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The iterative randomized stimulation and averaging (IRSA) method was proposed for recording

evoked potentials when the individual responses are overlapped. The main inconvenience of IRSA is

its computational cost, associated with a large number of iterations required for recovering the

evoked potentials and the computation required for each iteration [involving the whole electroen-

cephalogram (EEG)]. This article proposes a matrix-based formulation of IRSA, which is mathemati-

cally equivalent and saves computational load (because each iteration involves just a segment with

the length of the response, instead of the whole EEG). Additionally, it presents an analysis of conver-

gence that demonstrates that IRSA converges to the least-squares (LS) deconvolution. Based on the

convergence analysis, some optimizations for the IRSA algorithm are proposed. Experimental results

(configured for obtaining the full-range auditory evoked potentials) show the mathematical equiva-

lence of the different IRSA implementations and the LS-deconvolution and compare the respective

computational costs of these implementations under different conditions. The proposed optimizations

allow the practical use of IRSA for many clinical and research applications and provide a reduction

of the computational cost, very important with respect to the conventional IRSA, and moderate with

respect to the LS-deconvolution. MATLAB/Octave implementations of the different methods are pro-

vided as supplementary material. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Evoked response is recorded using electrodes and ampli-

fying the electrical signal associated with the neural activity

evoked by a stimulus. Usually, the amplitude of this signal is

very low compared to that of the noise (i.e., the signal to noise

ratio, SNR, is low), and therefore the evoked potentials are

obtained by averaging the responses to a number of stimuli

(Thornton, 2007). Synchronized averaging provides an accu-

rate estimate of the response only when the stimuli are ade-

quately separated from each other and there is no overlapping

between each individual response and the responses elicited

by the adjacent stimuli (Woldorff, 1993). This method con-

strains the recording of evoked potentials to a minimum inter-

stimulus interval (ISI) equal to the duration of the response.

However, recording responses evoked at a high stimulation

rate is useful in order to investigate adaptation mechanisms

(i.e., how the responses are affected by the stimulation rate)

(Gillespie and Muller, 2009; Thornton and Coleman, 1975),

particularly because in normal perception, stimuli are not pre-

sented in an isolated or quasi-isolated way.

There are several procedures proposed for recording

auditory evoked potentials (AEPs) at high stimulation rates.

The most relevant methods are maximum length sequences

(MLS) (Eysholdt and Schreiner, 1982; Thornton and Slaven,

1993), adjacent-responses (ADJAR) (Woldorff, 1993),

quasi-periodic sequence deconvolution (QSD) (Jewett et al.,
2004), continuous loop averaging deconvolution (CLAD)

(Bohorquez and Ozdamar, 2006; Ozdamar and Bohorquez,

2006), randomized stimulation and averaging (RSA)

(Valderrama et al., 2012), and least-squares (LS) deconvolu-

tion (Bardy et al., 2014a; Bardy et al., 2014b; Bardy et al.,
2014c; Maddox and Lee, 2018). What these methods have in

common is that the ISI is not constant (otherwise, the inter-

ference associated with overlapping cannot be avoided).

Among them, RSA allows a flexible design of the ISI

distribution (Valderrama et al., 2012), which is particularly

useful for investigating several adaptation phenomena

(Valderrama et al., 2014c). Even though RSA provides the

evoked potentials when the responses are overlapped (i.e.,

when the ISI is shorter than the duration of the response),

Valderrama et al. (2014b) demonstrated that the recovered

response is affected by distortion depending on the ISI distri-

bution and the autocorrelation function of the response.

Particularly, a narrow distribution of ISI causes a strong dis-

tortion of the recovered response. For example, the increased

magnitude response reported in the 40 Hz steady-state

response is the result of a constructive interference associ-

ated with the aforementioned distortion (Bohorquez and

Ozdamar, 2008; Galambos et al., 1981). An iterative version

of RSA (called iterative-randomized stimulation and averag-

ing, or IRSA) was proposed in order to minimize this distor-

tion and provide a more accurate estimate of the response

(Valderrama et al., 2014b). In IRSA, the algorithm is initial-

ized with the response provided by synchronized average
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using RSA. Using this initial estimation of the evoked

response, the expected electroencephalogram (EEG), i.e., the

convolution of the stimulation sequence with the estimated

response, is subtracted from the recorded EEG, and the resid-

ual EEG is averaged in order to estimate a correction to the

response. The corrected response is then used to update the

expected EEG, and the new residual EEG is averaged to esti-

mate a new correction, and the process iteratively repeated

until convergence.

IRSA was demonstrated to be a strong algorithm to

recover responses evoked at high stimulation rates because it

provides non-distorted responses even for restrictive ISI distri-

butions, which provides a lot of flexibility in the experimental

design. However, IRSA presents two important inconvenien-

ces. The first one is that, sometimes, the algorithm solution

tends to oscillate, depending on the statistical properties of the

stimulation sequence. Particularly, narrow distributions of the

ISI increase the risk of oscillation. The oscillations can easily

be avoided by including a convergence control parameter (a)

in the algorithm, representing the relative updating performed

at each iteration. A small enough a avoids oscillations, but in

this case, IRSA requires a larger number of iterations to con-

verge. The second inconvenience is the amount of computation

involved in the IRSA algorithm (particularly when a is small

and therefore many iterations are required): each iteration

requires the manipulation of the whole EEG (in order to esti-

mate the residual EEG), and therefore the computational load

of IRSA is prohibitive in most practical applications.

The IRSA method has been successfully applied in sev-

eral AEP experiments, showing its potential with respect to

the flexibility in the stimulation design (Burkard et al., 2018;

Finneran, 2017, 2018; Finneran et al., 2019; Valderrama

et al., 2014c; Valderrama et al., 2016). However, despite its

advantages, IRSA is not extensively applied due to the associ-

ated computational load, and its utilization has been limited to

experimental configurations in which the algorithm complex-

ity is not very restrictive (i.e., evoked responses with short

duration, as in the case of auditory brainstem responses).

In this article we propose a matrix-based formulation

aiming to reduce the computational complexity of the IRSA

method. This formulation is mathematically equivalent to

the conventional one but provides a significant reduction of

the computational load. Additionally, we present a conver-

gence analysis of the matrix-IRSA method which demon-

strates that IRSA converges to the LS-deconvolution method

(Bardy et al., 2014a; Bardy et al., 2014b; Bardy et al.,
2014c), also proposed for recovering evoked responses at

high stimulation rate. Using real EEGs recorded in an AEP

experiment, several versions of the IRSA (including differ-

ent optimizations) and LS-deconvolution methods are com-

pared in order to demonstrate the mathematical equivalence

and to evaluate their respective computational costs.

