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1 Code for conventional IRSA algorithm
The following MatLab / Octave code process the electroencephalogram and iteratively estimates the evoked response with the con-
ventional IRSA algorithm.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [xi,t_run,t_iter] = IRSA_convent(y,m,I,J,alpha,OUTPUT)
% IRSA conventional: iterative with synchronized average
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% I (Number of iterations)
% J (Length of the averaging window in samples)
% alpha (Convergence-control parameter)
% OUTPUT (flag for presenting results at iterations)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% t_iter (time required for each iteration)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2018
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xi,t_run,t_iter] = IRSA_convent(y,m,I,J,alpha,OUTPUT)
% Initialization
tic; % time-stamp beginning of function
K = length(m); % Number of stimuli
xi = zeros(J,1); % AEP initialization
z = zeros(J,1); % Residual initialization
for k=1:K % Loop for stimuli

Sweep = m(k):(m(k)+J-1); % Sweep selection
z = z + y(Sweep)/K; % Average of EEG

end
% Iterations
t_iter=toc; % time-stamp for iterations
for i=1:I % loop for iterations

xi = xi+alpha*z; % AEP estimate
% Residual EEG
r = y; % Residual initialization
for k=1:K % Loop for stimuli

Sweep = m(k):(m(k)+J-1); % Sweep selection
r(Sweep) = r(Sweep)-xi; % Removes all AEPs from y(n) to obtain residual

end
% Averaged residual estimate
z = zeros(J,1); % Residual initialization
for k=1:K % Loop for stimuli

Sweep = m(k):(m(k)+J-1); % Sweep selection
z = z + r(Sweep)/K; % Average residual estimation

end
if OUTPUT==1

fprintf(’Iteration %d: res: %.16f\n’,i,std(z));
end

end
t_run=toc; % total execution time
t_iter=(t_run-t_iter)/I; % execution time for each iteration
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2 Code for matrix IRSA algorithm
The following MatLab / Octave code process the electroencephalogram and iteratively estimates the evoked response with the matrix
IRSA algorithm.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [xi ,t_run,t_iter] = IRSA_matrix(y,m,I,J,alpha,OUTPUT)
% IRSA, matrix implementation:
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% I (Number of iterations)
% J (Length of the averaging window in samples)
% alpha (Convergence-control parameter)
% OUTPUT (flag for presenting results at iterations)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% t_iter (time required for each iteration)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2018
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xi ,t_run,t_iter] = IRSA_matrix(y,m,I,J,alpha,OUTPUT)
% Initialization
tic; % time-stamp beginning of function
% Initialization of z0 and x0
s=zeros(size(y)); % stimulation signal
s(m)=1;
Es=sum(s.*s); % energy of the stimulation signal (number of stimuli)
z_tmp=xcorr(y,s,J-1)/Es; % cross-correlation between EEG and stim. signal
z0=z_tmp(J:end); % z0 is the first averaged response
xi=zeros(J,1); % initial estimation of the response
zi=z0;
% Initialization of autocorrelation matrix
rs=xcorr(s,J)/Es; % autocorrelation function of the stimulation signal
Rs=zeros(J,J); % autocorrelation matrix
for i=1:J

j=1:J; idx=j-i+J+1;
Rs(i,j)=rs(idx); % autocorrelation matrix

end
% Iterations
t_iter=toc; % time-stamp for iterations
for i=1:I % loop for iterations

xi=xi+alpha*zi; % AEP estimate
zi=z0-Rs*xi; % Average residual estimation
if OUTPUT==1

fprintf(’Iteration %d: res: %.16f\n’,i,std(zi));
end

end
t_run=toc; % total execution time
t_iter=(t_run-t_iter)/I; % execution time for each iteration
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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3 IRSA solution expressed as a geometric series
The IRSA estimation of the evoked response can be expressed, using a geometric series of matrices, as:

x̂i = α

i−1∑
j=0

(I − αRs)
j

 z0 (1)

where α is a convergence parameter (with 0 < α ≤ 1), I is the J × J identity matrix, Rs is the J × J autocorrelation matrix of the
stimulation sequence and z0 is the averaged residual estimation of the EEG at initialization (i.e., the averaged EEG).

This section provides a revision on geometric series and geometric series of matrices, and also the application of the results to
the IRSA solution. This section can be useful for those not familiar with the mathematics related to geometric series and geometric
series of matrices.

3.1 Solution of the geometric series
Let a be a real constant. The geometric series of ratio a is defined as:

Si = 1 + a+ a2 + . . .+ ai =

i∑
j=0

aj (2)

The derivation of the solution is obtained by subtracting Si − aSi:

aSi = a+ a2 + a3 + . . .+ ai+1 (3)

Si − aSi = 1− ai+1 (4)

or equivalently:
(1− a)Si = 1− ai+1 (5)

and from this equation, the solution of the series is obtained as:

Si =
1− ai+1

1− a
(6)

or, using the definition of the series:
i∑

j=0

aj =
1− ai+1

1− a
(7)

It should be noted that this expression is not valid if a = 1, because in that case the series has solution (Si = i+ 1) but the right
side of the previous equation is an indeterminate.

3.2 Convergence of the geometric series
If the absolute value of the ratio a is smaller than 1 (i.e. if |a| < 1), the term ai+1 converges to zero, and therefore the geometric
series converges to:

S∞ = lim
i→∞

i∑
j=0

aj =
1

1− a
(8)

3.3 Solution of the geometric series of matrices
Let A be a J × J square matrix of real numbers. The corresponding geometric series of matrices is defined as:

Si = I +A+A2 + . . .+Ai =

i∑
j=0

Aj (9)

where the exponent j applied to the matrix means a matrix multiplication of A (repeated j times), and I is the J × J identity matrix.
The series can be multiplied by the matrix A:

ASi = SiA = A+A2 + . . .+Ai+1 (10)
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and the difference Si −ASi = Si − SiA is:

Si −ASi = Si − SiA = I −Ai+1 (11)

or, equivalently:
(I −A)Si = Si(I −A) = I −Ai+1 (12)

and if (I −A) is non singular (and can therefore be inverted), the equation can be multiplied by (I −A)−1 at the left:

(I −A)−1(I −A)Si = ISi = Si = (I −A)−1(I −Ai+1) (13)

or at the right:
Si(I −A)(I −A)−1 = SiI = Si = (I −Ai+1)(I −A)−1 (14)

resulting in the solution of the geometric series of matrices:

Si = (I −A)−1(I −Ai+1) = (I −Ai+1)(I −A)−1 (15)

or, using the definition of the series:

i∑
j=0

Aj = (I −A)−1(I −Ai+1) = (I −Ai+1)(I −A)−1 (16)

where it should be noted that the solution requires that (I −A) is non singular.

3.4 Convergence of the geometric series of matrices
If the absolute values of all the eigenvalues of A are smaller than 1, then the term Ai+1 converges to the null matrix and therefore the
geometric series converges:

S∞ = lim
i→∞

i∑
j=0

Aj = (I −A)−1 (17)

3.5 Application to the IRSA algorithm
According to the previous result, the geometric series of matrices involved in the IRSA solution can be expressed as:

i−1∑
j=0

(I − αRs)
j =

(
I − (I − αRs)

i
)
(I − (I − αRs))

−1 =
(
I − (I − αRs)

i
)
(αRs)

−1 (18)

which requires that the matrixRs is non singular (and can be inverted). With this result, the IRSA solution provided by the geometric
series is:

x̂i = α

i−1∑
j=0

(I − αRs)
j

 z0 = α
(
I − (I − αRs)

i
)
(αRs)

−1z0 =
(
I − (I − αRs)

i
)
R−1s z0 (19)

If the absolute values of the eigenvalues of (I − αRs) are smaller than 1, the term (I − αRs)
i converges to the null matrix and

therefore the IRSA solution converges to:
x̂∞ = lim

i→∞
x̂i = R−1s z0 (20)

It can be noted that the convergence condition can be expressed in terms of the eigenvalues of Rs. Let µj (with j = 1, . . . , J) be
the eigenvalues of the autocorrelation matrixRs. The eigenvalues of (I−αRs) are (1−αµj). Since µj ≥ 0 (because autocorrelation
matrices are Toeplitz-symmetric positive semi-definite matrices), and α > 0, the condition of convergence can be written as:

1− αµi > −1 ∀ j = 1, . . . , J (21)

or equivalently:

α <
2

µi
∀ j = 1, . . . , J (22)
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or:
α <

2

max (µi)
(23)

i.e. the convergence parameter should be small enough in order to avoid oscillations of the series, and the risk of oscillations increases
when the autocorrelation matrix contains large eigenvalues (i.e. when the stimulation sequence contains resonances). This condition
provides a well defined criterion to select a small enough convergence parameter.

