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Abstract. One problem in the study of the decomposition of modules is to choose the simple pieces to build such decom-
positions. In the noetherian case these simple pieces are the coprimary modules; therefore, each noetherian module is a
subdirect product of finitely many coprimary modules, and each coprimary module has associated a unique prime ideal.
A relative notion of noetherian modules was introduced by Anderson and Dumitrescu as S–noetherian modules, relative
to a multiplicative subset S ⊆ A of a commutative ring, in [1]. Since then many authors have worked on this notion intro-
ducing prime and primary ideal and submodules relative to S. We have chosen a more general point of view, and work
on a hereditary torsion theory σ in Mod–A and extend S–noetherian to totally σ–noetherian, recovering earlier notions
when we take σ = σS . Since we first show that σ is of finite type whenever A is totally σ–noetherian, hence our theory
can be regarded as an extension of the Anderson–Dumitrescu’s theory taking a multiplicative subset of finitely generated
ideals instead of a multiplicative subset of elements. In this context we establish new results on prime and primary ideals
and submodules, provide a primary decomposition of totally σ–noetherian modules, and show some applications of this
primary decomposition, in particular, to totally σ–artinian modules.
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1 Introduction

The study of noetherian rings and modules, and their decompositions, has been essential in the de-
velop of Commutative Algebra. The main idea under these decompositions is to study the module
relative to the prime ideals of the ring, and grouping all the elements that each prime ideal deter-
mines. If A is a noetherian commutative ring, and M a noetherian module, we have a decomposition
of the injective hull E(M) of M, as direct sum of finitely many indecomposable injective modules,
hence we obtain a decomposition of M: the primary decomposition induced by the decomposition of
its injective hull.

Since there are many generalizations of noetherian rings and modules, if we study one of them,
the natural question if: when there exists a primary decomposition of noetherian modules?

In this paper we are interested in S–noetherian modules, for a multiplicative set S ⊆ A, in the
sense of Anderson–Dumitrescu, see [1], or in totally σ–noetherian modules, in the sense of Jara, see
[5, 6]; the main aim of this paper is to develop the primary decomposition of totally σ–noetherian
modules.

S–finite and S–noetherian modules were introduced by Anderson and Dumitrescu, and studied
by many others authors, giving the essential of their structure, see [10]. Even some work are realized
to define prime and primary submodules in this context, see [2, 4, 11]; a theory of primary decom-
position of ideals is formulated in [14]. Later, in [6, 5], Jara abstracts these notions to consider a
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hereditary torsion theory σ in Mod–A, in such a way that the S–finite and S–noetherian modules are
particular cases of totally σ–finitely generated, and totally σ–noetherian modules, respectively. In
addition, he proves that σ is defined by a multiplicative set of finitely generated ideals whenever A is
totally σ–noetherian: that is, the study by means hereditary torsion theories is the natural extension
of multiplicative sets of elements to multiplicative sets of (finitely generated) ideals.

With this background, we proceed to study the primary decomposition of totally noetherian mod-
ules. To do that, given a totally σ–noetherian module we study the totally σ–prime modules which
are submodules of M, with the goal of establishing a set of prime ideals of A that control this type of
submodules. After that, we find that a finite set of prime ideals parameterizes these totally σ–prime
modules: the associated totally σ–prime ideals. This set of prime ideals is denoted by Asstσ (M), and
it has the important property that for any submodule N ⊆M the inclusion

Asstσ (N ) ⊆ Asstσ (M) ⊆ Asstσ (N )∪Asstσ (M/N ) (1)

holds; it is well known that the second inclusion can be strict.
Nevertheless, for some special submodules N ⊆M the equality holds; this is the case of submod-

ules N ⊆ M such that: (1) Asstσ (N ) = {p}, is unitary set, being p ∈ Ass(M) a maximal element, and
(2) there is not any prime module H such that H ⊆M and N ⊆ H ; i.e., N is a maximal totally prime
extension, in M, of 0 ⊆M. In this case we can pass from M to M/N without the addition of any new
prime ideals in Asstσ .

To define a primary decomposition of a totally noetherian module first we introduce totally pri-
mary submodules and define when an module has a totally primary decomposition, and tackling
the problem of show the existence of totally primary decomposition, that finally is proven in Theo-
rem (6.14).

This paper is divide in sections; this is the first section. In section 2 we give a brief introduction to
the basic notion on hereditary torsion theories. Since a few results on totally noetherian modules are
necessary, we collect them in section 3, and use as a reference the paper [6]. The second necessary
tool are totally prime modules and submodules; in section 4 we collect some result that show their
behaviour and properties; in particular, we show that the σ–torsion submodule of any totally prime
module is totally σ–torsion; and that for any submodule N ⊆ M is M which is a totally σ–prime
module, with companion ideal h ∈ L(σ ), we have associated a prime ideal: (σN : N ); we represent
by Asstσ (M) the set constituted by this prime ideal. Properties of the sets Asstσ (M) are studied to
finally show that Asstσ (M) is non–empty and has finitely many elements whenever M is a totally σ–
noetherian non σ–torsion module. To work with associated totally prime ideals and find the existence
of primary decompositions we need to study chain of submodules whose factors are totally prime
modules; in order to check that we do not increase the amount of totally associated prime ideals in
(1), in section 5 we introduce totally prime extensions and maximal prime extensions submodules,
proving Theorem (5.2) that show one case in which the equality Asstσ (M) = Asstσ (N )∪Asstσ (M/N )
which will be used to prove the existence of primary decompositions.