II. MATRIX FORMULATION OF IRSA

A. EEG model

The digital EEG y(n) acquired in an AEP recording pro-

cedure is usually modeled as a convolutional process (Jewett

et al., 2004; Ozdamar and Bohorquez, 2006)

yðnÞ ¼ sðnÞ � xðnÞ þ n0ðnÞ; (1)

where n is the index of the samples; N is the number of sam-

ples of the EEG (n 2 f0;…;N � 1g); s(n) is the stimulation

sequence consisting of one impulse at the beginning of each

stimulation event; x(n) represents the evoked response to

each stimulus [with x(n) null for n > ðJ � 1Þ, J being the

length of the evoked response]; n0ðnÞ represents the noise

affecting the EEG; and the asterisk (�) represents convolu-

tion. If the stimulation sequence contains K events at the

samples mk, the stimulation sequence can be written as

sðnÞ ¼
XK�1

k¼0

dðn� mkÞ; (2)

where dðnÞ is the unitary impulse at n¼ 0. Taking into account

that xðnÞ � dðn� mkÞ ¼ xðn� mkÞ, the EEG can be rewritten as

yðnÞ ¼
XK�1

k¼0

xðn� mkÞ þ n0ðnÞ: (3)

B. RSA and IRSA procedures

The RSA determination of the evoked response provides

an estimate of the response by synchronous averaging of the

EEG (Valderrama et al., 2012)

x̂ðjÞ ¼ 1

K

XK�1

k¼0

yðjþ mkÞ; (4)

with j 2 f0;…; J � 1g. When the length of the response J
(i.e., the number of samples for which the response can be

assumed to be non-null) is smaller than the minimum ISI,

this estimation is only affected by the noise, and averaging

with a large enough number of stimuli provides an accurate

estimate of the response. However, if the responses are over-

lapped (the minimum ISI is smaller than J), the interference

associated with adjacent responses degrades the estimation.

The IRSA algorithm aims to overcome the effect of this

interference. The main idea of IRSA is that the interference

can be estimated using the estimated response x̂ðjÞ, and there-

fore, a more accurate response can iteratively be estimated by

averaging a modified EEG in which the interference associated

with the adjacent responses is suppressed (Valderrama et al.,
2014b; Valderrama et al., 2016). By using the estimated

response at iteration i, x̂iðjÞ, an interference-free EEG for the

kth stimulus (i.e., in which the interference from all the stimuli

except the kth is suppressed) can be derived as

yk;iðnÞ ¼ yðnÞ �
XK�1

k0¼0;k0 6¼k

x̂iðn� mk0 Þ; (5)

and the evoked response can be estimated at iteration iþ 1

by averaging the EEG portions without interference

x̂iþ1ðjÞ ¼
1

K

XK�1

k¼0

yk;iðjþ mkÞ: (6)
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This way, each iteration provides a better estimate of the

evoked response, which also leads to a more accurate sup-

pression of the interference for the next iteration. Through

this iterative process, IRSA tends to minimize the effect of

the interference caused by overlapping responses.

In general, an evoked-potential recording session

involves a large number of stimuli and a long EEG.

Therefore, the proposed IRSA is unpractical, because, at

each iteration i, K EEGs should be calculated (each one

including only the kth response and suppressing all the

others), leading to a large amount of computation.

However, the computation can be simplified, since sup-

pressing all except one is equivalent to suppress all and

then add one

yk;iðnÞ ¼ yðnÞ �
XK�1

k0¼0

x̂iðn� mk0 Þ þ x̂iðn� mkÞ

¼ riðnÞ þ x̂iðn� mkÞ; (7)

where riðnÞ ¼ yðnÞ � sðnÞ � x̂iðnÞ represents the residual of

the EEG, i.e., the recorded EEG minus the EEG expected

from the estimated response x̂iðjÞ and the stimulation

sequence s(n). With this definition, the IRSA estimation can

be reformulated as

x̂iþ1ðjÞ ¼
1

K

XK�1

k¼0

riðjþ mkÞ þ
1

K

XK�1

k¼0

x̂iðj� mk þ mkÞ

¼ 1

K

XK�1

k¼0

riðjþ mkÞ þ x̂iðjÞ; (8)

or if we define ziðjÞ as the averaged residual

ziðjÞ ¼
1

K

XK�1

k¼0

riðjþ mkÞ; (9)

the iterative estimation of the response can be written as

x̂iþ1ðjÞ ¼ ziðjÞ þ x̂iðjÞ: (10)

Even though the IRSA algorithm usually converges to a

stable solution, it was found that it is sometimes unstable,

depending on the distribution of ISI in the stimulation

sequence. This instability produces an oscillation of the solu-

tion from iteration to iteration (Valderrama et al., 2014b).

The risk of instability particularly increases for narrow ISI

distributions. Including a convergence control parameter (a,

in the range [0,1]) was found to be a simple solution in order

to avoid this instability,

x̂iþ1ðjÞ ¼ x̂iðjÞ þ a � ziðjÞ: (11)

According to Valderrama et al. (2014b), a small enough a
guarantees convergence and stability of IRSA, but requires

more iterations to reach convergence.

Taking into account the previous derivations, the con-

ventional IRSA algorithm can be summarized as follows:

(1) Initialization

x̂0ðjÞ ¼ 0 z0ðjÞ ¼
1

K

XK�1

k¼0

yðjþ mkÞ: (12)

(2) Response updating

x̂iðjÞ ¼ x̂i�1ðjÞ þ a � zi�1ðjÞ: (13)

(3) Residual estimation

riðnÞ ¼ yðnÞ �
XK�1

k¼0

x̂iðn� mkÞ: (14)

(4) Averaged-residual estimation

ziðjÞ ¼
1

K

XK�1

k¼0

riðjþ mkÞ: (15)

(5) Steps 2–4 are repeated until convergence.

In this algorithm, j¼ 0,…, J� 1 in steps 1, 2, and 4, and

n¼ 0,…, N� 1 in step 3.

The energy of the averaged residual tends to

decrease with the iterations, and different convergence crite-

ria can be applied (for example, a minimum reduction of the

averaged residual energy, a relative reduction of the aver-

aged residual energy with respect to that of the previous iter-

ation, a predefined number of iterations, etc.).