On the other hand, the solution of the geometric series at convergence does not depends on the α value (a very small α would
require more iterations, but the series converges to the same solution), and therefore, if we are concerned with the IRSA solution at
convergence, the convergence parameter is irrelevant.
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4 Code for matrix IRSA algorithm, optimized implementation of initialization
The following MatLab / Octave code process the electroencephalogram and iteratively estimates the evoked response with the matrix
IRSA algorithm with an optimized implementation of the initialization.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [xi ,t_run,t_iter] = IRSA_matrix_opt(y,m,I,J,alpha,OUTPUT)
% IRSA, matrix implementation. Initialization optimized:
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% I (Number of iterations)
% J (Length of the averaging window in samples)
% alpha (Convergence-control parameter)
% OUTPUT (flag for presenting results at iterations)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% t_iter (time required for each iteration)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2018
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xi ,t_run,t_iter] = IRSA_matrix_opt(y,m,I,J,alpha,OUTPUT)
% Initialization
tic; % time-stamp beginning of function
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0=zeros(J,1); rs0=zeros(J,1); s=zeros(size(y)); Rs=zeros(J,J); xi=zeros(J,1);
s(m)=1; % stimulation signal
for j=1:J

idx=j+m-1;
z0(j)=sum(y(idx)); % cross-corr between EEG and stim. signal
rs0(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=z0/Es; zi=z0; % first averaged response
rs0=rs0/Es; % normalized autocorrelation stim. signal
for i=1:J

j=1:J; idx=abs(j-i)+1;
Rs(i,j)=rs0(idx); % autocorrelation matrix

end
% Iterations
t_iter=toc; % time-stamp for iterations
for i=1:I % loop for iterations

xi=xi+alpha*zi; % AEP estimate
zi=z0-Rs*xi; % Average residual estimation
if OUTPUT==1

fprintf(’Iteration %d: res: %.16f\n’,i,std(zi));
end

end
t_run=toc; % total execution time
t_iter=(t_run-t_iter)/I; % execution time for each iteration
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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5 Matrix product involving a Toeplitz matrix in the frequency domain

5.1 Toeplitz matrices
Let T be a J × J Toeplitz matrix:

T =


T0,0 T0,1 T0,2 · · · T0,J−1
T1,0 T1,1 T1,2 · · · T1,J−1
t2,0 t2,1 T2,2 · · · T2,J−1

...
...

...
. . .

...
TJ−1,0 TJ−1,1 TJ−1,2 · · · TJ−1,J−1

 =


t0 t1 t2 · · · tJ−1
t−1 t0 t1 · · · tJ−2
t−2 t−1 t0 · · · tJ−3

...
...

...
. . .

...
t−J+1 t−J+2 t−J+3 · · · t0

 (24)

that is, a matrix verifying that Tj1,j2 = tj2−j1 , and let x be a J-component column vector:

x =


x0
x1
...

xJ−1

 (25)

The conventional matrix product y = Tx involves J × J products (with complexity O(J2)) . However, due to the properties of
Toeplitz matrices, a Fast Fourier Transform (FFT) based implementation, with complexity O(J log2(J)) is possible, which is very
useful, particularly for large dimensionality. In this section we describe how the product y = Tx can be performed with a FFT-based
implementation.

Since Toeplitz matrices represent convolutional processes, and due to the properties of the Fourier Transform (FT) regarding
convolution (FT transforms convolution into algebraic product, or, equivalently, FT diagonalizes convolutions), matrix multiplication
involving a Toeplitz matrix can be implemented in the frequency domain.

However, the product y = Tx is not a simple convolution, but a truncated convolution, i.e. a convolution of the discrete time
signals tj (with j = −J+1, . . . , J−1) and xj (with j = 0, . . . , J−1) restricted to the samples yj with j = 0, . . . , J−1 (a complete
convolution would provide non-null samples in the range j = −J + 1, . . . , 2J − 2). In other words, FT (in this case discrete time
Fourier Transform, because it is applied to discrete time signals) diagonalizes infinite Toeplitz matrices but not truncated (or finite)
Toeplitz matrices (because truncation in time domain is equivalent to multiplying with zero some samples in the time domain, which
is a diagonal operation in the time domain but not in the frequency domain).

5.2 Circulant matrices
The situation is different in the case of circulant matrices. A circulant matrix is a special case of Toeplitz matrix verifying that each
row is similar to the previous one except for a circulant right shift of its elements. A circulant matrix C verifies that:

C =


c0 c1 c2 · · · cJ−1
cJ−1 c0 c1 · · · cJ−2
cJ−2 cJ−1 c0 · · · cJ−3

...
...

...
. . .

...
c1 c2 c3 · · · c0

 (26)

and the matrix product involving a circulant matrix (y = Cx) is equivalent to a circular convolution.
A key property of circulant matrices is that they are diagonalized by the Discrete Fourier Transform (DFT): the eigenvectors of

whatever circulant matrix C are the DFT modes, and the eigenvalues are the DFT components (C = {C(j), j = 0, . . . , J − 1} =
DFT (c)) of the first row in the circulant matrix (c = {cj , j = 0, . . . , J − 1}).

This property simplifies the algebra procedures involving circulant matrices. For example the matrix product y = Cx can be
easily performed in the frequency domain with this procedure:

1. Fourier Transform of the involved signals: C = DFT (c); X = DFT (x);

2. Product of each component in the frequency domain: Y (j) = C(j) ·X(j) (with j = 0, . . . , J − 1);

3. Inverse Fourier Transform of the product: y = IDFT (Y).

Similarly, matrix inversion of a circulant matrix becomes trivial with the DFT:

9



1. Fourier Transform of the first row C = DFT (c);

2. Inverse of each component in the frequency domain: A(j) = 1/C(j);

3. Inverse Fourier Transform of the inverted frequency components: a = IDFT (A);

4. The circulant matrix A generated from the elements in a verifies that AC = CA = I (or equivalently A = C−1).

where the matrix inversion requires that all the frequency components C(j) are non-null.
Usually, the DFT is implemented with the more efficient Fast Fourier Transform (FFT) algorithm, and FFT or Inverse FFT (IFFT)

are used instead of DFT or IDFT. Additionally, when the involved signals are real, the IFFT should provide real signals (i.e. signals
with null imaginary part), but, due to the limited numerical precision of the algorithm implementation, the imaginary part is usually
very small but not null, and therefore in these procedures the imaginary part is usually discarded after the IFFT.

5.3 Circulant extension of a Toeplitz matrix
Let T be the J × J Toeplitz matrix generated by the sequence tj (with j = −J + 1, . . . , J − 1):

T =


t0 t1 t2 · · · tJ−1
t−1 t0 t1 · · · tJ−2
t−2 t−1 t0 · · · tJ−3

...
...

...
. . .

...
t−J+1 t−J+2 t−J+3 · · · t0

 (27)

Using the elements of the generating sequence tj , a new 2J-length sequence cj can be prepared:

c = {cj , j = 0, . . . , 2J − 1} = {t0, t1, t2, . . . , tJ−1, 0, t−J+1, t−J+2, . . . , t−2, t−1} (28)

and this sequence can be used to generate a 2J × 2J circulant matrix C which is the circulant extension of the Toeplitz matrix T :

C =



t0 t1 t2 · · · tJ−1 0 t−J+1 t−J+2 . . . t−1
t−1 t0 t1 · · · tJ−2 tJ−1 0 t−J+1 . . . t−2
t−2 t−1 t0 · · · tJ−3 tJ−2 tJ−1 0 . . . t−3

...
...

...
. . .

...
...

...
...

. . .
...

t−J+1 t−J+2 t−J+3 · · · t0 t1 t2 t3 . . . 0
0 t−J+1 t−J+2 . . . t−1 t0 t1 t2 · · · tJ−1

tJ−1 0 t−J+1 . . . t−2 t−1 t0 t1 · · · tJ−2
tJ−2 tJ−1 0 . . . t−3 t−2 t−1 t0 · · · tJ−3

...
...

...
. . .

...
...

...
...

. . .
...

t1 t2 t3 . . . 0 t−J+1 t−J+2 t−J+3 · · · t0


(29)

which can be written as a composition of the matrices T and S:

C =

(
T S
S T

)
(30)

where the matrix S is a Toeplitz matrix defined as:

S =


0 t−J+1 t−J+2 . . . t−1

tJ−1 0 t−J+1 . . . t−2
tJ−2 tJ−1 0 . . . t−3

...
...

...
. . .