In section 6 we introduce totally primary submodules, coprimary modules and the primary de-
composition of totally noetherian modules for non σ–torsion modules. Using associated prime ideals
it is possible to characterize totally finitely generated modules which are totally coprimary as those
with a unitary set of totally associated ideals. Therefore, we introduce a new type of modules: the
totally tertiary modules as those such that Asstσ (M) is unitary. In this meanwhile we show that each
associated totally prime ideal is σ–closed, and this fact together with Theorem (6.11) gives that the
injective hull of M/σM has a decomposition as a direct sum of indecomposable injective modules
that finally in Theorem (6.14) shows the existence of primary decomposition for totally noetherian
modules. In section 7 we include some examples of application of the theory; in particular, we study
the associated totally prime ideals of a totally artinian module.
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2 Background on hereditary torsion theories

Let us introduce hereditary torsion theories and the elements of the theory we shall use in this work.
Recall that a hereditary torsion theory can be described by means of

• A class Tσ of modules which is closed under submodules, homomorphic images, direct sums
and group–extensions: the torsion class.

• A class Fσ of modules which is closed under submodules, essential extensions, direct products
and group–extensions: the torsionfree class.

• A filter of ideals L(σ ) satisfying the following property: for any ideal a ⊆ A, and any ideal
h ∈ L(σ ), if (a : h) ∈ L(σ ), for every h ∈ h, then a ∈ L(σ ). The Gabriel filter.

• A left–exact functor σ satisfying σM ⊆ M, and σ (M/σM) = 0, for every A–module M, and
σN = N ∩ σM for any submodule N ⊆M.

The relationship between them is given by the following:

• Tσ = {M ∈Mod–A | σM = M}, the class of σ–torsion modules.
• Fσ = {M ∈Mod–A | σM = 0}, the class of σ–torsionfree modules.
• L(σ ) = {a ⊆ A | A/a ∈ Tσ }.
• σM = {m ∈ M | (0 : m) ∈ L(σ )} =

∑
{N ⊆ M | N ∈ Tσ } = ∩{N ⊆ M | M/N ∈ Fσ }, the σ–torsion

submodule of M.

Every hereditary torsion theory produces a partition of the prime spectrum of A in two subsets:

• Z(σ ) = {p ∈ Spec(A) | A/p ∈ Tσ }, and
• K(σ ) = {p ∈ Spec(A) | A/p ∈ Fσ }.

The set of all maximal elements of K(σ ) is denoted by C(σ ).
For any ideal a ⊆ A we define a new ideal as the solution of the equation: σ (A/a) = ClAσ (a)/a; it

satisfies a ⊆ ClAσ (a), and it is the smallest ideal b satisfying a ⊆ b and A/b ∈ Fσ . It is called the σ–
closure of a because ClAσ (−) is a closure operator in the set of all ideal of A. An ideal a ⊆ A is called
σ–closed whenever a = ClAσ (a), and σ–dense if ClAσ (a) = A.

The set of all σ–closed ideals of the ring A is denoted by C(A,σ ), and is a lattice with the operations:

• a1 ∧ a2 = a1 ∩ a2 and
• a1 ∨ a2 = ClAσ (a1 + a2).

The ring A is σ–noetherian (resp. σ–artinian) whenever the lattice C(A,σ ) is noetherian (resp.
artinian).

In the same way, for any A–module M, and any submodule N ⊆ M, we have a closure operator
ClMσ (N ) = {m ∈M | (N : m) ∈ L(σ )}, and the lattice C(M,σ ) of all σ–closed submodules. An A–module
M is σ–noetherian (resp. σ–artinian) whenever the lattice C(M,σ ) is noetherian (resp. artinian).

A submodule N ⊆M is σ–finitely generated whenever there exists a finitely generated submodule
H ⊆ M such that ClMσ (N ) = ClMσ (H), and σ–cyclic whenever H is a cyclic submodule. It turns out
that M is σ–noetherian if, and only if, every submodule is σ–finitely generated.

A simple module is a non–zero A–module M such that the only submodules are 0 and M. In the
same way, an A–module M is σ–simple whenever M , σM and C(M,σ ) = {σM,M}. Using the lattice
C(M,σ ) we can also define σ–essential submodules, σ–uniform modules, and so on.

A stronger condition, relative to chain conditions, was introduced by Anderson and Dumitrescu
in [1] in the particular case where σ is the hereditary torsion theory defined by a multiplicative set
S ⊆ A. This torsion theory is denoted by σS , and is defined by L(σS ) = {h ⊆ A | h∩A , ∅}. They define
that an ideal a ⊆ A is S–finite if there exists a finitely generated ideal b ⊆ a and an element s ∈ S such
that as ⊆ b ⊆ a; and S–principal whenever b is a principal ideal. In a straightforward way we can
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consider σ–finite and σ–principal ideals with respect to a hereditary torsion theory σ and call them
totally σ–finitely generated and totally σ–principal, respectively.