It can be noted that z0ðjÞ in IRSA corresponds to the

estimation provided by RSA [in Eq. (4)]. The computational

complexity increases linearly with the number of iterations

and is also influenced by the EEG length (N) because of Eq.

(14) and the product of the response length times the number

of stimuli (J�K) because of Eqs. (14) and (15). The compu-

tational cost associated with Eq. (13) is negligible compared

to that of the other equations. Therefore, the computational

complexity of IRSA is prohibitive in situations with a large

number of stimuli (and therefore a long EEG) and/or requir-

ing a large number of iterations. This makes conventional

IRSA difficult to be applied or unpractical in most applica-

tions. The supplementary material1 (section 1) includes

MATLAB/Octave code implementing the IRSA algorithm.

C. Matrix representation of the IRSA procedure

The signals involved in the convolutional model of the

EEG [y(n), s(n), x(j) and n0ðnÞ] and Eq. (1) can be repre-

sented using a matrix notation

y ¼ Sxþ n0; (16)

where y, Sx, and n0 are N-component column vectors (repre-

senting the EEG signal, the convolution of the stimulation sig-

nal with the response and the noise, respectively), x is a J-

component column vector and S is a N� J matrix (with N
rows and J columns) with Sðn; jÞ ¼ sðn� jÞ providing the con-

volution sðnÞ � xðnÞ as a matrix operation. It should be noted

that s(n) is null for all the samples except for those correspond-

ing to the stimulation events (at samples mk), and therefore,

most of the elements in the stimulation matrix S are null.
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Similarly, Eq. (4) can be rewritten in matrix notation as

x̂ ¼ 1

K
STy ¼ SKy SK �

1

K
ST ; (17)

where ST is the transposed of matrix S, and SK is defined

from S including transposition and normalization. The last

equation provides the RSA solution in matrix notation. With

these definitions, IRSA can easily be formulated with matrix

notation as follows:

ð1Þ Initialization: x̂0 ¼ 0; z0¼ SKy: (18)

ð2ÞResponse estimation: x̂i ¼ x̂i�1þazi�1: (19)

ð3ÞResidual estimation: ri ¼ y� Sx̂i: (20)

ð4ÞAveraged-residual estimation: zi¼ SKri: (21)

ð5Þ Steps 2 to 4 repeated until convergence:

Using this matrix notation, it can be observed that steps 3

and 4 can be compacted in one step

zi ¼ SKri ¼ SKy� SKSx̂i ¼ z0 � Rsx̂i; (22)

where Rs is a J� J square matrix resulting of the product of

matrices SK and S. Taking into account its definition, the

matrix Rs is the normalized autocorrelation matrix of the

stimulation sequence s(n), and can also be obtained as

Rsðj1; j2Þ ¼
1

K
rsðjj1 � j2jÞ 8j1; j2 2 0;…; J � 1f g;

(23)

where rsðjÞ is the autocorrelation function of s(n)

rsðjÞ ¼
XN�J

n¼j

sðnÞsðnþ jÞ 8j ¼ 0;…; J � 1; (24)

and, as all the autocorrelation matrices, Rs is a Toeplitz-

symmetric positive semidefinite matrix [all the elements are

identical in each direct diagonal, Rsðj1; j2Þ ¼ Rsðj2; j1Þ, and

all the eigenvalues are non-negative].

The proposed combination of steps 3 and 4 using Eq.

(22) provides an important reduction of the computational

complexity of IRSA. In the conventional IRSA, step (3)

requires an operation involving all the EEG and all the

stimuli in order to calculate riðnÞ, and step (4) requires an

operation involving the full riðnÞ signal (with the same

duration of the EEG) and all the stimuli. In contrast, the

matrix based formulation of IRSA does not require calcu-

lating riðnÞ since ziðjÞ is directly estimated from z0ðjÞ, rsðjÞ,
and x̂iðjÞ. Additionally, the estimation of ziðjÞ only

involves the matrix operation Rsx̂i with a J� J matrix, and

a summation of vectors with J elements, where the vector

z0 and the matrix Rs are used in all iterations (and there-

fore, they can be computed just once at the beginning of

the algorithm).

With these considerations in mind, the matrix imple-

mentation of the IRSA algorithm is the following:

(1) Initialization

x̂0ðjÞ ¼ 0 z0ðjÞ ¼
1

K

XK�1

k¼0

yðjþ mkÞ

rsðjÞ ¼
XN�J

n¼j

sðnÞsðn� jÞ fx̂0; z0;Rsg: (25)

(2) Response updating

x̂i ¼ x̂i�1 þ azi�1: (26)

(3) Averaged-residual estimation

zi ¼ z0 � Rsx̂i: (27)

(4) Steps 2 and 3 are repeated until convergence.

According to the proposed formulation, the matrix imple-

mentation of the IRSA algorithm requires an initialization

(where two J-dimension vectors, x̂0 and z0, and a J� J matrix

Rs are estimated) and an iterative procedure, involving matrix

and vector operations in a J-dimensional space. It should be

noted that the matrix implementation of IRSA is mathematically

equivalent to the conventional IRSA. However, the computa-

tional complexity is substantially smaller because there are com-

putations involving the whole EEG only at initialization (i.e.,

estimation of z0 and Rs), and the computations at the iterations

just involve matrix or vector operations with dimensionality J.

In other words, the computational complexity of the iterations

depends on the length of the response (J), but neither on the

length of the EEG (N) nor on the number of stimuli (K). This

provides a very efficient implementation of the IRSA algorithm

even for experiments with a large number of stimuli or long

EEGs. The supplementary material1 (section 2) includes

MATLAB/Octave code implementing the matrix IRSA algorithm.

D. Convergence of the IRSA algorithm

The matrix formulation of the IRSA algorithm allows an

analysis of converge. If x̂i in Eq. (27) is substituted by Eq.