...
t1 t2 t3 . . . 0

 (31)
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5.4 Matrix-vector multiplication with Toeplitz matrices using FFT
Let T be a J × J Toeplitz matrix, and x a J-component column vector. Given an arbitrary J × J matrix A, the matrix product
y = Tx verifies that:

y = Tx =
(
IJ OJ

)( T A
A T

)(
x
oJ

)
(32)

where oJ , IJ and OJ are, respectively, the J-component null vector, the J × J identity matrix and the J × J null matrix. This result
is useful in the particular case when the extended Toeplitz matrix becomes a circulant matrix, i.e., when the matrix A is the matrix S
in equation (31):

y = Tx =
(
IJ OJ

)( T S
S T

)(
x
oJ

)
=
(
IJ OJ

)
C

(
x
oJ

)
(33)

In this case, since C is circulant, it is diagonalized by DFT (or FFT). This provides an efficient procedure for computing the matrix
product y = Tx for Toeplitz matrices T :

1. Preparing the 2J-length circulant sequence: c = {t0, t1, t2, . . . , tJ−1, 0, t−J+1, t−J+2, . . . , t−2, t−1}

2. Zero-padding the vector to be multiplied: xe = {x0, x1, x2, . . . , xJ−1, 0, 0, 0, . . . , 0}, with length 2J .

3. Computing the FFT for both sequences: C = FFT (c); Xe = FFT (xe).

4. Multiplying both FFTs to obtain the FFT of the extended result: Ye(j) = C(j)Xe(j), with j = 0, . . . , 2J − 1.

5. Transform the product to the time domain with IFFT: ye = IFFT (Ye).

6. Truncation of the extended matrix product: y = {ye(j), j = 0, . . . , J − 1}.

This procedure involves three 2J-component FFT operations (two direct FFTs and one inverse FFT), but the order of the complexity
is O(J log2(J)) instead of O(J2), which significantly saves computation, particularly for large dimensionality J .

It should be noted that a recursive multiplication (like that required in the IRSA algorithm) cannot be fully performed in the
frequency domain with a simple recursive algebraic product, because truncation must be applied at each iteration. Truncation is easily
applied in the time domain (it is equivalent to multiplying a portion of the signal with a null vector, i.e. it is a diagonal operation in
the time domain), but it is not a simple operation in the frequency domain (it can be performed in the frequency domain as a circular
convolution with the Fourier Transform of the truncating window, with complexityO(J2)). Therefore, in order to perform truncation
in the time domain, it is preferable to apply IFFT, truncation and FFT at each iteration (with complexity O(J log2(J)).

As previously discussed, due to the limited numerical precision, if the coefficients of T and x are real, it is convenient to discard
the imaginary part of the result.
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6 Code for matrix IRSA algorithm, FFT implementation
The following MatLab / Octave code process the electroencephalogram and iteratively estimates the evoked response with the matrix
IRSA algorithm with a FFT based implementation of the matrix products.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [xi ,t_run,t_iter] = IRSA_matrix_fft(y,m,I,J,alpha,OUTPUT)
% IRSA, matrix implementation with matrix product in fft domain
% (this is possible because Rs is a Toeplitz-symmetric matrix)
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% I (Number of iterations)
% J (Length of the averaging window in samples)
% alpha (Convergence-control parameter)
% OUTPUT (flag for presenting results at iterations)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% t_iter (time required for each iteration)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2019
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xi ,t_run,t_iter] = IRSA_matrix_fft(y,m,I,J,alpha,OUTPUT)
% Initialization
tic; % time-stamp beginning of function
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0=zeros(J,1); rs0=zeros(J,1); s=zeros(size(y));
s(m)=1; % stimulation signal
for j=1:J

idx=j+m-1;
z0(j)=sum(y(idx)); % cross-corr between EEG and stim. signal
rs0(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=z0/Es; % first averaged response
rs0=rs0/Es; % normalized autocorrelation stim. signal
RS=real(fft([rs0; 0; flipud(rs0(2:end))])); % FT of autocorrelation
Z0=fft([z0; zeros(J,1)]); % FT of z0
Zi=Z0; Xi=zeros(2*J,1); % FT of zi and xi initialization
% Iterations
t_iter=toc; % time-stamp for iterations
for i=1:I % loop for iterations

Xi=Xi+alpha*Zi; % AEP estimate in freq. domain
P=RS.*Xi; % matrix product in freq. domain
P1=real(ifft(P)); % this two lines are important in order to truncate
P=fft([P1(1:J); zeros(J,1)]); % the estimation of the P in time domain
Zi=Z0-P;
if OUTPUT==1

fprintf(’Iteration %d: res: %.16f\n’,i,std(real(Zi)));
end

end
xi=real(ifft(Xi)); % the result is transformed to time domain
xi=xi(1:J); % ...and truncated to remove the non-causal part
t_run=toc; % total execution time
t_iter=(t_run-t_iter)/I; % execution time for each iteration
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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7 Bounds for the eigenvalues of symmetric Toeplitz matrices and application for set-
ting the convergence parameter

As previously discussed, for circulant matrices the estimation of the eigenvalues is a simple task (the FFT of the first row of a circulant
matrix directly provides the eigenvalues). However, computing the eigenvalues is not so simple in general for Toeplitz matrices.

There are some results concerning circulant matrices embedding symmetric Toeplitz matrices that provide relationships between
their respective eigenvalues. This section describes a procedure that allows a simple and accurate estimation of bounds for the largest
and smallest eigenvalues of the autocorrelation matrix Rs in the IRSA method (which is a symmetric Toeplitz positive semi-definite
matrix) as a function of the eigenvalues of an associated circulant matrix (which can easily be calculated with FFT). This result is
very useful for setting the convergence parameter of the IRSA algorithm.

7.1 Bound for the eigenvalues of the symmetric Toeplitz matrix
Let T be a J × J symmetric Toeplitz matrix, defined by its first row t = {t0, t1, . . . , tJ−1}:

T =


t0 t1 t2 · · · tJ−1
t1 t0 t1 · · · tJ−2
t2 t1 t0 · · · tJ−3
...

...
...

. . .
...

tJ−1 tJ−2 tJ−3 · · · t0

 (34)

and let C be its 2J × 2J circulant extension, defined from the 2J-length sequence:

c = {cj , j = 0, . . . , 2J − 1} = {t0, t1, t2, . . . , tJ−1, 0, tJ−1, tJ−2, . . . , t1} (35)

i.e., the matrix:

C =



t0 t1 t2 · · · tJ−1 0 tJ−1 tJ−2 . . . t1
t1 t0 t1 · · · tJ−2 tJ−1 0 tJ−1 . . . t2
t2 t1 t0 · · · tJ−3 tJ−2 tJ−1 0 . . . t3
...

...
...

. . .
...

...
...

...
. . .

...
tJ−1 tJ−2 tJ−3 · · · t0 t1 t2 t3 . . . 0
0 tJ−1 tJ−2 . . . t1 t0 t1 t2 · · · tJ−1

tJ−1 0 tJ−1 . . . t2 t1 t0 t1 · · · tJ−2
tJ−2 tJ−1 0 . . . t3 t2 t1 t0 · · · tJ−3

...
...

...
. . .

...
...

...
...

. . .
...

t1 t2 t3 . . . 0 tJ−1 tJ−2 tJ−3 · · · t0


(36)

Since C is a circulant matrix, it is diagonalized by the DFT (or FFT) and its eigenvalues λj (with j = 0, . . . , 2J − 1) are the
components of the FFT applied to the first row of the matrix:

{λ0, λ1, . . . , λ2J−1} = FFT ({t0, t1, t2, . . . , tJ−1, 0, tJ−1, tJ−2, . . . , t1} (37)

Let µj (with j = 0, . . . , J − 1) be the eigenvalues of the matrix T . According to [Hertz 1992], the maximum and minimum
eigenvalues of T are easily bounded by the maximum and minimum eigenvalues of C:

max(µj) ≤ max
0≤j′<2J

(λj′) (38)

min(µj) ≥ min
0≤j′<2J

(λj′) (39)

This result provides a very simple boundary of all the eigenvalues of the matrix T .
Similarly, in [Ferreira 1994] better bounds are proposed for the largest and smallest eigenvalues of T :

max(µj) ≤
1

2

(
max

0≤j′<J
(λ2j′) + max

0≤j′<J
(λ2j′+1)

)
(40)

min(µj) ≥
1

2

(
min

0≤j′<J
(λ2j′) + min

0≤j′<J
(λ2j′+1)

)
(41)

where λ2j′ and λ2j′+1 are, respectively, the even and odd eigenvalues of the circulant matrix C. Even the derivation of this result
requires some manipulations of auxiliary matrices, its application is very simple, since the eigenvalues of the circulant matrix are
easily calculated with the FFT and they directly provide the upper and lower bounds.
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7.2 Application of the bound to the IRSA algorithm
The analysis of convergence of the IRSA algorithm establishes a maximum value of the convergence parameter α related to the
maximum eigenvalue of the autocorrelation matrix Rs:

α <
2

max(µj)
(42)

Since Rs is a symmetric Toeplitz positive semi-definite matrix, the bound in equation (40) and the convergence condition provide
a bound for the convergence parameter which guarantees stability in the IRSA algorithm. A value of α smaller than the bound but
close to it provides stability and a convergence as fast as possible.