The two notions are related in the following sense: a ⊆ A is σ–finitely generated if, and only
if, ClAσ (a) is σ–finitely generated, i.e., there exists a finitely generated ideal b ⊆ ClAσ (σ ) such that
ClAσ (a)/b is σ–torsion. On the other hand, a ⊆ A is totally σ–finitely generated whenever there exists
a finitely generated ideal b ⊆ a and an ideal h ∈ L(σ ) such that (a/b)h = 0; i.e., ah ⊆ b. In this sense
σ–finitely generated is a generalization of totally σ–finitely generated, as totally σ–finitely generated
is a generalization of finitely generated.

A hereditary torsion theory σ is of finite type whenever L(σ ) has a cofinal set of finitely generated
ideals; in fact, it is an extension of the hereditary torsion theories σS , for a multiplicative set S ⊆ A,
which are principal; that is, they have a cofinal set of principal ideals. Both finite type and prin-
cipal hereditary torsion theories are in bijective correspondence with multiplicative sets of finitely
generated ideals and multiplicative set of elements, respectively.

The necessary background on hereditary torsion theories can be found in [6], and references
therein.

3 Totally noetherian modules

In the study of noetherian modules the primary decomposition allows to reduce the study of mod-
ules to other with a more simple arithmetical structure. We’ll follow this strategy to give a simple
description of noetherian modules with respect to a multiplicative set or a hereditary torsion theory.

First of all we situate the problem in an easy and confortable situation. Since we are interested in
totally σ–noetherian modules, with respect to a hereditary torsion theory σ , the next result allows to
change the ground ring to another ring satisfying extra properties, which say us that our hereditary
torsion theory has some restrictions from its origin.

Proposition 3.1. Let M be an A–module, and B = A/ Ann(M). If for any hereditary torsion theory σ in
Mod–A we denote by σ the hereditary torsion theory defined in Mod–B, the following statements hold:
(1) If M is totally σ–noetherian, then it is a totally σ–noetherian and faithful B–module.
(2) If M is a totally σ–noetherian and faithful A–module, then A is a totally σ–noetherian ring.

Proof. (1) is immediate.
(2). Let h ∈ L(σ ) be a companion ideal of M, and m1, . . . ,mt ∈ M be elements such that Mh ⊆

(m1, . . . ,mt) ⊆M. Hence we have

Ann(M) ⊆ Ann(m1, . . . ,mt) ⊆ Ann(Mh) = (Ann(M) : h).

Therefore, Ann(Mh)h ⊆ Ann(M). In particular, we have Ann(m1, . . . ,mt)h ⊆ Ann(M) = 0, so the ideal
Ann(m1, . . . ,mt) is totally σ–torsion.

If we define N = (m1, . . . ,mt), and a map f : A −→ N t as f (a) = (m1a, . . . ,mta), then Ker(f ) =
Ann(m1, . . . ,mt) is totally σ–torsion, hence totally σ–noetherian; since A/ Ker(f ) ⊆ N t is totally σ–
torsion, then A is totally σ–noetherian.

Consequently, we have found that the hereditary torsion theory σ must be of finite type; that is,
the Gabriel’s filter has a cofinal set of finitely generated ideals; therefore, it is a generalization of the
principal hereditary torsion theories that appear when we consider multiplicative sets.

Let M be a totally σ–noetherian module with companion ideal h ∈ L(σ ), we may assume A is also
totally σ–noetherian.

Lemma 3.2. Let M be a module, the following statements hold:
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(1) If M is totally σ–noetherian there exist h ∈ L(σ ) and m1, . . . ,mt ∈ σM such that σMh ⊆ (m1, . . . ,mt).
In addition, σM is totally σ–torsion and satisfies σM = (0 : h).

(2) If σM is totally σ–torsion, and a = Ann(σM), then for any h ∈ L(σ ) such that h ⊆ a we have σM =
(0 : h).

Proof. (1). Since M is totally σ–noetherian then σM is totally σ–noetherian, and there exist h ∈ L(σ ),
m1, . . . ,mt ∈M such that σMh ⊆ (m1, . . . ,mt) ⊆ σM. Hence we have the inclusions

Ann(σM) ⊆ Ann(m1, . . . ,mt) = ∩ti=1 Ann(mi) ⊆ Ann(Mh) = (Ann(σM) : h).

Since mi ∈ σM, then Ann(mi) ∈ L(σ ), and (Ann(σM) : h) ∈ L(σ ), which is a Gabriel filter, hence
Ann(σM) ∈ L(σ ), and σM is totally σ–torsion.

(2). It is clear that a ∈ L(σ ), then the equality is obvious.

Corollary 3.3. Let M be a totally σ–noetherian module, for any element m ∈ M \ σM there exist h ∈
L(σ ) and m1, . . . ,mt ∈ σ (mA) such that σ (mA)h ⊆ (m1, . . . ,mt) ⊆ σ (mA), σ (mA) = (0 :mA h) and h =
Ann(σ (mA)).

4 Totally prime submodules

Our aim is to deep into the structure of totally σ–noetherian rings and modules using prime sub-
modules as a tool. To do that we recall the notion of totally σ–prime module; an A–module M is
totally σ–prime whenever M is not totally σ–torsion, and there exists an ideal h ∈ L(σ ) such that
for every m ∈ M and any a ∈ A, if ma = 0, then either mh = 0 or Mah = 0. The ideal h is named a
companion ideal of the totally σ–prime module M.