(26), we obtain

zi ¼ z0 � Rsðx̂i�1 þ azi�1Þ; (28)

and taking into account that, according to Eq. (27),

z0 � Rsx̂i�1 ¼ zi�1, a new recursion is obtained

zi ¼ zi�1 � aRszi�1 ¼ ðI � aRsÞzi�1; (29)

where I is the J� J identity matrix. This recursion provides

the averaged residual at an arbitrary iteration

zi ¼ ðI � aRsÞiz0: (30)

Similarly, the response estimation can be obtained as

x̂1 ¼ az0; (31)

x̂2 ¼ az0 þ az1 ¼ az0 þ aðI � aRsÞz0; (32)

x̂3 ¼ az0 þ aðI � aRsÞz0 þ aðI � aRsÞ2z0 … (33)
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and the estimation at the ith iteration is

x̂i ¼
Xi�1

j¼0

aðI � aRsÞjz0 ¼ a
Xi�1

j¼0

ðI � aRsÞj
0
@

1
Az0; (34)

where the sum is a geometric series of matrices. The solution

of the geometric series provides a direct estimation of the

response at iteration i (detailed derivations are included in

the supplementary material,1 section 3)

x̂i ¼ ðI � ðI � aRsÞiÞR�1
s z0; (35)

where R�1
s is the inverse of the autocorrelation matrix Rs

(which requires that Rs can be inverted, i.e., that all its eigen-

values are non-null). If the absolute values of all the eigen-

values of ðI � aRsÞ are smaller than 1, the geometrical series

converges to ðaRsÞ�1
, and therefore the IRSA estimation

converges to

x̂1 ¼ lim
i!1

x̂i ¼ R�1
s z0: (36)

This is not a surprising result since averaging of the con-

volutional model in Eq. (16) is

Sky ¼ SkSxþ Skn0; (37)

or, equivalently

z0 ¼ Rsxþ Skn0; (38)

and if Rs is non singular (and can, therefore, be inverted),

this equation can be rewritten as

x ¼ R�1
s z0 � R�1

s Skn0: (39)

In this equation, the contribution of the noise is usually

small, since it decreases as the duration of the EEG increases

because of the averaging effect of Sk. If the contribution of

the noise is ignored, this equation provides the least squares

estimation of the response (Bardy et al., 2014a; Bardy et al.,
2014b; Bardy et al., 2014c)

x̂LS ¼ R�1
s z0: (40)

This new perspective of the IRSA formulation leads to

several relevant implications. Regarding the convergence

parameter, it can be demonstrated that the convergence condi-

tion requires that a < 2=maxðljÞ, where lj are the eigenval-

ues of the autocorrelation matrix Rs (detailed demonstration is

included in the supplementary material, section 3.5).1 This

condition explains why a too large convergence parameter

produces instability and oscillations of the IRSA solution, and

why low-jittered stimulation sequences (with resonances in

the autocorrelation function and large eigenvalues in the auto-

correlation matrix) require a smaller convergence parameter

and more iterations, as observed in previous studies

(Valderrama et al., 2016). This condition also provides a cri-

terion for selecting an appropriate convergence parameter

based on the eigenvalues of Rs.

Additionally, the inversion of the autocorrelation matrix

Rs directly provides the IRSA solution at convergence with

neither the iterative procedure nor the convergence parame-

ter a. In other words, the number of iterations and the con-

vergence parameter (that should be carefully configured in

IRSA for a given stimulation configuration in order to avoid

instability and guarantee convergence) become irrelevant

with the LS estimation and, therefore, the computational

cost of this alternative is associated to the initialization and

the matrix inversion of Rs (but the computational cost associ-

ated to the iterations is saved since there are no iterations).

Finally, the convergence analysis of IRSA can be con-

sidered a formal demonstration of the equivalence of IRSA

(at convergence) and the LS deconvolution procedure pro-

posed by Bardy et al. (2014a), Bardy et al. (2014b), and

Bardy et al. (2014c).

E. Considerations related to computational cost

There are several alternatives for the numerical imple-

mentation of the different proposed algorithms (conventional

IRSA, matrix IRSA, and matrix-inversion based solution),

which can strongly affect the computational cost of the pro-

cedures. These are discussed in this section.

Regarding the initialization, the initial averaged residual

[z0ðjÞ] and the autocorrelation of the stimulation sequence

[rsðjÞ] can alternatively be calculated either as correlations

or as sums for each impulse of the stimulation sequence. In

the first case, the initialization involves all the samples of the

stimulation sequence s(n) or the EEG y(n), while in the sec-

ond case, it just involves a sum of K terms (one for each

impulse in the stimulation sequence) for each sample j in the

response

z0ðjÞ ¼
1

K

XN�J

n¼j

sðnÞyðnþ jÞ ¼ 1

K

XK�1

k¼0

yðjþ mkÞ; (41)

rsðjÞ ¼
XN�J

n¼j

sðnÞsðnþ jÞ ¼
XK�1

k¼0

sðjþ mkÞ: (42)

Taking into account that the number of impulses in the

stimulation sequence is always substantially smaller than the

number of samples of the EEG (because the stimulation

sequence consists of a set of isolated unitary impulses), the

second alternative is computationally more efficient. The

supplementary material1 (section 4) includes MATLAB/Octave

code implementing the matrix IRSA algorithm with the opti-

mized initialization.

Second, since the autocorrelation matrix is Toeplitz, the

matrix product Rsx̂i can efficiently be implemented in the

frequency domain. Circulant matrices are diagonalized by

the discrete Fourier transform (DFT), and performing the

matrix product in a domain where the matrix is diagonal

simplifies the computation. However, the autocorrelation

matrix Rs is Toeplitz, but not circulant, and therefore, the

implementation of the matrix product in the frequency

domain requires some additional steps: (i) the J� J Toeplitz

matrix Rs has to be extended to obtain a 2J � 2J circulant
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matrix C; (ii) the vector to be multiplied x̂i has to be zero-

padded to obtain a vector with 2 J components x̂ei; (iii) the

DFT of the first row of the extended matrix and that of the

extended vector have to be multiplied (product is performed

in the frequency domain); (iv) the inverse DFT applied to

the product provides the result in the time domain; and (v)

the result in the time domain must be truncated to the first J
samples. The DFT can be implemented with the more effi-

cient fast Fourier transform (FFT) algorithm and, since the

matrix coefficients and vector components are real, the

imaginary part of the result (usually not null due to numeri-

cal precision) should be discarded. The supplementary mate-

rial1 (section 5) includes some details about matrix product

involving Toeplitz matrices performed in the frequency

domain and also includes MATLAB/Octave code implementing

the matrix IRSA algorithm where the matrix product Rsx̂i is

performed with an FFT-based computation (section 6). It is

interesting to note that the IRSA algorithm cannot be fully

implemented in the frequency domain because at each itera-

tion a truncation has to be applied (in order to appropriately

compute the matrix product), and this truncation in the time

domain requires either an IFFT, a truncation and an FFT or,

alternatively, a circular convolution in the frequency domain

with the Fourier transform of the truncating window. The

first option (more efficient) has been selected for the algo-

rithm implementation.