Therefore, in order to simultaneously provide fast convergence and stability of the algorithm, the convergence parameter has been
selected, in the fast implementation of IRSA, with the value:

α =
1.9

1
2 (max(λ2j′) + max(λ2j′+1))

(43)

i.e. the convergence parameter α has been selected as a 95% of the maximum value suggested by the bound for the eigenvalues of
Rs provided by equation (40).

References:

• Hertz, D. (1992). Simple bounds on the extreme eigenvalues of Toeplitz matrices. IEEE Transactions on Information Theory
38(1), 175-176.

• Ferreira, P.J.S.G. (1994). Localization of the eigenvalues of Toeplitz matrices using additive decomposition, embedding in cir-
culants, and the Fourier transform. In: M. Blanke, T. Sı̈¿½derstrı̈¿½m (Eds.), Proceedings of SysID’94, 10th IFAC Symposium
on System Identification, vol III, Copenhagen, Denmark, July 1994, pp. 271-276.
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8 Code for matrix IRSA algorithm, FFT implementation, fast convergence
The following MatLab / Octave code process the electroencephalogram and iteratively estimates the evoked response with the matrix
IRSA algorithm with a FFT based implementation and fast convergence (thanks to the optimization of the convergence parameter α
and by applying a predefined convergence criterion).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [xi ,t_run,t_iter] = IRSA_matrix_fft_fast(y,m,I,SNR,J,OUTPUT)
% IRSA, matrix implementation with matrix product in fft domain
% (this is possible because Rs is a Toeplitz-symmetric matrix)
% Fast version: alpha / converg. criterion optimized (120dB num. error)
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% I (maximum number of iterations)
% SNR (SNR for numerical error in convergence criterion)
% J (Length of the averaging window in samples)
% OUTPUT (flag for presenting results at iterations)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% t_iter (time required for each iteration)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2019
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xi ,t_run,t_iter] = IRSA_matrix_fft_fast(y,m,I,SNR,J,OUTPUT)
% Initialization
tic; % time-stamp beginning of function
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0=zeros(J,1); rs0=zeros(J,1); s=zeros(size(y));
s(m)=1; % stimulation signal
for j=1:J % cross-corr between EEG and stim. signal and autocorr. stim. signal

idx=j+m-1; z0(j)=sum(y(idx)); rs0(j)=sum(s(idx));
end
z0=z0/Es; % first averaged response
rs0=rs0/Es; % normalized autocorrelation stim. signal
RS=real(fft([rs0; 0; flipud(rs0(2:end))])); % FT of autocorrelation
Z0=fft([z0; zeros(J,1)]); Zi=Z0; Xi=zeros(2*J,1); % FT of z0, zi and xi
lambda_1=max(RS(1:2:J)); lambda_2=max(RS(2:2:J));
max_mu=0.5*(lambda_1+lambda_2); % bound for max eigenvalue of autoc. matrix
alpha=1.9/max_mu; % selected alpha (close to maximum value)
ener_z0=Z0’*Z0; % energy of RSA solution used for convergence
thr_conv=10ˆ(-SNR/20); % threshold for convergence criterion
% Iterations
t_iter=toc; % time-stamp for iterations
for i=1:I % loop for iterations

Xi=Xi+alpha*Zi; % AEP estimate in freq. domain
P=RS.*Xi; % matrix product in freq. domain
P1=real(ifft(P)); % this two lines are important in order to truncate
P=fft([P1(1:J); zeros(J,1)]); % the estimation of the P in time domain
Zi=Z0-P;
ener_zi=Zi’*Zi; % energy of the correction at current it.
ratio=sqrt(ener_zi/ener_z0); % ratio of correction vs initialization
if ratio<thr_conv, break; end; % convergence criterion (loop broken)
if OUTPUT==1, fprintf(’It.%d: ratio:%.16f alpha=%.5f\n’,i,ratio,alpha); end;

end
xi=real(ifft(Xi)); % the result is transformed to time domain
xi=xi(1:J); % ...and truncated to remove the non-causal part
t_run=toc; % total execution time
t_iter=(t_run-t_iter)/i; % execution time for each iteration
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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9 Code for the direct RSLSD algorithm (RSLSD at convergence)
The following MatLab / Octave code process the electroencephalogram and directly estimates the evoked response at convergence
with the RSLSD algorithm. This algorithm requires no convergence parameter nor iterations.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [xi ,t_run] = RSLSD_inf(y,m,J)
% Randomized Stimulation with Least Squares Deconvolution: direct
% deconvolution (infinite iterations) with matrix inversion
% xi = Rsˆ(-1) z0 xi = Rs\z0;
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% J (Length of the averaging window in samples)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2019
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xi ,t_run] = RSLSD_inf(y,m,J)
% Initialization
tic; % time-stamp beginning of function
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0=zeros(J,1); rs0=zeros(J,1); s=zeros(size(y)); Rs=zeros(J,J);
s(m)=1; % stimulation signal
for j=1:J

idx=j+m-1;
z0(j)=sum(y(idx)); % cross-corr between EEG and stim. signal
rs0(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=z0/Es; % first averaged response
rs0=rs0/Es; % normalized autocorrelation stim. signal
for i=1:J

j=1:J; idx=abs(j-i)+1;
Rs(i,j)=rs0(idx); % autocorrelation matrix

end
xi=(Rs\z0); % direct deconvolution by matrix inversion
t_run=toc; % total execution time
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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10 Code for the iterative RSLSD algorithm (RSLSD for a finite number of iterations)
The following MatLab / Octave code process the electroencephalogram and iteratively estimates the evoked response with the RSLSD
algorithm (iterative version). Note that this version is computationally more complex than the direct RSLSD algorithm.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [xi ,t_run,t_iter] = RSLSD_iter(y,m,I,J,alpha,OUTPUT)
% Randomized Stimulation with Least Squares Deconvolution: matrix
% implementation using geometric series of matrices, until iteration i
% xi = (I-(I-alpha Rs)ˆi) * Rsˆ(-1) * z0
% Input parameters: y (Recorded EEG)
% m (Trigger vector)
% I (Number of iterations)
% J (Length of the averaging window in samples)
% alpha (Convergence-control parameter)
% OUTPUT (flag for presenting results at iterations)
% Output parameters: xi (AEP estimate)
% t_run (time required for algorithm execution)
% t_run_iter (time required for each iteration)
% Angel de la Torre, Jose Carlos Segura, Joaquin Valderrama 2019
% University of Granada (Spain)
% National Acoustic Laboratories, Macquarie University (Australia)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xi ,t_run,t_iter] = RSLSD_iter(y,m,I,J,alpha,OUTPUT)
% Initialization
tic; % time-stamp beginning of function
Es=length(m); % energy of the stimulation signal (number of stimuli)
z0=zeros(J,1); rs0=zeros(J,1); s=zeros(size(y)); Rs=zeros(J,J);
s(m)=1; % stimulation signal
for j=1:J

idx=j+m-1;
z0(j)=sum(y(idx)); % cross-corr between EEG and stim. signal
rs0(j)=sum(s(idx)); % autocorrelation of stim. signal

end
z0=z0/Es; % first averaged response
rs0=rs0/Es; % normalized autocorrelation stim. signal
for i=1:J

j=1:J; idx=abs(j-i)+1;
Rs(i,j)=rs0(idx); % autocorrelation matrix

end
xia=(Rs\z0); % xia = Rsˆ(-1) z0
A=eye(J)-alpha*Rs; % A = (I - alpha Rs)
xib=xia;
% Iterations
t_iter=toc; % time-stamp for iterations
for i=1:I

xib=A*xib; % (I-alpha Rs)ˆi * Rsˆ(-1) * z0
if OUTPUT==1

fprintf(’Iteration %d: res: %.16f\n’,i,std(xib));
end

end
xi=xia-xib;
t_run=toc; % total execution time
t_iter=(t_run-t_iter)/I; % execution time for each iteration
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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11 Detailed results of IRSA implementations at 50 iteration, α=0.02
This section presents detailed results of the different IRSA implementations, using a convergence parameter α=0.02 and after running
the iterative algorithms for 50 iterations. The results compared at these conditions are obtained with conventional IRSA, matrix IRSA,
matrix IRSA with optimized initialization (matrix-opt), matrix IRSA with FFT-based implementation of the matrix product (matrix-
fft) and IRSA implemented with the geometric series of matrices (RSLSD-iterative).