First we address the reader to the basic results on totally prime modules and submodules devel-
oped in [8, Theorem 4.4], and recall that if M is a totally σ–prime module, the following statements
hold:
(1) σM is totally σ–torsion;
(2) h = (0 : σM) ∈ L(σ ) can be taken as a companion ideal to M;
(3) σM = (0 : h), and
(4) (0 : Mh) = (σM : M) ∈ K(σ ) is a prime ideal.

In particular, if M is totally σ–prime, then M is not σ–torsion.
A submodule N ⊆M is a totally σ–prime submodule, whenever M/N is a totally σ–prime mod-

ule.
Now we study the relationship between totally σ–prime ideals and totally σ–noetherian modules.

We begin proving the existence of totally σ–prime ideals and totally σ–prime submodules related
with a totally σ–noetherian module.

Theorem 4.1. If M is a totally σ–noetherian module, non totally σ–torsion, there exists totally σ–
prime submodules of M.

Proof. Since M is totally σ–noetherian, then (0 : σM) ∈ L(σ ) is a companion ideal of M.
If we consider the family Γ = {N ⊆ M | M/N is not totally σ–torsion}, there are σ–maximal ele-

ments; that is, there exists an ideal h ∈ L(σ ) and elements N ∈ Γ such that for any submodule H ⊇N ,
with H ∈ Γ , we have Hh ⊆N .

Let N ∈ Γ be a σ–maximal element. Since M/N is totally σ–noetherian, there exists a companion
ideal h = (0 : σ (M/N )) = (N : ClMσ (N )) ∈ L(σ ). For any m ∈M, a ∈ A such that ma ∈N , if mh ⊈N , then
N +mA < Γ ; hence M/(N +mA) is totally σ–torsion.
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Consider the short exact sequence 0→ (N +mA)/N →M/N →M/(N +mA)→ 0; since σ is a left
exact functor, we have a commutative diagram with exact rows:

ClN+mA
σ (N )/N � // ClMσ (N )/N // // ClMσ (N )/ClN+mA

σ (N )

σ ((N +mA)/N )
_

��

� // σ (M/N )
_

��

// // σ (M/(N +mA))

(N +mA)/N � //M/N // //M/(N +ma)

Therefore, (M/(N +mA))h = 0, and we have: Mh ⊆ (N +mA), so Mah ⊆N .

Once we have shown the existence of totally σ–prime submodules of a non totally σ–torsion and
totally σ–noetherian module, we shall check the existence of submodules which are totally σ–prime
modules; i.e., of associated totallt prime ideals with respect to a hereditary torsion theory. First we
prove the existence of totally σ–prime ideals which are annihilators of elements of M.

Theorem 4.2. Let M be a totally σ–noetherian module (we assume A is totally σ–noetherian), the
σ–maximal elements of

Γ = {Ann(m) | m ∈M \ σM}

are totally σ–prime ideals.

Proof. If M is σ–torsion then Γ = ∅, and the result holds. Otherwise, if M is not σ–torsion, then
Γ , ∅; since A is totally σ–noetherian there are σ–maximal elements in Γ ; i.e., there exists k and
elements Ann(m) ∈ Γ such that if Ann(m) ⊆ Ann(x), for some Ann(x) ∈ Γ , then Ann(x)k ⊆ Ann(m).

Let Ann(m) ∈ Γ be a σ–maximal element; by Corollary (3.3) there exists h = Ann(σ (mA)) ∈ L(σ ).
We can take h ⊆ k (simply take the product hk).

If a,b ∈ A satisfy ab ∈ Ann(m) we have the two following options:

(1) ah ⊆ Ann(m), hence mah = 0, and ma ∈ σM; conversely, if ma ∈ σM = (0 : h), then mah = 0, and
ah ⊆ Ann(m).

(2) ah ⊈ Ann(m), hence mah , 0, and ma < σ (mA) = (0 : h). Therefore we have an inclusion Ann(m) ⊆
Ann(ma), hence Ann(ma)h ⊆ Ann(m), and bh ⊆ Ann(ma)h ⊆ Ann(m).

In consequence, Ann(m) ⊆ A is totally σ–prime with companion ideal h.

Lemma 4.3. Let M be a module, m ∈M \ σM, and h ∈ L(σ ); the following statements are equivalent:
(a) mA is totally σ–prime and h = Ann(σ (mA)).
(b) Ann(m) ⊆ A is totally σ–prime with companion ideal h.
(c) p = Ann(mh) ⊆ A ∈ K(σ ) and mA/(0 : h) is σA\p–torsionfree.

Proof. (a)⇒ (b), (c). It is a consequence of [8, Theorem 4.4].
(c)⇒ (a). It is a consequence of [8, Proposition 6.1].
(b)⇒ (c). It is a consequence of [8, Proposition 4.3].

Corollary 4.4. Let a ⊆ A be an ideal, and h ∈ L(σ ), the following statements are equivalent:
(a) a ⊆ A is a totally σ–prime ideal with companion ideal h = Ann(σ (A/a)).
(b) p = Ann(h/a) = (a : h) ⊆ A is a prime ideal, and A/(a : h) is σA\p–torsionfree.
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The last results establish a bijective correspondence between a subset of totally σ–prime ideals
and a subset of prime ideals of A. Therefore, the next definition can be realized either for totally
σ–prime ideals or for prime ideals, we prefer the latest option.