The convergence parameter a is critical for the optimi-

zation of the IRSA algorithm. A small enough value has to

be selected in order to avoid instability of the algorithm, but

a too small a leads to a slow convergence (requiring more

iterations). The convergence condition [a < 2=maxðljÞ,
being lj the eigenvalues of Rs] provides a criterion for select-

ing an appropriate a, but requires the estimation of the eigen-

values, which is expensive in terms of computational cost.

However, since Rs is a symmetric Toeplitz matrix, the rela-

tion between Rs and the corresponding extended circulant

matrix C provides a bound for the eigenvalues of Rs

(Ferreira, 1994)

maxðljÞ <
1

2
max

0�j0<J
ðk2j0 Þ þ max

0�j0<J
ðk2j0þ1Þ

� �
; (43)

where k2j0 and k2j0þ1 are respectively the even and odd eigen-

values of the matrix C that can easily be computed as the

FFT of the first row of C. A fast version of the IRSA algo-

rithm has been implemented using a 95% of the maximum

value suggested by this bound as convergence parameter a
(see the supplementary material,1 section 7, for details about

the eigenvalues of Rs).

Regarding the number of iterations, the algorithm tends

to reduce the average residual zi up to the numerical preci-

sion. For a detailed study of equivalence among the different

versions of the IRSA algorithm, exploring the accuracy at

numerical convergence is interesting (in the 64 bits floating-

point representation, 52 bits are devoted to numerical accu-

racy, which provides a precision close to 1 in 1015, and

therefore the SNR associated to numerical error is around

300 dB). However, for practical purposes involving evoked

responses, the accuracy in the estimated response is limited

by the noise in the EEG and numerical accuracy beyond

40 dB or 60 dB makes no sense. In order to save unnecessary

computation, the fast implementation of the IRSA algorithm

estimates, at each iteration, the SNR associated with the

algorithm precision (from the averaged residual zi), and if

the SNR is better than a predefined limit, the iterative pro-

cess stops. The supplementary material1 (section 8) includes

MATLAB/Octave code implementing the fast version of the

matrix IRSA algorithm (including the numerical accuracy

checking, the optimized convergence parameter, the opti-

mized initialization, and the FFT-based matrix product).

Finally, the matrix-inversion based solutions of the

IRSA algorithm have also been implemented. The solution

of the geometric series of matrices at iteration i has been

implemented for comparing the accuracy with the IRSA

algorithms at a given iteration. The solution of the geometric

series at convergence (just requiring the inversion of the

matrix Rs, i.e., directly providing the LS solution) has been

implemented for comparing both the numerical accuracy and

the computational cost with the fastest implementation of

IRSA at convergence. Since the last algorithm does not

involve any iteration and directly provides the LS-

deconvolution solution, it is referred to as “randomized stim-

ulation with LS-deconvolution” (RSLSD). It is remarkable

that the iterative version of RSLSD is computationally more

expensive than the direct RSLSD (since both require matrix

inversion but the former also requires iterative matrix prod-

ucts), and therefore the practical interest of the iterative

RSLSD is very limited. Matrix inversion, required in both

RSLSD algorithms, cannot be performed in the FFT domain,

because in general, the matrix Rs is Toeplitz but not circu-

lant. In the iterative version, the matrix product involving

the Toeplitz matrix ðI � aRsÞ could be performed with an

FFT-based procedure, but it has not been implemented due

to the lack of practical interest of this version. In both ver-

sions, when possible, matrix products and matrix inversion

have been implemented without explicit computation of the

involved matrices (using matrix left division instead of com-

puting the inverse of the matrix, or computing matrix-vector

products instead of matrix-matrix products) in order to save

computational time and memory requirements. The supple-

mentary material1 (sections 9 and 10) includes MATLAB/

Octave code implementing the RSLSD algorithms at conver-

gence (i.e., for infinite iterations), and for a specified number

of iterations, respectively.

III. EXPERIMENTAL RESULTS

A. Experimental design

The proposed matrix implementations of the IRSA algo-

rithm have been evaluated in terms of the mathematical

equivalence with respect to the conventional IRSA and in

terms of their respective computational efficiencies (using

the execution time for comparisons, since this is the most

limiting factor in the algorithm computation). This evalua-

tion was based on an AEP experiment, using real EEG

recordings, with six different stimulation rates ranging

between 1.39 and 44.44 Hz. The ISI of the stimulation signal

followed a uniform distribution within an ISI interval
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ranging between 15–30 ms (for average stimulation rate

44.44 Hz) and 480–960 ms (for 1.39 Hz). The duration of the

experiment for each ISI configuration was 684 s (and there-

fore, the number of stimuli used for each configuration

increased with the stimulation rate). Table I summarizes the

configurations involved in the AEP recording session.

The auditory stimulation consisted of a sequence of rare-

faction clicks (with a pulse duration of 0.1 ms) presented at the

instants defined by the stimulation sequence. The clicks were

delivered diotically through ER-3A insert earphones (providing

a flat response in the frequency range 0–4 kHz) at 74 dB (hear-

ing level). The recording electrodes were located at the upper

forehead (Fz, active), at the right mastoid (Tp10, reference),

and at the middle forehead (Fpz, ground). The EEGs were

recorded using an instrumentation pre-amplifier, with a

(1–3500) Hz bandwidth and 70 dB gain (Valderrama et al.,
2013; Valderrama et al., 2014a; Valderrama et al., 2014c) and

digitized at a sampling rate of 44 100 Hz with 16 bits/sample.

The EEGs were recorded for 684 s at each ISI configuration,

resulting in a total EEG duration of 4104 s (1.14 h). The digital

recorded signals were low-pass filtered (4000 Hz cut-off fre-

quency) and down-sampled by a factor of 3 to obtain the digital

EEGs with sampling rate 14 700 Hz (N¼ 10.05� 106 samples

for each ISI configuration). Eye-blink artifacts were suppressed

with the iterative template matching and suppression (ITMS),

an algorithm that detects, models, and suppresses blink-

artifacts from a single-channel EEG (Valderrama et al., 2018).

Four subjects (aged 26–46 years) participated in this study. The

protocol followed in this study was in accordance with the

Code of Ethics of the World Medical Association (Declaration

of Helsinki) for experiments involving humans, and it was

approved by the Research Ethics Committee of the University

Hospital “San Cecilio” of Granada (Spain).