• Figure 1 shows the responses estimated with the conventional IRSA algorithm with α=0.02 and at 50 iterations. Each figure
shows the responses for a subject, obtained with ISI configurations 480-960 ms, 240-480 ms, 120-240 ms, 60-120 ms, 30-60
ms and 15-30 ms (from top to bottom in the figures). Figures obtained with the other algorithms look identical. Different
waves (including auditory brainstem responses, ABR, middle latency responses, MLR, and cortical auditory evoked potentials,
CAEP) can be identified.

• Table 1 evaluates the differences among the responses provided by the different algorithms. The differences are evaluated with
the SNR, defined as the ratio of the response energy to that of the difference, expressed in dB and using the responses provided
by the conventional IRSA algorithm as reference. A SNR around 260 dB indicates similar results up to the 13th significant
digit, and an increment of 20 dB represents another decimal digit in accuracy. The high SNR obtained in table 1 is an indicator
of the mathematical equivalence of the algorithm implementations, and the small differences among the resulting responses
are associated to the limited precision of the numerical representation (around 16 significant digits for 64-bits double precision
floating-point representation) and the propagation of small errors in the least significant digits in the numerical procedures.

• Tables 2, 3 and 4 evaluates the computational cost of the different algorithm implementations. The table 2 represents the
total execution time (including the initialization and the iterations), the table 3 shows the time required for the algorithm
initialization, and the table 4 shows the time required for each iteration in the iterative algorithms.

SNR referred to IRSA-conventional; α=0.02; 50 iterations
IRSA IRSA IRSA RSLSD

ISI (matrix) (matrix-opt) (matrix-fft) (iterative)
480-960 ms 309.70 (0.52) dB 312.75 (0.19) dB 308.49 (0.18) dB 278.99 (0.35) dB
240-480 ms 308.36 (0.19) dB 310.39 (0.16) dB 308.03 (0.15) dB 271.89 (0.48) dB
120-240 ms 307.23 (0.45) dB 308.58 (0.38) dB 307.38 (0.13) dB 264.39 (2.37) dB
60-120 ms 304.23 (1.31) dB 305.10 (1.21) dB 306.31 (0.55) dB 261.69 (1.23) dB
300-60 ms 300.44 (2.54) dB 301.00 (2.57) dB 303.95 (1.18) dB 256.69 (1.94) dB
15-30 ms 297.63 (4.70) dB 298.00 (4.70) dB 300.71 (3.31) dB 253.36 (5.06) dB
Average 304.60 (4.87) dB 305.97 (5.66) dB 305.81 (3.06) dB 264.34 (8.91) dB

Table 1: Comparison of the responses provided by the different IRSA algorithms at 50 iterations with α=0.02. The SNR evaluates the
difference between the responses (ratio of the response energy to the energy of the difference, expressed in dB, using the responses
provided by the conventional IRSA algorithm as reference). These results are mean values averaged with the 4 subjects (standard
deviation in parenthesis).
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Figure 1: Responses estimated with the conventional IRSA algorithm with α=0.02 after 50 iterations, for the 4 subjects included in
the study. From top to bottom, the responses correspond to the ISI configurations: 480-960 ms, 240-480 ms, 120-240 ms, 60-120 ms,
30-60 ms, and 15-30 ms.
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Total execution time (α=0.02; 50 iterations)
IRSA IRSA IRSA IRSA RSLSD

ISI (conventional) (matrix) (matrix-opt) (matrix-fft) (iterative)
480-960 ms 17.99 (0.75) s 17.83 (1.64) s 12.35 (0.78) s 0.69 (0.02) s 27.87 (1.97) s
240-480 ms 33.34 (0.59) s 17.54 (0.90) s 12.75 (0.44) s 1.11 (0.02) s 28.73 (2.97) s
120-240 ms 63.68 (0.60) s 17.54 (1.02) s 13.52 (0.50) s 1.89 (0.04) s 29.18 (2.06) s
60-120 ms 125.05 (2.40) s 17.22 (0.84) s 15.19 (0.85) s 3.41 (0.06) s 31.69 (3.32) s
300-60 ms 245.37 (1.51) s 16.84 (0.46) s 17.52 (0.40) s 6.26 (0.14) s 34.82 (5.00) s
15-30 ms 485.06 (1.87) s 16.61 (0.67) s 21.76 (0.34) s 10.58 (0.12) s 37.53 (2.70) s

All 970.49 (5.30) s 103.58 (4.01) s 93.08 (2.41) s 23.94 (0.26) s 189.82 (13.60) s

Table 2: Comparison of the computational cost associated to the different IRSA algorithms at 50 iterations with α=0.02. Total
execution time, expressed in seconds, includes the initialization and the 50 iterations. These results are mean values per subject,
averaged with the 4 subjects (standard deviation in parenthesis).

Execution time: initialization (α=0.02; 50 iterations)
IRSA IRSA IRSA IRSA RSLSD

ISI (conventional) (matrix) (matrix-opt) (matrix-fft) (iterative)
480-960 ms 0.14 (0.02) s 12.41 (1.33) s 6.95 (0.47) s 0.61 (0.01) s 22.47 (1.69) s
240-480 ms 0.32 (0.05) s 12.07 (0.69) s 7.23 (0.16) s 1.03 (0.02) s 23.22 (2.39) s
120-240 ms 0.55 (0.03) s 12.11 (0.80) s 8.06 (0.10) s 1.81 (0.04) s 23.73 (1.64) s
60-120 ms 1.12 (0.03) s 11.86 (0.59) s 9.65 (0.26) s 3.33 (0.06) s 26.07 (2.68) s
30-60 ms 2.13 (0.04) s 11.61 (0.28) s 12.26 (0.16) s 6.18 (0.14) s 29.05 (3.78) s
15-30 ms 4.16 (0.07) s 11.49 (0.46) s 16.64 (0.16) s 10.50 (0.12) s 32.08 (2.32) s

Table 3: Comparison of the computational cost associated to the initialization of the different IRSA algorithms. These results are
mean values averaged with the 4 subjects (standard deviation in parenthesis).

Execution time per iteration (α=0.02; 50 iterations)
IRSA IRSA IRSA IRSA RSLSD

ISI (conventional) (matrix) (matrix-opt) (matrix-fft) (iterative)
480-960 ms 356.9 (14.7) ms 108.36 (6.26) ms 107.93 (6.53) ms 1.610 (0.025) ms 108.03 (5.60) ms
240-480 ms 660.3 (10.8) ms 109.37 (4.62) ms 110.37 (5.61) ms 1.630 (0.042) ms 110.17 (11.65) ms
120-240 ms 1262.6 (12.0) ms 108.57 (4.66) ms 109.24 (8.28) ms 1.620 (0.034) ms 109.02 (8.41) ms
60-120 ms 2478.5 (47.5) ms 107.23 (5.31) ms 110.74 (11.83) ms 1.660 (0.113) ms 112.37 (13.44) ms
30-60 ms 4864.7 (29.9) ms 104.61 (3.71) ms 105.20 (4.84) ms 1.608 (0.035) ms 115.33 (24.58) ms
15-30 ms 9617.9 (36.8) ms 102.29 (4.50) ms 102.31 (3.89) ms 1.590 (0.018) ms 108.87 (8.69) ms

Table 4: Comparison of the computational cost associated to each iteration of the different IRSA algorithms. These results are mean
values averaged with the 4 subjects (standard deviation in parenthesis).
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12 Convergence of the IRSA algorithm: results at 50, 100, 500, 1000, 5000, 10000
iterations and at convergence

This section describes the effect of the number of iterations in the IRSA algorithm. The responses have been computed using the
matrix IRSA with the FFT-based implementation of the matrix products, using α=0.02 and running the iterative procedure for a
number of iterations ranging from 50 to 10000. The responses have been compared with those obtained at convergence (estimated
with the RSLSD algorithm, using version directly providing the estimation at convergence).

• Table 5 compares the responses at a given number of iterations with those estimated at convergence in terms of SNR.

• Figure 2 represents the responses for subject 1, at different iterations and at convergence.

• As can be observed from a comparison of the plots and the table, a significant difference is appreciated in the plots for
SNRs below 30 dB, while the plots look identical when the SNRs are above 45 dB. Under this last condition, even though
the numerical convergence is not achieved, the differences are irrelevant from an audiological point of view (i.e. in practice
the responses can be considered identical for wave identification or for wave latency/amplitude measurements). As can be
observed, the number of iterations required for convergence increases as the stimulation rate decreases. For the selected
convergence parameter, 10000 iterations are enough for numerical convergence only at the 480-960 ms ISI configuration, even
though this number of iterations is enough for practical convergence with all the ISI configurations.

SNR referred to RSLSD; IRSA-matrix-fast; α=0.02; between 50 and 10000 iterations
ISI 50 iter. 100 iter. 500 iter. 1000 iter. 5000 iter. 10000 iter.