Let M be a non σ–torsion module, a prime ideal p ∈ Spec(A) is a associated totally σ–prime ideal
to M whenever there exists an element m ∈M \ σM such that p = Ann(mh), being h = Ann(σ (mA)). In
other words, there exists m ∈M \ σM such that p = (σ (mA) : m) = (σM : m). We represent by Asstσ (M)
the set of all associated totally σ–prime ideals of M.

As a consequence of Theorem (4.2) we have:

Proposition 4.5. If M is a totally σ–noetherian module which is not σ–torsion, then Asstσ (M) , ∅.

Remark 4.6. Note that another case in which we can assure that the set of associated totally σ–prime
ideals is non–empty is when M is a totally σ–prime module. Indeed, if p = ClAσ (Ann(M)) ⊆ A, then
Asstσ (M) = {p}.

Lemma 4.7. Let M be a module, the following statements hold:
(1) If M is totally σ–noetherian, then σM is totally σ–torsion.
(2) If M is totally σ–noetherian and σ–torsion, then it is totally σ–torsion.
(3) M is totally σ–noetherian if, and only if, σM is totally σ–torsion and M/σM is totally σ–noetherian.

Proof. (1). The case when M is totally σ–torsion is obvious. Otherwise, there exist h and m1, . . . ,mt ∈
M such that Mh ⊆ (m1, . . . ,mt). If M is σ torsion then h′ = Ann(m1, . . . ,mt) ∈ L(σ ), and Mhh′ = 0,
which is a contradiction.

(2). It is obvious because M = σM is totally σ–torsion.
(3). If σM is totally σ–torsion, then both σM and M/σM are totally σ–noetherians, hence M is.

A similar result can be established for totally σ–artinian modules.

Lemma 4.8. Let M be a module, the following hold:
(1) If M is totally σ–artinian then σM is totally σ–torsion.
(2) If M is totally σ–artinian and σ–torsion, then it is totally σ–torsion.
(3) M is totally σ–artinian if, and only if, σM is totally σ–torsion and M/σM is totally σ–artinian.

Proof. (1). We may assume M is σ–torsion. Consider the family Γ = {mA | 0 , m ∈ M}, since M is
totally σ–artinian, there exist an ideal h ∈ L(σ ) and a σ–minimal element in Γ , say mA, that satisfies
xAh ⊆mA for every 0 , x ∈M; in particular we have Mh ⊆mA, and hAnn(m) ∈ L(σ ) is an annihilator
of M, so M totally σ–torsion.

(2) is obvious.
(3) is a consequence of (1) and [5, Lemma 3.3].

Proposition 4.9. If N is a totally σ–prime module, t ∈ L(σ ), and T = AnnN (t) = {n ∈ N | nt = 0}, then
N/T is totally σ–prime and N and N/T have the same associated prime ideals.

Proof. Let h ∈ L(σ ) the companion ideal of N . It is clear that N/T is not totally σ–torsion. Let
n = n + T ∈ N/T such that na = 0, then na ∈ T , and nat = 0; hence either nth = 0, and nh = 0, or
Nah = 0, and (N/T )ah = 0.

Observe that the ideal h is companion with both N and N/T , hence we have two prime ideals:
p = Ann(Nh) = (0 : Nh) and p′ = Ann((N/T )h) = (T : Nh). The inclusion p ⊆ p′ is clear; otherwise, if
y ∈ p′ then Nhy ⊆ T , and Nhyt = 0, hence yt ⊆ p, and we obtain that y ∈ p.

Proposition 4.10. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of modules, the following
statements hold:
(1) Asstσ (M1) ⊆ Asstσ (M2).
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(2) Asstσ (M2) ⊆ Asstσ (M1)∪Asstσ (M3).

Proof. (1) is obvious.
(2). Let p ∈ Asstσ (M2), there exists m ∈M2 \ σM2 such that mA is totally σ–prime, h = Ann(σ (mA)),

and p = Ann(mh). If p < Asstσ (M1), then mA∩N is totally σ–torsion. Since we have mA+M1
M1

� mA
mA∩M1

,

then mA+M1
M1

= (m+M1)A is a totally σ–prime module with associated prime ideal p.

We can paraphrase [8, Proposition 4.3] as: for any non totally σ–torsion A–module M the following
statements are equivalent:
(a) M is a totally σ–prime module.
(b) h = (0 : σM) ∈ L(σ ) and σM ⊆M is a prime submodule.

Hence we can apply it to study the behaviour of totally prime modules, in the following sense.

Proposition 4.11. Given a module M such that σM is totally σ–torsion the following statements hold:
(1) For any submodule N ⊆M we have N is a totally σ–prime module if, and only if, (N + σM)/σM is a

prime module.
(2) If N ⊆M is a totally σ–prime module, then N + σM is a totally σ–prime module.
(3) There exists a bijective correspondence between submodules of M/σM which are prime modules and

submodules of M containing σM which are totally σ–prime modules.
(4) There is an equality Asstσ (M) = Ass(M/σM).

Proof. (1). By the hypothesis N/σN is prime; since N/σN � N/(N ∩ σM) � (N + σM)/σM, then
(N + σM)/σM is prime. On the other hand, since σM is totally σ–torsion, then σN is totally σ–
torsion.

(2), (3) and (4) are obvious.

Theorem 4.12. Let M be a totally σ–noetherian non σ–torsion module, then Asstσ (M) is finite.