The EEGs were processed with the conventional and the

different matrix-based IRSA algorithms. The length of the

response was set to 1 s (J¼ 14 700 samples), in order to pro-

vide early, middle, and late evoked responses. The results of

the different IRSA implementations were compared in two

conditions: out of convergence (with a small convergence

parameter and few iterations) and at convergence (with

enough iterations).

B. Comparison of the IRSA results at a specific
iteration

The results of the different IRSA implementations have

been compared using a convergence parameter a ¼ 0.02 and

50 iterations. This convergence parameter was found to be

small enough to avoid instability in the IRSA algorithm for

all the ISI configurations. The responses estimated with so

few iterations are out of convergence but this number of iter-

ations allows a comparison of the resulting responses and the

computational cost for the different implementations. The

execution time was measured using a desktop computer with

an Intel-Core i7-3770 CPU, 3.40 GHz, 8.00 GB RAM.

Table II shows a comparison of the different IRSA algo-

rithms at 50 iterations. The results are the average for the

four subjects included in the study. The responses provided

by the different implementations have been compared using

the SNR (defined as the ratio of the response energy to that

of the difference between the compared responses, expressed

in dB), where the responses provided by the conventional

IRSA algorithm were used as a reference. An SNR around

260 dB indicates similar results up to the thirteenth signifi-

cant digit, and an increment of 20 dB represents another dec-

imal digit in accuracy. The high SNRs observed in the table

support the mathematical equivalence of the different imple-

mentations. The small differences among the resulting

responses are associated with the limited precision of the

numerical representation and the propagation of small errors

in the least significant digits in the numerical procedures.

Regarding the execution time, the computational effi-

ciency of conventional-IRSA is poor, with a strong dependence

on the ISI configuration. The matrix-IRSA substantially

improves the efficiency and provides very stable execution

times (as expected from the formulation). The optimization of

the initialization leads to a slight improvement with respect to

the matrix-IRSA algorithm. The FFT-based implementation of

the matrix product provides the fastest algorithm. The RSLSD

algorithm is the slowest one of the matrix-based implementa-

tions, due to the matrix division required in this algorithm.

Detailed results, including the SNR and the execution time

TABLE I. Configuration of the AEP recording session. For each test: EEG

duration T¼ 684 s; EEG length N¼ 10.05� 106 samples (sampling rate

14 700 Hz).

ISI range Aver. stim. rate K (stimuli)

480–960 ms 1.39 Hz 950

240–480 ms 2.78 Hz 1900

120–240 ms 5.56 Hz 3800

60–120 ms 11.11 Hz 7600

30–60 ms 22.22 Hz 15 200

15–30 ms 44.44 Hz 30 400

TABLE II. Comparison of the different IRSA algorithms at 50 iterations

with a ¼ 0.02. The SNR evaluates the difference between the responses pro-

vided by the algorithms. The total execution time includes both the initiali-

zation and the iterations.

ISI IRSA IRSA IRSA IRSA RSLSD

(ms) (convent) (matrix) (mat-opt) (mat-FFT) (iterat.)

(a) SNR (dB) referred to IRSA-conventional responses

480–960 — 309.7 312.7 308.5 278.0

240–480 — 308.4 310.4 308.0 271.9

120–240 — 307.2 308.6 307.4 264.4

60–120 — 304.2 305.1 306.3 261.7

30–60 — 300.4 301.0 303.9 256.7

15–30 — 297.6 298.0 300.7 253.4

Average — 304.6 306.0 305.8 264.3

(b) Total execution time (s)

480–960 17.99 17.83 12.35 0.69 27.9

240–480 33.3 17.54 12.75 1.11 28.7

120–240 63.7 17.54 13.52 1.89 29.2

60–120 125.0 17.22 15.19 3.41 31.7

30–60 245.4 16.84 17.52 6.26 34.8

15–30 485.1 16.61 21.8 10.58 37.5

All 970.5 103.6 93.1 23.9 189.8
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(total, for initialization and per iteration), with mean and stan-

dard deviations, are provided in the supplementary material

(section 11).1 The responses obtained at 50 iterations are also

included.

C. Comparison of the IRSA results at convergence

The convergence of the responses with the number of

iterations has been studied using the fastest IRSA algorithm

(IRSA-matrix-FFT), with a ¼ 0.02 and a number of itera-

tions between 50 and 10 000. The results have been com-

pared with those obtained with RSLSD (non iterative

version), directly providing the results at convergence. The

supplementary material1 (section 12) contains results about

the convergence of IRSA with the iterations, including the

SNRs of the estimated responses (using those from RSLSD

as reference) and the responses for one subject. This analysis

shows (1) that the IRSA results tend to those at convergence

as the number of iterations increases; (2) that numerical con-

vergence (SNR> 260 dB) is obtained, with a ¼ 0.02 and

10 000 iterations, only at the 480–960 ms ISI condition; and

(3) that a reasonable convergence (practical for audiological

analysis of the responses) is guaranteed for SNR> 45 dB.

For the experimental design of this study, a ¼ 0.02 and

10 000 iterations provide appropriate convergence (with

SNR> 70 dB for all the ISI conditions).

Table III compares the results of the IRSA algorithms at

convergence. Since all the iterative IRSA algorithms with

fixed a are equivalent, results have been obtained only for

the IRSA-matrix-FFT version (the fastest one), with a
¼ 0.02 and 10 000 iterations. The fast implementation of

IRSA (including the selection of the optimum a and with

convergence control) has been applied using 290 and 120 dB

as convergence criterion (for numerical convergence and

practical convergence, respectively). The RSLSD algorithm

(direct estimation at convergence with matrix inversion) has

also been applied. The responses provided by the different

algorithms have been compared in terms of SNR using the

RSLSD results as a reference, and the total execution time

per subject has been measured for each algorithm and ISI

condition. All the IRSA versions provide responses close

enough to convergence. When a and the number of iterations

are constant, the execution time moderately increases and

the SNR strongly decreases with the stimulation rate. The

fast implementation of IRSA benefits from the use of a spe-

cific convergence parameter for each ISI condition (the

selected a increased from 0.0416 for ISI 15–30 ms to 0.8285

for ISI 480–960 ms), which provides the predefined conver-

gence with the minimum number of iterations (the number

of iterations decreased from 6300 to 34 between these ISI

configurations for a convergence criterion of 120 dB). For

the experimental conditions, the execution time of RSLSD is

greater than those for the IRSA implementations (at all the

ISI conditions) due to the computational complexity of the

matrix division. Detailed results, including the SNR and

the execution time (total, for initialization and per iteration),

are provided in the supplementary material (section 13).1

The selected convergence parameter and the number of itera-

tions required for the fast implementations of IRSA, as well

as the responses estimated using 120 dB as convergence cri-

terion, are also included.