480-960 ms 8.36 (0.44) dB 15.94 (1.60) dB 48.23 (10.98) dB 76.12 (11.62) dB 277.77 (4.43) dB 264.96 (8.55) dB
240-480 ms 6.84 (1.05) dB 10.96 (2.84) dB 19.23 (5.06) dB 26.15 (5.71) dB 72.91 (6.67) dB 130.03 (6.95) dB
120-240 ms 4.43 (1.73) dB 6.65 (2.70) dB 12.60 (2.72) dB 17.68 (2.43) dB 52.73 (3.10) dB 93.99 (4.16) dB
60-120 ms 2.41 (0.63) dB 3.38 (0.90) dB 7.64 (1.28) dB 12.29 (1.45) dB 45.15 (2.34) dB 83.70 (3.20) dB
30-60 ms 1.13 (0.25) dB 1.71 (0.25) dB 5.35 (0.47) dB 9.42 (0.74) dB 38.98 (1.42) dB 74.73 (1.63) dB
15-30 ms 0.94 (0.39) dB 1.49 (0.49) dB 4.93 (0.76) dB 8.86 (0.92) dB 38.29 (1.58) dB 73.35 (2.43) dB
Average 4.02 (2.98) dB 6.69 (5.61) dB 16.33 (16.06) dB 25.09 (24.55) dB 87.64 (87.73) dB 120.13 (69.10) dB

Table 5: Comparison of the responses provided by RSLSD (at convergence) and the IRSA-matrix-fft with α=0.02, as a function of
the number of iterations. The differences are expressed in terms of SNR. These results are mean values averaged with the 4 subjects
(standard deviation in parenthesis).
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Figure 2: Responses estimated with the IRSA-matrix-fft algorithm with α=0.02 at 50, 100, 500, 1000, 5000 and 10000 iterations
and with the RSLSD algorithm (direct estimation at convergence) for subject 1. From top to bottom, the responses correspond to the
ISI configurations: 480-960 ms, 240-480 ms, 120-240 ms, 60-120 ms, 30-60 ms, and 15-30 ms.
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13 Detailed results of the IRSA implementations at convergence
This section presents detailed results of the IRSA implementations at convergence. The results have been obtained with IRSA-
matrix-fft (using a convergence parameter α=0.02 and 10000 iterations), with IRSA-matrix-fast (with convergence parameter selected
automatically and convergence criterion configured at 290 dB and 120 dB) and with RSLSD (direct estimation of the response at
convergence by matrix inversion). The convergence criterion of 290 dB guarantees numerical convergence, while that of 120 dB
provides the accuracy required in practical situations.

• Figure 3 shows the responses estimated with the IRSA-matrix-fast algorithm using 120 dB as convergence criterion. Plots for
each subject and for each ISI condition are provided. Figures obtained at convergence with the other algorithms or configura-
tions look identical. Different waves, including ABR, MLR and CAEP can be identified.

• Table 6 evaluates the differences among the responses provided by the different IRSA algorithms at convergence. The differ-
ences are evaluated in terms of the SNR, using the responses provided by the RSLSD algorithm as reference. This table shows
that in all the cases the IRSA algorithms provide a solution close enough to the convergence.

• Tables 7, 8 and 9 evaluate the computational cost of the different algorithm implementations. The table 7 represents the
total execution time (including the initialization and the iterations), the table 8 shows the time required for the algorithm
initialization, and the table 9 shows the time required for each iteration in the iterative algorithms. Finally, table 10 shows the
convergence parameter used in the IRSA-matrix-fast implementations, and the number of iterations executed by this algorithm
when it is configured with 290 dB and 120 dB as convergence criterion.

SNR referred to RSLSD (configuration for convergence)
IRSA IRSA IRSA

(matrix-fft) (matrix-fast) (matrix-fast)
ISI α=0.02, 10000 it. 290 dB 120 dB

480-960 ms 264.96 (8.55) dB 280.95 (1.29) dB 110.98 (0.74) dB
240-480 ms 130.03 (6.95) dB 266.78 (0.92) dB 96.59 (0.41) dB
120-240 ms 93.99 (4.16) dB 264.96 (1.28) dB 95.24 (1.83) dB
60-120 ms 83.70 (3.20) dB 263.69 (0.23) dB 93.84 (0.23) dB
300-60 ms 74.73 (1.63) dB 263.67 (1.51) dB 94.17 (1.63) dB
15-30 ms 73.35 (2.43) dB 146.25 (3.86) dB 94.48 (2.17) dB
Average 120.13 (69.10) dB 247.72 (46.78) dB 97.55 (6.32) dB

Table 6: Comparison of the responses provided by the different IRSA algorithms configured for convergence. The responses are
compared with those provided by RSLSD (at convergence). The differences are expressed in terms of SNR. These results are mean
values averaged with the 4 subjects (standard deviation in parenthesis).

Total execution time (configuration for convergence)
IRSA IRSA IRSA RSLSD

(matrix-fft) (matrix-fast) (matrix-fast) (convergence)
ISI α=0.02, 10000 it. 290 dB 120 dB

480-960 ms 17.30 (0.22) s 0.81 (0.01) s 0.69 (0.02) s 23.59 (0.28) s
240-480 ms 17.61 (0.09) s 2.71 (0.06) s 1.59 (0.05) s 24.61 (0.44) s
120-240 ms 18.37 (0.13) s 6.23 (0.25) s 3.35 (0.11) s 24.76 (0.67) s
60-120 ms 20.08 (0.04) s 12.21 (0.38) s 6.35 (0.17) s 26.54 (0.70) s
300-60 ms 23.14 (0.16) s 24.69 (0.62) s 12.76 (0.44) s 29.62 (0.88) s
15-30 ms 28.17 (0.64) s 31.33 (1.13) s 24.03 (0.98) s 34.89 (1.13) s

All 124.67 (0.95) s 77.98 (2.07) s 48.76 (1.48) s 164.01 (3.35) s

Table 7: Comparison of the computational cost associated to the different IRSA algorithms configured for convergence. Total
execution time (including initialization and iterations) expressed in seconds. These results are mean values per subject, averaged with
the 4 subjects (standard deviation in parenthesis).
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Figure 3: Responses estimated with the IRSA-matrix-fast algorithm, 120 dB as convergence criterion. From top to bottom, the
responses correspond to the ISI configurations: 480-960 ms, 240-480 ms, 120-240 ms, 60-120 ms, 30-60 ms, and 15-30 ms.
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Execution time: initialization (configuration for convergence)
IRSA IRSA IRSA RSLSD

(matrix-fft) (matrix-fast) (matrix-fast) (convergence)
ISI α=0.02, 10000 it. 290 dB 120 dB

480-960 ms 0.63 (0.01) s 0.62 (0.01) s 0.62 (0.01) s 23.59 (0.28) s
240-480 ms 1.07 (0.01) s 1.05 (0.01) s 1.06 (0.01) s 24.61 (0.44) s
120-240 ms 1.96 (0.01) s 1.94 (0.02) s 1.95 (0.01) s 24.76 (0.67) s
60-120 ms 3.57 (0.03) s 3.57 (0.01) s 3.54 (0.02) s 26.54 (0.70) s
30-60 ms 6.60 (0.08) s 6.65 (0.18) s 6.56 (0.06) s 29.62 (0.88) s
15-30 ms 11.72 (0.40) s 11.70 (0.43) s 11.67 (0.33) s 34.89 (1.13) s

Table 8: Comparison of the computational cost associated to the initialization of the different IRSA algorithms configured for
convergence. These results are mean values averaged with the 4 subjects (standard deviation in parenthesis).

Execution time per iteration (configuration for convergence)
IRSA IRSA IRSA RSLSD

(matrix-fft) (matrix-fast) (matrix-fast) (convergence)
ISI α=0.02, 10000 it. 290 dB 120 dB

480-960 ms 1.667 (0.021) ms 1.991 (0.033) ms 1.901 (0.057) ms 0.000 (0.000) ms
240-480 ms 1.654 (0.009) ms 1.998 (0.034) ms 1.989 (0.049) ms 0.000 (0.000) ms
120-240 ms 1.641 (0.012) ms 1.961 (0.071) ms 1.963 (0.053) ms 0.000 (0.000) ms
60-120 ms 1.651 (0.002) ms 1.969 (0.044) ms 1.928 (0.057) ms 0.000 (0.000) ms
30-60 ms 1.654 (0.008) ms 1.982 (0.042) ms 1.974 (0.092) ms 0.000 (0.000) ms
15-30 ms 1.645 (0.024) ms 1.963 (0.073) ms 1.963 (0.063) ms 0.000 (0.000) ms

Table 9: Comparison of the computational cost associated to each iteration of the different IRSA algorithms configured for conver-
gence. These results are mean values averaged with the 4 subjects (standard deviation in parenthesis).