Proof. Since M a totally σ–noetherian module then Asstσ (M) , ∅. Given p1 ∈ Asstσ (M), there exists
m1 ∈M \ σM such that m1A is a totally σ–prime module, h1 = Ann(σ (m1A)), and p1 = Ann(m1h1).

Say M1 = m1A. We consider M/M1; if it is not totally σ–torsion, then it is not σ–torsion; since it is
totally σ–noetherian, then Asstσ (M/M1) , ∅, and there exists p2 ∈ Asstσ (M/M1); hence there exists
m2 = m2 +M1 ∈M/M1 \ σ (M/M1) such that m2A is a totally σ–prime module, h2 = Ann(σ (m2A)), and
p2 = Ann(m2h2). Now we put M2 = (m1,m2), and consider M/M2; if it is not totally σ–torsion we
build M3 and so on.

If for some Ms we have M/Ms is totally σ–torsion we can not continue with this procedure, and we
have a chain

0 ⫋M1 ⫋M2 ⫋ · · · ⫋Ms ⊆M

Being each quotient Mi/Mi−1 a totally σ–prime modules with associated prime ideal pi , for i = 1, . . . , s.
In consequence, Asstσ (M) ⊆ {p1, . . . ,ps} has finitely many elements.

5 Filtration of prime submodules

The set Asstσ (M) has a lot of information on M itself, as we’ll show in the following. First we point
out that we can distinguish two kinds of elements in Asstσ (M). On one hand the minimal elements,
and, on the other hand, the rest of elements called embedded associated totally prime ideals. A
particular and interesting situation appears when there is no embedded elements; that is, when
Min(Asstσ (M)) = Asstσ (M), the unmixed modules, we shall show that this is the case, among others,
of totally artinian modules.

Since we shall work with submodules of M which are totally prime modules, we introduce new
notation to manipulate them.

Let M be a module and N ⊆H ⊆M submodules:
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• If N ⊆H is a totally σ–prime submodule of H , we say H is a totally σ–prime extension of N .
• If the associated prime ideal to N ⊆ H is p, we call it a totally (σ,p)–prime submodule of H ,

and H a totally (σ,p)–prime extension of N .
• A totally (σ,p)–prime extension N ⊆ H ⊆M is maximal whenever, for any totally (σ,p)–prime

extension N ⊆ L ⊆M with H ⊆ L, we have H = L.

These definitions are adapted from [3].

Lemma 5.1. Let p,q ⊆ A be prime ideals. If an A–module M is p–prime and q–prime, then p = q.

Proof. If M is p–prime for every 0 , x ∈M we have Ann(x) = p, and the same for q; therefore, p = q.

In the following we shall show that maximal elements of Asstσ (M) allow to construct chains of
totally prime submodules; we start with the next theorem.

Theorem 5.2. Given a totally σ–noetherian module M and a prime ideal p ∈ Asstσ (M), which is
maximal, there exists a submodule N ⊆M which is a maximal totally (σ,p)–extension of σM.

Proof. We may assume M is σ–torsionfree, hence p ∈ Ass(M). Since p ∈ Ass(M), there exists 0 , x ∈M
such that (0 : x) = p. Let N = {x ∈M | p ⊆ (0 : x)}; it is clear that N , 0. We define Γ = {(0 : x) | 0 , x ∈
N }; this set is non–empty, and since M is totally σ–noetherian, there exists x ∈M such that (0 : x) ∈ Γ
is σ–maximal; i.e., there exists h ∈ L(σ ) such that, for any (0 : m) ∈ Γ satisfying (0 : x) ⊆ (0 : m) we
have (0 : m)h ⊆ (0 : x). We claim (0 : x) ⊆ A is prime; indeed, if ab ∈ (0 : x) and a < (0 : x), then
xa , 0, and b ∈ (0 : xa); but (0 : x) ⊆ (0 : xa), and by the maximality we have (0 : xa)h = (0 : x),
hence bh ⊆ (0 : x), and xbh = 0, which implies that xb ∈ σM = 0; i.e., b ∈ (0 : x). In consequence,
(0 : x) ∈ Ass(N ) ⊆ Ass(M) is prime. Since p ⊆ (0 : x), by the maximality of p we have p = (0 : x), and N
is a p–prime module.

Remark 5.3. Observe that, in this theorem, N is a σ–closed submodule of M; that is, ClMσ (N ) = N .

The maximal totally prime extensions have the property if limit the size of the set Asstσ (M/N ), as
the following theorem shows.

Theorem 5.4. Given a totally σ–noetherian module, a prime ideal p ∈ Asstσ (M), and a submodule N
which is a maximal totally (σ,p)–extension of 0, we have Asstσ (M/N ) ⊆ Asstσ (M). As a consequence
we have the equality:

Asstσ (M) = Asstσ (N )∪Asstσ (M/N ).

Proof. We may assume M is σ–torsionfree, hence p ∈ Ass(M), and N is a maximal p–prime extension
of 0. Let q ∈ Asstσ (M/N ) = Ass

(
M/N

σ (M/N )

)
= Ass

(
M/ClMσ (N )

)
. Since σ (M/N ) is totally σ–torsion, there

exists k ∈ L(σ ) such that ClMσ (N )k ⊆ N . Hence ClMσ (N ) is p–prime, and, by the maximality of N , we
have ClMσ (N ) = N . There exists m ∈M \N such that q = (N : m); if we define H = N +mA, then N ⊆H
is a q–prime submodule.

