LS-RIt (IRSA-290dB) 11.56 11.56 11.56 247.79 - 97.88 30.81 30.81 30.81
LS-RIt (IRSA-120dB) 11.56 11.56 11.56 97.87 97.88 - 30.81 30.81 30.81
SC-LSMD (RSLSD) 11.41 11.41 11.41 30.81 30.81 30.81 - 248.42 98.49
SC-LSIt (IRSA-290dB) 11.41 11.41 11.41 30.81 30.81 30.81 248.42 - 98.49
SC-LSIt (IRSA-120dB) 11.41 11.41 11.41 30.81 30.81 30.81 98.49 98.49 -

The quality of the responses cannot be evaluated in the experiments with real EEGs, because there is no reference to be considered
as clean signal. Instead, the differences among the AEP estimations can be evaluated, as in the figures 11 and 12. Table 4 reports
the SNR estimated using the SC-LSMD responses as reference. As can be observed, the energy of the difference between the LS
estimations and the SC-LS estimations is only about 11 dB below the response energy, while that for the LS-R estimations is about
31 dB below the response energy. The SC-LS estimations obtained with the iterative algorithm are very close to those obtained with
the matrix division algorithm, with energy of the difference 98 and 248 dB below the response energy (for 120 and 290 dB in the
convergence criterion, respectively). These results, averaged for all the subjects, are consistent with those in the figures 11 and 12. In
order to provide a more complete comparison, table 5 compares each pair of procedures in terms of the ratio between the response
energy and the energy of the difference of the responses to be compared. These results are consistent with those in table 4.

7.3 Individual AEP responses estimated for each subject and grand average
The responses provided by the SC-LSMD algorithm for each subject included in the EEG database are presented in figures 13, 14, 15
and 16.

Finally, figure 17 represents the grand average AEP responses (including also the individual AEP responses) for the different ISI
conditions. Since subject 7 present a particularly large PAM response at 15 ms, (and also a particularly large negative peak around
70 ms), the grand average has also been estimated excluding this particular case.

40

Figure 13: SC-LSMD estimations of the AEP responses for subjects 1 and 2.

41

Figure 14: SC-LSMD estimations of the AEP responses for subjects 3 and 4.

42

Figure 15: SC-LSMD estimations of the AEP responses for subjects 5 and 6.

43

Figure 16: SC-LSMD estimations of the AEP responses for subjects 7 and 8.

44

Latency (ms)
100 101 102 103

A
m

pl
itu

de

1 7V

ISI 480-960 ms

ISI 240-480 ms

ISI 120-240 ms

ISI 60-120 ms

ISI 30-60 ms

ISI 15-30 ms

I II
III

V
P0

Pa
Pb/P1

P2

P3

Grand average

Latency (ms)
100 101 102 103

A
m

pl
itu

de

1 7V

ISI 480-960 ms

ISI 240-480 ms

ISI 120-240 ms

ISI 60-120 ms

ISI 30-60 ms

ISI 15-30 ms

I II
III

V
P0

Pa
Pb/P1

P2

P3

Grand average (subj. 7 excluded)

Figure 17: Left panel: grand average and individual AEP responses including the 8 subjects of the database. Right panel: grand
average and individual AEP responses including all the subjects except subject 7.

45

References
[1] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook. http://matrixcookbook.com: Nov 15, 2012.

[2] W. H. Press, S. A. Teutolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The art of Scientific Computing. New
York: Cambridge University Press, 2nd ed., 2002.

[3] F. Hayashi, Econometrics. New Jersey: Princeton University Press, 2000.

[4] A. de la Torre, J. T. Valderrama, J. C. Segura, and I. M. Alvarez, “Matrix-based formulation of the iterative randomized stimu-
lation and averaging method for recording evoked potentials,” Journal of the Acoustical Society of America, vol. 146, pp. 4545–
4556, 2019.

[5] A. de la Torre, J. T. Valderrama, J. C. Segura, and I. M. Alvarez, “Latency-dependent filtering and compact representation of the
complete auditory pathway response,” Journal of the Acoustical Society of America, vol. 148, pp. 599–613, 2020.

46

	Derivation of the LS solution for an over-determined system of linear equations
	Effect of an inappropriate subspace selection
	Noise reduction provided by the subspace-constrained LS estimation
	The orthonormal projector Vr and some properties
	Properties of the covariance and autocorrelation matrices
	Demonstration 1: for all A symmetric and positive definite, tr((Vr A VrT)-1) tr(Vr A-1 VrT)
	Demonstration 2: for all A symmetric and positive definite, tr(Vr A VrT) < tr(A)
	Demonstration of the noise reduction provided by the subspace-constrained LS deconvolution

	Comparison of subspace-constrained deconvolution vs. LDFDS after deconvolution
	Comparison of the traces for white noise
	Comparison of the traces for non-constrained noise
	Comparison of the traces when RsI
	Code implementing a Monte Carlo simulation for comparing tr(erLS) and tr((eLS)r)

	Code implementing the LS, LS-R and SC-LS procedures
	Function ``RSLSD_LS.m'' (conventional LS, with matrix division)
	Function ``IRSA_LS.m'' (conventional LS, with iterative estimation)
	Function ``RSLSD_LSR.m'' (LS and LDFDS reduction, with matrix division)
	Function ``IRSA_LSR.m'' (LS and LDFDS reduction, with iterative estimation)
	Function ``RSLSD_SCLS.m'' (subspace constrained LS, with matrix division)
	Function ``IRSA_SCLS.m'' (subspace constrained LS, with iterative estimation)
	Function ``Basis_LinLog_RRC.m'' (transformation from original representation to reduced subspace)
	Script ``script_simuation_SCLSDec.m'' (comparison of different deconvolution algorithms)
	Output of the script ``script_simuation_SCLSDec.m''

	Complementary results: experiments with simulations
	Description of the noise used for the simulations
	Comparison of the estimations provided by the different deconvolution methods
	Statistical characterization of the noise and the error
	Comparison of the observed error energy and the expected error energy

	Complementary results: experiments with real EEGs
	Execution time
	Comparison of the estimations provided by the different deconvolution methods
	Individual AEP responses estimated for each subject and grand average

	References