Parameters of the fast implementation of IRSA
convergence criterion: converg. criterion: converg. criterion:

290 dB / 120 dB 290 dB 120 dB
ISI selected α number of iter. number of iter.

480-960 ms 0.82852 (0.00817) 97.75 (7.68) 34.00 (4.90)
240-480 ms 0.52060 (0.00156) 829.50 (25.01) 267.25 (22.29)
120-240 ms 0.28299 (0.00151) 2185.00 (54.04) 713.50 (36.63)
60-120 ms 0.15548 (0.00026) 4387.25 (112.75) 1455.00 (57.38)
30-60 ms 0.08105 (0.00012) 9102.75 (152.43) 3139.75 (111.74)
15-30 ms 0.04164 (0.00003) 10000.00 (0.00)∗ 6291.00 (218.33)

Table 10: Selected convergence parameter α in the IRSA-matrix-fast implementations for each ISI configuration, and number of
iterations required to achieve the selected convergence criterion (∗note that for ISI 15-30 ms, when selected 290 dB for convergence,
the convergence criterion is not achieved at the maximum number of iterations allowed in this test).
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14 Effect of the response length J over the execution time
This section study the effect of the response length J (or the duration of the response window) over the total execution time.

• Table 11 shows the total execution time as a function of the response length for the different implementations of the IRSA
algorithm. For those implementation more expensive in terms of computational cost (IRSA-conventional, IRSA-matrix, IRSA-
matrix-opt and RSLSD-iterative) the algorithm has been executed for 50 iterations and the total execution time has been
estimated for 10000 iterations from the results at 50 iterations taking into account the time required for both initialization and
iterations.

• Figure 4 represents the total execution times as a function of the response length J for the different algorithm implementations.
Figure 5 shows a detail of the previous one for the fastest algorithms.

• Figure 6 represents the responses estimated for subject 1 for different configurations of the response length, from J=147 (10
ms) to J=14700 (1 s). Interestingly, the responses obtained with different values of J are not identical: the effect of reducing
the response length is, approximately, a truncation of the response, but in addition to the truncation, some differences are clearly
observed. These differences are associated to the number of freedom degrees of the solution (the estimated response) involved
in the optimization problem (i.e. the minimization of the residual) implemented with the IRSA (or RSLSD) algorithm.

Total execution time (for IRSA algorithms α=0.02, 50 iter., estimations for 10000 iterations)
IRSA IRSA IRSA RSLSD

J (response duration) (conventional) (matrix) (matrix-opt) (iterative)
14700 (1000 ms) 192421.4 (1038.1) s 6476.18 (241.78) s 6518.97 (323.41) s 6794.81 (589.06) s

7350 (500 ms) 107334.0 (126.6) s 1491.02 (29.07) s 1467.81 (17.24) s 1575.78 (10.21) s
3675 (250 ms) 50524.4 (26.0) s 403.11 (7.26) s 374.20 (2.77) s 397.90 (1.38) s
1470 (100 ms) 23199.4 (32.5) s 104.41 (0.39) s 59.51 (0.35) s 58.42 (0.91) s
735 (50 ms) 14368.6 (12.7) s 34.99 (0.23) s 5.49 (0.06) s 4.99 (0.12) s
368 (25 ms) 10064.4 (9.7) s 31.90 (0.07) s 2.24 (0.04) s 1.90 (0.03) s
147 (10 ms) 7465.74 (45.5) s 30.80 (0.22) s 1.00 (0.02) s 0.84 (0.02) s

Total execution time (for IRSA-matrix-fft, IRSA-matrix-fast and RSLSD)
IRSA IRSA IRSA RSLSD

(matrix-fft) (matrix-fast) (matrix-fast) (convergence)
J (response duration) α=0.02, 10000 it. 290 dB 120 dB

14700 (1000 ms) 124.67 (0.95) s 77.98 (2.07) s 48.76 (1.48) s 164.01 (3.35) s
7350 (500 ms) 61.77 (0.09) s 28.48 (0.29) s 17.38 (0.11) s 32.27 (0.28) s
3675 (250 ms) 31.94 (0.05) s 10.38 (0.06) s 7.50 (0.06) s 9.86 (0.06) s
1470 (100 ms) 15.90 (0.04) s 3.42 (0.04) s 2.84 (0.03) s 3.00 (0.02) s
735 (50 ms) 9.19 (0.03) s 1.60 (0.01) s 1.45 (0.00) s 1.47 (0.00) s
368 (25 ms) 6.79 (0.02) s 0.94 (0.01) s 0.83 (0.00) s 0.80 (0.00) s
147 (10 ms) 4.28 (0.02) s 0.55 (0.01) s 0.47 (0.00) s 0.41 (0.00) s

Table 11: Comparison of the computational cost (execution time) associated to the different IRSA algorithms (configured for con-
vergence), as a function of the response length. Results include the total execution time for all the ISI configurations. Results
for IRSA-conventional, IRSA-matrix, IRSA-matrix-opt and RSLSD-iterative are estimations for 10000 iterations obtained from the
results for 50 iterations. These results are mean values per subject, averaged with the 4 subjects (standard deviation in parenthesis).
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Figure 4: Execution time for the complete test (including all the ISI configurations) as a function of the response length J (in
samples), for the different IRSA algorithms (configured for convergence). Results for IRSA-conventional, IRSA-matrix, IRSA-
matrix-opt and RSLSD-iterative are estimations for 10000 iterations obtained from the results for 50 iterations. These results are
mean values per subject.
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Figure 5: Execution time for the complete test (including all the ISI configurations) as a function of the response length J (in
samples). Detail of the previous figure.
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Figure 6: Responses estimated with the IRSA-matrix-fast algorithm, 120 dB as convergence criterion for different configurations of
the response length J . This responses have been estimated for subject 1. From top to bottom, the responses correspond to the ISI
configurations: 480-960 ms, 240-480 ms, 120-240 ms, 60-120 ms, 30-60 ms, and 15-30 ms.
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15 Responses provided by IRSA
This section presents the responses obtained with IRSA at convergence. The responses have been estimated with the IRSA-matrix-fast
algorithm with 120 dB as convergence criterion.

• Figures 7 and 8 show the responses for each subject (figure 7 for subjects 1 and 2; figure 8 for subjects 3 and 4). The plots in
the left panels are the responses estimated from the complete EEG. Responses estimated with three EEG portions of 228 s have
been also estimated for consistency verification of the evoked responses. The plots in the right panels represent the responses
estimated with these short EEG portions. The responses for each subject and each condition are very consistent and the most
relevant waves (including ABR, MLR and CAEP) can be identified in all the subjects.

• Figure 9 contains the evoked responses for the different ISI configurations. The left panel shows the grand average (estimated
from all the subjects) while the right panel show the individual responses for each subject. The waves are very consistent in the
grand average, even though some inter-individual differences can be appreciated. The most relevant waves (including ABR,
MLR and CAEP: I, III, V, N0, P0, Na, Pa, Nb, Pb/P1, N1, P2, N2, P3) can easily be identified in the grand average responses.
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Figure 7: Responses estimated with the IRSA-matrix-fast algorithm, 120 dB as convergence criterion, subjects 1 and 2. Left panels:
responses estimated from the complete EEG (684 s); right panels: responses estimated with three EEG portions of 228 s. From top to
bottom, the responses correspond to the ISI configurations: 480-960 ms, 240-480 ms, 120-240 ms, 60-120 ms, 30-60 ms, and 15-30
ms.
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Figure 8: Responses estimated with the IRSA-matrix-fast algorithm, 120 dB as convergence criterion, subjects 3 and 4. Left panels:
responses estimated from the complete EEG (684 s); right panels: responses estimated with three EEG portions of 228 s. From top to
bottom, the responses correspond to the ISI configurations: 480-960 ms, 240-480 ms, 120-240 ms, 60-120 ms, 30-60 ms, and 15-30
ms.
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Grand Average Individual responses

Figure 9: Responses estimated with the IRSA-matrix-fast algorithm, 120 dB as convergence criterion. Left panel: grand average
(from all the subjects). Right panel: comparison of the individual responses for each subject. From top to bottom, the responses
correspond to the ISI configurations: 480-960 ms, 240-480 ms, 120-240 ms, 60-120 ms, 30-60 ms, and 15-30 ms.
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16 Code for a script running an AEP simulation and testing the different IRSA and
RSLSD implementations