We continue analyzing the relationship of p and q.

Case 1. If p ⊈ q, for any x ∈ H \N we have p ⊈ (0 : x) ⊆ (N : x) = q, hence there exists y ∈ p \ q such
that xy , 0 and xy < N . Since xyq ⊆ N , and since xq ⊆ N , then xyq = 0 because y ∈ p. In
consequence, q ⊆ (0 : xy) ⊆ (N : xy) = q, and q ∈ Ass(M).

Case 2. If p ⊆ q; we claim Hp = N . There are two possibilities:

• First: Hp , 0, there exist x ∈ H \N , and y ∈ p such that xy , 0. Since xq ⊆ N and
y ∈ p, then xyq = 0, hence q ⊆ (0 : xy) = p because xy ∈ N . In consequence, p = q, and
q ∈ Ass(M).
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• Second: Hp = 0 (in this case we have a contradiction). For any x ∈ H \N we have:
p ⊆ (0 : x) ⊆ (N : x) = q. If p ⊆ (0 : x) ⫋ q, for any y ∈ q \ (0 : x) we have 0 , xy ∈ N , hence
(0 : x) ⊆ (0 : xy) = p, and (0 : x) = p. In consequence, 0 ⊆H is a p–prime extension, which
is a contradiction with the maximality of N .

In conclusion, the existence of maximal prime extensions, N of 0, allows us to control the set Asstσ
of the quotient module M/N , they allow to count the associated totally prime ideals.

6 Primary decomposition

Let p ⊆ A be a prime ideal.
• An A–module M is totally σ–coirreducible (= totally σ–uniform) whenever, M is not σ–

torsion, σM is totally σ–torsion and for any non totally σ–torsion submodules N1,N2 ⊆ M
we have N1 ∩N2 ⊈ σM. See [8].

• A submodule N ⊆M of an A–module M is a totally σ–irreducible submodule whenever M/N
is totally σ–coirreducible:

Lemma 6.1 ([8, Proposition 5.6]). Every totally σ–prime ideal a ⊆ A is a totally σ–irreducible ideal.

The following definition of totally σ–primary are then natural extensions of the classical ones.
• An M–module M is a totally σ–coprimary module whenever M is not totally σ–torsion, and,

there exists h ∈ L(σ ) such that for any m ∈M, a ∈ A, if ma = 0 either mh = 0 or there exists n ∈N
such that Manh = 0.

• A submodule N ⊆M is a totally σ–primary submodule whenever the quotient M/N is a totally
σ–coprimary module.

The ideal h ∈ L(σ ), in the above definition is called a companion ideal of M. For any totally σ–
coprimary module M there are evident consequences that should be emphasized.

Lemma 6.2. For any A–module M the following statements hold:
(1) Let σ be a finite type hereditary torsion theory in Mod–A, and M is totally σ–coprimary, then (0 :

σM) ∈ L(σ ), and it is a companion ideal of M.
(2) If N ⊆ M and M/N is not totally σ–torsion, then N ⊆ M is a totally σ–primary submodule if, and

only if, (N : ClMσ (N )) ∈ L(σ ) and ClMσ (N ) ⊆M is a primary submodule.
(3) If N ⊆M is a totally σ–primary submodule, then ClMσ (N ) ⊆M is a primary submodule.

Proof. (1). If h ∈ L(σ ) is a companion ideal of M, for any m ∈ σM there exists k ⊆ L(σ ), finitely
generated, such that mk = 0. If mh , 0, for any k ∈ k there exists nk ∈N such that Mknkh = 0; hence,
there exists n ∈N such that Mknh = 0, which is a contradiction because M is not totally σ–torsion.
Consequently, mh = 0, and σ is totally σ–torsion. We can take h = Ann(σM) as companion ideal of
M.

(2). Necessary condition. Since σ (M/N ) is totally σ–torsion, then h = (N : ClMσ (N )) ∈ L(σ ). Other-
wise, if m ∈M and a ∈ A satisfy ma ∈ ClMσ (N ), then mah ⊆N ; then either mhh ⊈N , hence m ∈ ClMσ (N ),
or there exists n ∈N such that Manh ⊆N , and Man ⊆ ClMσ (N ).

Sufficient condition. Since (N : ClMσ (N )) ∈ L(σ ), we take h = (N : ClMσ (N )). If m ∈ M and a ∈ A
satisfy ma ∈ N ⊆ ClMσ (N ), then either m ∈ ClMσ (N ), hence mh ⊆ N , or there exists n ∈ N such that
Man ⊆ ClMσ (N ), and Manh ⊆N .

(3). As a consequence of (2) we have ClMσ (N ) ,M. Otherwise, let h ∈ L(σ ) be a companion ideal of
N , for any m ∈M and a ∈ A, if ma ∈ ClMσ (N ), then either mh ⊆ ClMσ (N ), hence m ∈ ClMσ (N ); or there
exists n ∈N such that Manh ⊆ ClMσ (N ), hence Man ⊆ ClMσ (N ).
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Lemma 6.3. Let M be a totally σ–coprimary module, the following statements hold:
(1) M/σM is totally σ–coprimary.
(2) If t ∈ L(σ ), and T = AnnM(t), then M/T is totally σ–coprimary.