D. Effect of the response length J over the execution
time

In the previous analysis, the responses have been esti-

mated with a response length J¼ 14 700 (for a response dura-

tion of 1 s), because we are interested in the full-range AEPs

including from brainstem to cortical responses. However, the

execution time is strongly affected by the response length,

and in a different way for the different implementations, since

the computational complexity increases with J2 for some ones

and with J log2ðJÞ for others, and since the required number

of iterations also depends on the convergence parameter (and

therefore on the ISI configuration). In order to study the effect

of the response length on the execution time, the IRSA imple-

mentations have been applied to the AEP experiment using

response lengths between 147 samples (i.e., 10 ms) and

14 700 (1 s). The slow implementations of IRSA have been

applied for 50 iterations and execution times are estimated for

10 000 iterations from those results. The IRSA-matrix-FFT

implementation has been applied for 10 000 iterations. The

fast IRSA implementation has been configured for 290 and

120 dB as convergence criterion, and the RSLSD (direct esti-

mation at convergence) has also been applied. The results

(total execution time per subject for all the ISI conditions as a

function of the response length) are represented in Fig. 1.

Detailed results (including the execution time and the esti-

mated responses) are also shown in the supplementary mate-

rial (section 14).1

The comparison of the computational cost at J¼ 14 700

shows a prohibitive execution time for the conventional

IRSA (2.23 days per subject). The matrix implementations

(with and without optimization of the initialization) and the

iterative RSLSD require similar execution times (around

TABLE III. Comparison of the different IRSA algorithms at convergence.

The SNR evaluates the difference between the responses provided by the

algorithms. The total execution time includes both the initialization and the

iterations.

ISI IRSA IRSA IRSA RSLSD

(ms) (mat-FFT) (fast-290 dB) (fast-120 dB) (converg)

(a) SNR (dB) referred to RSLSD-converg responses

480–960 265.0 280.9 111.0 —

240–480 130.0 266.8 96.6 —

120–240 94.0 265.0 95.2 —

60–120 83.7 263.7 93.8 —

30–60 74.7 263.7 94.2 —

15–30 73.3 146.2 94.5 —

Average 120.1 247.7 97.5 —

(b) Total execution time (s)

480–960 17.30 0.81 0.69 23.6

240–480 17.61 2.71 1.59 24.6

120–240 18.37 6.23 3.35 24.8

60–120 20.1 12.21 6.35 26.5

30–60 23.1 24.7 12.76 29.6

15–30 28.2 31.3 24.0 34.9

All 124.7 78.0 48.8 164.0
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1.8 h per subject) because most of the execution time is

devoted to the iterations (because of matrix products). These

execution times are significantly greater than those for the

FFT or fast IRSA implementations or those of the direct

RSLSD algorithm (which are between 48 s and 3 min).

As expected, the execution time decreases with the

reduction of J in all the implementations. For the conven-

tional IRSA, it is always too large (2.2 h for the shortest J).

The evolution of the execution time of the matrix IRSA

(with and without optimization in the initialization) reveals

the utility of this optimization (very important when J
< 1000). The similarity between the iterative RSLSD and

the optimized matrix IRSA (and the differences between the

conventional and iterative RSLSD) reveals that the iterative

matrix product for 10 000 iterations takes more time than the

matrix division of RSLSD. The FFT-based matrix product

reduces the execution time for large J but the conventional

matrix product is more efficient for J < 1000. Finally, the

decrease of J reduces the computational cost of direct

RSLSD more efficiently than the fast version of IRSA, being

the execution time slightly shorter for small values of J (at

J¼ 147, 0.41, and 0.47 s, respectively, for direct RSLSD and

fast IRSA with 120 dB).

The responses estimated with different values of J are

also represented in the supplementary material1 (section 14)

for one subject. Interestingly, the responses obtained with

different values of J are not identical: the effect of reducing

the response length is, approximately, a truncation of the

response, but in addition to the truncation, some differences

are clearly observed. These differences are associated with

the number of degrees of freedom (in the response to be esti-

mated) involved in the optimization problem.

E. Responses provided by IRSA

Figure 2 shows the responses provided by the fast IRSA

algorithm with 120 dB as convergence criterion. These

responses are the grand average estimated from the four sub-

jects included in this study. The time axis is logarithmically

scaled in order to clearly show the different evoked poten-

tials, including three decades between 1 ms and 1 s. The

waves of the evoked potentials are indicated in the plots,

including auditory brainstem responses (ABR waves I, III,

V), middle latency responses (MLR waves N0, P0, Na, Pa,

Nb, Pb), and cortical auditory evoked potentials (CAEP

waves P1, N1, P2, N2, P3). The different plots correspond to

different ISI configurations, and some changes in the latency

and amplitude of the waves can be appreciated as the stimu-

lation rate increases.

The supplementary material1 (section 15) includes

details of the responses for each subject. In particular, each

response (obtained with an EEG with a duration of 684 s) is

compared with those obtained from three EEG portions of

228 s, (for consistency verification in the evoked responses).

The supplementary material1 (section 15) also includes a

comparison of the grand average with the individual

responses from each subject in order to provide an evalua-

tion of the inter-individual differences.

IV. DISCUSSION AND CONCLUSIONS

This work presents a matrix formulation of the IRSA

algorithm, which is mathematically equivalent to the con-

ventional IRSA and is more efficient in terms of computa-

tional cost. Based on the matrix description, the convergence

of the IRSA procedure has been analyzed. According to this

analysis, the solution provided by IRSA can be rewritten as a

geometric series of matrices, involving the autocorrelation

matrix of the stimulation sequence Rs. This result has two

interesting consequences. On one hand, the convergence cri-

terion of the geometrical series provides a specific condition

to be satisfied by the convergence parameter a in order to

provide stability to the algorithm (and explains the instability

observed when a too large a is selected). On the other hand,

the analysis demonstrates that IRSA asymptotically

FIG. 1. (Color online) Total execution time of the IRSA/RSLSD algorithms

for the complete experiment (all ISI conditions). Algorithms configured for

convergence. Execution time per subject (average) as a function of the

response length J.