The following MatLab / Octave code is a script running a simulation for testing the different IRSA and RSLSD implementations.
A reference response is loaded in “x”; the EEG is simulated using the response, and a predefined ISI configuration. Some noise is
added. The responses are estimated using the different IRSA and RSLSD algorithm implementations and the results are compared.
Different experiments can easily be simulated with the configuration parameters.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% script_simuation_IRSA.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This script compares different IRSA implementations with a simulated EAP
% experiment
% The execution of this script requires the following functions:
% IRSA_convent.m IRSA conventional implementation
% IRSA_matrix.m IRSA matrix-based implementation
% IRSA_matrix_opt.m similar to previous, optimized initialization
% IRSA_matrix_fft.m similar to previous, matrix products with FFT
% IRSA_matrix_fft_fast.m similar, optimum alpha, convergence check
% RSLSD_iter.m iterative version RSLSD, equivalent to IRSA
% RSLSD_inf.m RSLSD at convergence (infinite number of iter.)
% And additionally, a response used for the simulation
% response_30_60_subj1.mat
% It requires signal processing toolbox
% For Octave users, run:
% pkg load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear,clc;

%% Configuration parameters for simulation
fs=14700; % sampling rate 14700 Hz
NOISE_GAIN=2; % noise level
%J=round(1000e-3*fs); % length of the response 14700, for 1 second
J=round(200e-3*fs); % length of the response: 2940 for 200 ms
isi_min=30e-3; % 30 ms
isi_max=60e-3; % 60 ms
%n_stim=15200; % number of stimuli 15200
n_stim=500; % number of stimuli 200
N_iter=20; % number of iterations
alpha=0.05; % convergence parameter
OUTPUT_IRSA=1; % flag for reporting algorithm evolution
CONVERG_CRITERION=120; % convergence criterion for IRSA_matrix_fft_fast, 120 dB

%% Stimulation sequence
isi=rand(n_stim,1)*(isi_max-isi_min)+isi_min; % random distribution of isi, uniform
stim_ind = round(cumsum(isi)*fs); % indexes of stimulus start
N=max(stim_ind)+fs; % number of samples
s=zeros(N,1);
s(stim_ind)=1;

%% Response to be used in simulation (response to be estimated)
load(’response_30_60_subj1.mat’);
x(J+1)=0; x=x(1:J); % this guarantees a response length equal to J
t_plot=(0:(J-1))/fs;
figure(1)
semilogx(t_plot*1000,x); xlabel(’time (ms)’); ylabel(’amplitude’);
title(’Response to be estimated (time log-scaled)’);
grid on; xlim([0.1 1000*J/fs]);
figure(2)
plot(t_plot*1000,x); xlabel(’time (ms)’); ylabel(’amplitude’);
title(’Response to be estimated (time in linear scale)’);
grid on; xlim([0 1000*J/fs]);

%% Simulation of EEG: y=s*x+noise
y0=filter(x,1,s);
y=y0+randn(size(y0))*std(y0)*NOISE_GAIN;
SNR_EEG=10*log10(var(y0)/var(y-y0));
t_plotN=(0:(N-1))/fs;
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figure(3)
plot(t_plotN,y); xlabel(’time (s)’); ylabel(’amplitude’);
title(sprintf(’EEG (SNR-EEG: %.2f dB)’,SNR_EEG))
figure(4)
plot(t_plotN,y); xlim([0 1])
xlabel(’time (s)’); ylabel(’amplitude’);
title(sprintf(’EEG (first second) (SNR-EEG: %.2f dB)’,SNR_EEG))

%% Deconvolution (with predefined alpha and number of iterations)
fprintf(’Running conventional IRSA....\n’)
[x1,t_run1] = IRSA_convent(y,stim_ind,N_iter,J,alpha,OUTPUT_IRSA);
fprintf(’Running matrix-based IRSA....\n’)
[x2,t_run2] = IRSA_matrix(y,stim_ind,N_iter,J,alpha,OUTPUT_IRSA);
fprintf(’Running matrix-based IRSA, optimized initialization....\n’)
[x3,t_run3] = IRSA_matrix_opt(y,stim_ind,N_iter,J,alpha,OUTPUT_IRSA);
fprintf(’Running matrix-based IRSA, FFT-based matrix product....\n’)
[x4,t_run4] = IRSA_matrix_fft(y,stim_ind,N_iter,J,alpha,OUTPUT_IRSA);
fprintf(’Running RSLSD iterative (geometric series of matrices)....\n’)
[x5,t_run5] = RSLSD_iter(y,stim_ind,N_iter,J,alpha,OUTPUT_IRSA);
% Deconvolution at convergence
fprintf(’Running matrix-based IRSA, fast implementation....\n’)
[x6,t_run6] = IRSA_matrix_fft_fast(y,stim_ind,10000,CONVERG_CRITERION,J,OUTPUT_IRSA);
fprintf(’Running RSLSD at convergence (direct RSLSD for infinite iterations)....\n’)
[x7,t_run7] = RSLSD_inf(y,stim_ind,J);
fprintf(’\n--------END OF IRSA/RSLSD ALGORITHMS---------------\n\n’)

%% Results: figure
figure(5)
semilogx(t_plot*1000,[x+4.5 x7+3.5 x6+3 x5+2 x4+1.5 x3+1 x2+0.5 x1 ]);
xlabel(’time (ms)’); ylabel(’amplitude’);
title(’Estimated responses’);
legend(’Response’,’RSLSD-convergence’,’IRSA-fast’,’RSLSD-iter’,’IRSA-matrix-fft’,...

’IRSA-matrix-opt’,’IRSA-matrix’,’IRSA-conventional’);
legend(’Location’,’eastoutside’);
grid on; xlim([1 1000*J/fs]);

%% Results: difference among responses
% SNR using real response as reference
SNR1_a=10*log10(var(x)/var(x1-x)); SNR2_a=10*log10(var(x)/var(x2-x));
SNR3_a=10*log10(var(x)/var(x3-x)); SNR4_a=10*log10(var(x)/var(x4-x));
SNR5_a=10*log10(var(x)/var(x5-x)); SNR6_a=10*log10(var(x)/var(x6-x));
SNR7_a=10*log10(var(x)/var(x7-x));
% SNR using RSLSD-converg as reference
SNR1_b=10*log10(var(x)/var(x1-x7)); SNR2_b=10*log10(var(x)/var(x2-x7));
SNR3_b=10*log10(var(x)/var(x3-x7)); SNR4_b=10*log10(var(x)/var(x4-x7));
SNR5_b=10*log10(var(x)/var(x5-x7)); SNR6_b=10*log10(var(x)/var(x6-x7));
% SNR using IRSA-conventional as reference
SNR2_c=10*log10(var(x1)/var(x2-x1)); SNR3_c=10*log10(var(x)/var(x3-x1));
SNR4_c=10*log10(var(x1)/var(x4-x1)); SNR5_c=10*log10(var(x)/var(x5-x1));
SNR6_c=10*log10(var(x)/var(x6-x1)); SNR7_c=10*log10(var(x)/var(x7-x1));
fprintf(’SNR of estimated responses, using real response as reference:\n’)
fprintf(’ IRSA-conv: %.2f dB\n IRSA-matr: %.2f dB\n IRSA-matr-opt: %.2f dB\n’,...

SNR1_a,SNR2_a,SNR2_a);
fprintf(’ IRSA-matr-fft: %.2f dB\n RSLSD-iter: %.2f dB\n’,SNR4_a,SNR5_a);
fprintf(’ IRSA-matr-fast: %.2f dB\n RSLSD-converg: %.2f dB\n\n’,SNR6_a,SNR7_a);
fprintf(’SNR of estimated responses, using RSLSD-converg response as reference:\n’)
fprintf(’ IRSA-conv: %.2f dB\n IRSA-matr: %.2f dB\n IRSA-matr-opt: %.2f dB\n’,...

SNR1_b,SNR2_b,SNR2_b);
fprintf(’ IRSA-matr-fft: %.2f dB\n RSLSD-iter: %.2f dB\n’,SNR4_b,SNR5_b);
fprintf(’ IRSA-matr-fast: %.2f dB\n\n’,SNR6_b);
fprintf(’SNR of estimated responses, using IRSA-convent response as reference:\n’)
fprintf(’ IRSA-matr: %.2f dB\n IRSA-matr-opt: %.2f dB\n’,SNR2_c,SNR2_c);
fprintf(’ IRSA-matr-fft: %.2f dB\n RSLSD-iter: %.2f dB\n’,SNR4_c,SNR5_c);
fprintf(’ IRSA-matr-fast: %.2f dB\n RSLSD-converg: %.2f dB\n\n’,SNR6_c,SNR7_c);
fprintf(’Total execution time:\n’)
fprintf(’ IRSA-conv: %.5f s\n IRSA-matr: %.5f s\n’,t_run1,t_run2);
fprintf(’ IRSA-matr-opt: %.5f s\n IRSA-matr-fft: %.5f s\n’,t_run3,t_run4);
fprintf(’ RSLSD-iter: %.5f s\n IRSA-matr-fast: %.5f s\n’,t_run5,t_run6);
fprintf(’ RSLSD-converg: %.5f s\n\n’,t_run7);

return
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