FIG. 2. Grand average of the AEP responses estimated with the fast matrix-

based IRSA algorithm with 120 dB as convergence criterion.
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converges to the LS-deconvolution solution (Bardy et al.,
2014a; Bardy et al., 2014b; Bardy et al., 2014c).

The properties of the Rs matrix involved in the IRSA

algorithm allow several optimizations: (i) FFT-based matrix

product, (ii) selection of an optimal a based on the bound for

the eigenvalues of Rs, (iii) optimization of the initialization,

and (iv) control of convergence. These optimizations have

been implemented in different versions of the algorithm.

The experimental results demonstrate the mathematical

equivalence of the different IRSA implementations, as well

as the mathematical equivalence of LS-deconvolution and

IRSA at convergence. For the experimental design consid-

ered in this manuscript, the implementation of IRSA includ-

ing all the proposed optimizations (IRSA-matrix-fast) is the

most efficient one, even though RSLSD requires execution

times not much longer. In addition, the fast implementation

of IRSA requires neither the selection of the convergence

parameter (since a is automatically selected from the bound

for the eigenvalues) nor the number of iterations (since it is

automatically controlled with the convergence criterion),

which simplifies the configuration of the algorithm. This is

relevant for the practical use of IRSA since the optimal con-

figuration of these parameters strongly depends on the ISI

configuration. The proposed optimizations allow the practi-

cal use of the IRSA method for many clinical and research

applications, even for experimental designs involving long

responses or ISI configurations requiring high overlapping of

the responses (like the experiments reported in this study).

Beyond the computational efficiency, a significant con-

tribution of the study is the formal demonstration of the

equivalence of IRSA at convergence and LS-deconvolution.

In this sense, this manuscript provides a unified formulation

of both procedures. This perspective could be valuable for

the interpretation of results in audiological studies using

either IRSA or LS-deconvolution.

The matrix product required in IRSA can be performed

with an FFT-based implementation because of the Toeplitz

structure of the Rs matrix. This optimization is not possible in

LS-deconvolution because this algorithm requires a matrix

division that cannot be implemented with an FFT, in general,

for Toeplitz matrices (an FFT-based matrix division would

require the matrix to be circulant). In contrast, the FFT-based

inversion is possible for the CLAD method (Ozdamar and

Bohorquez, 2006), which can be considered a particular case

of LS-deconvolution or IRSA methods where the stimulation

sequence is periodically repeated (the periodicity of the stim-

ulation sequence in CLAD forces the autocorrelation matrix

Rs to be circulant, and therefore invertible with the FFT). In

this sense, CLAD would provide a faster deconvolution (com-

pared with IRSA or LS-deconvolution) even though it

requires periodic stimulation sequences, which imposes limi-

tations in the design of audiological experiments.

Regarding the audiological implication of the experi-

mental results, the study presented in this manuscript shows

that it is feasible to record all the components from the

cochlea to the auditory cortex using clicks with a random-

ized interval presented at different stimulus rates. As origi-

nally proposed by Michelini et al. (1982), the representation

of these signals in the logarithmic time scale facilitated the

identification and labeling of the early-, middle-, and late-

components.

The interest in obtaining brainstem and cortical neural

activity simultaneously has existed for years. For example,

Bidelman (2015), Krishnan (2012), and Slugocki et al.
(2017) proposed different methods based on the combination

of a transient cortical response and a steady-state brainstem

response elicited by the same acoustic stimulus. The major

drawback of these methods is that while the steady-state

component provides an overall index of the neural salience

at the brainstem, it does not allow the evaluation of the activ-

ity at each neural station (Krishnan, 2007), thus limiting the

interpretation of the signal.

The morphology of the AEP signals shown in the pre-

sent study is consistent with those reported by Holt and

Ozdamar (2016) and Kohl et al. (2019). These studies used

CLAD to deconvolve the full-range response from bursts of

clicks and chirps presented at different rates (Holt and

Ozdamar, 2016) and from an interleaved stimulus presenta-

tion paradigm consisting of bursts of clicks alternating with

isolated clicks (Kohl et al., 2019). However, only the wave

V from the brainstem response could be evaluated in these

studies. This could possibly be due to the presentation of the

full-range AEP signal in the linear (rather than in the loga-

rithmic) time scale in Holt and Ozdamar (2016), and to the

narrow band-pass of the filter selected in Kohl et al. (2019),

i.e., 1–750 Hz. In contrast, waves I, II, III, IV, V, and VII of

the ABRs can be clearly identified in the grand-average sig-

nal, and in most of the subjects of the present study.

The representation of the full-range response in the loga-

rithmic time scale presents a number of advantages compared

with the traditional approach in which ABR, MLR, and

CAEP components were obtained separately. First, it allows a

comprehensive analysis of the ascending auditory pathway, in

which all stations are synchronously evoked by the same

stimulus. This could potentially be useful to evaluate interac-

tions between central and peripheral neural activity, as well

as a possible diagnostic tool for auditory neuropathy spectrum

disorder (ANSD) since this population tends to show clear

cortical, but absent brainstem components (Hood, 2007).

Additionally, the proposed methodology may save testing

time when both brainstem and cortical responses are relevant

to the study since a single test would be required. Finally, the

use of deconvolution overcomes the traditional limitation of

EEG recordings in which the ISI had to be larger than the

duration of the response in order to avoid overlapping

responses. Deconvolution techniques are likely to play a rele-

vant role in current research when evaluating how the human

auditory system responds to more ecologically-valid stimuli,

like real running speech (Valderrama et al., 2019).

In order to provide the community with computational

tools for deconvolving AEP responses, MATLAB/Octave code of

the different IRSA and RSLSD implementations was included

as supplementary material.1 Additionally, a MATLAB/Octave

script has been prepared for running simulations involving

these tools (see the supplemental material, section 16).1 The

script reads an AEP response, synthesizes the EEG according

to an experimental set-up and ISI configuration, and applies the

different IRSA and RSLSD algorithms, providing the results
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(estimated responses, comparison in terms of SNR and execu-

tion times). With this script, the user can recreate (in simula-

tion) all the experiments included in this study or even under

other experimental conditions. Additionally, we provide a com-

pressed directory including the MATLAB/Octave functions, the

script, and a file with a response to be used with the script for

the simulations.
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