Proof. Let h ∈ L(σ ) be a companion ideal of M.
(1). For any m ∈M and a ∈M let m = m+ σM. If ma = 0, then ma ∈ σM, and there exists k ∈ L(σ )

such that mak = 0; therefore, mkh = 0, hence m = 0, or there exists n ∈ N such that Manh = 0, and
(M/σM)an = 0.

(2). For any m ∈M and a ∈M let m = m+ T . If ma = 0, then ma ∈ T = AnnM(t), hence mat = 0, and
we can continue as before.

This result allows us to construct new totally coprimary modules, we shall give two different
examples.

Corollary 6.4. Let N ⊆ M be a submodule, and t ∈ L(σ ) be an ideal, then the following statements are
equivalent:
(a) N ⊆M is totally σ–primary.
(b) (N : t) ⊆M is totally σ–primary.

Proof. Note that there is a short exact sequence 0→ (N : t)/N →M/N →M/(N : t)→ 0, where (N : t)
is totally σ–torsion, hence M/N is totally σ–torsion if, and only if, M/(N : t) is.

(a) ⇒ (b). By Lemma (6.3), since M/N is totally σ–coprimary, then M/N
AnnM/N (t) �

M
(N :t) is totally

σ–coprimary.
(b)⇒ (a). Let m ∈M and a ∈ A such that ma ∈ N ⊆ (N : t), and let h ∈ L(σ ) be a companion ideal

of M/(N : t), then either mh ⊆ (N : t), hence mht ⊆ N , or there exists n ∈N such that Manh ⊆ (N : t),
hence Manht ⊆N . In conclusion, M/N is totally σ–coprimary with companion ideal ht.

Corollary 6.5. Let N ⊆ M be a submodule, and t ∈ L(σ ) be an ideal, then the following statements are
equivalent:
(a) N ⊆M is totally σ–primary.
(b) N t ⊆M is totally σ–primary.

Proof. First note that there is a short exact sequence 0→ N/N t→M/N t→M/N → 0, where N/N t

is totally σ–torsion, hence M/N t is totally σ–torsion if, and only if, M/N is.
(a)⇒ (b). Let h a companion ideal of M/N , for any m ∈M and a ∈ A, if ma ∈ N t ⊆ N , then either

mh ⊆N , hence mht ⊆N t; or there exists n ∈N such that Manh ⊆N , hence Manht ⊆N t. Thus N t ⊆M
is a totally σ–primary submodule with companion ideal ht.

(b)⇒ (a). Let h a companion ideal of N t ⊆M, for any m ∈M and a ∈ A such that ma ∈ N we have
mat ⊆ N t, then either mth ⊆ N t ⊆ N , or there exists n ∈N such that Manh ⊆ N t ⊆ N . Consequently,
N ⊆M is a totally σ–primary submodule with companion ideal ht.

We rewrite the definition of totally σ–primary ideal as follows: an ideal q ⊆ A is a totally σ–
primary ideal whenever q < L(σ ) and if h = (q : ClAσ (q)), for any a,b ∈ A is ab ∈ q, then either ah ∈ q or
there exists n ∈N such that bnh ∈ q.

Note that the annihilator of a totally σ–coprimary A–module is a totally σ–primary ideal.

Proposition 6.6. If M is a totally σ–coprimary module, then Ann(M) ⊆ A is a totally σ–primary ideal.

Proof. If A/ Ann(M) is not totally σ–torsion because Ann(M) < L(σ ). Let h ∈ L(σ ) the companion
ideal of M; for any a,b ∈ A, if ab ∈ Ann(M) and ah ⊈ Ann(M), then since mab = 0 there exists n ∈N
such that Mbnh = 0; therefore, bnh ⊆ Ann(M), and Ann(M) ⊆ A is a totally σ–primary ideal.
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To well understand the structure of totally σ–primary modules we check that the σ–radical of the
annihilator of any totally σ–coprimary A–module is a prime ideal in K(σ ). In general, the σ–radical
of a submodule N ⊆M is radσ (N ) = ∩{K ⊆M | N ⊆ K, K ⊆M is σ–prime} is always σ–closed. See
[7].

Proposition 6.7. Let σ be a finite type hereditary torsion theory in Mod–A. If q ⊆ A is a totally σ–primary
ideal, then radσ (q) ⊆ A is a prime ideal.

Proof. If q ⊆ A is a totally σ–primary ideal, then ClAσ (q) ⊆ A is totally σ–primary; therefore, radσ (q) =
radσ (ClAσ (q)). In addition, ClAσ (q) ⊆ A is a primary ideal, hence p = rad(ClAσ (q)) ⊆ A is prime. If
p ∈ Z(σ ), there exists h ⊆ L(σ ), finitely generated, such that h ⊆ p; hence, there exists n ∈N such that
hn ⊆ ClAσ (q), which is a contradiction. Consequently, p = rad(ClAσ (q)) = radσ (ClAσ (q)) ⊆ A is a prime
ideal.

For any A–module M and any ideal q ⊆ A we have:
• If M is a totally σ–prime module and p = ClAσ (Ann(M)), we call it a totally p–prime module.
• If M is a totally σ–coprimary module and p = rad(ClAσ (Ann(M))), we call it a totally p–coprimary

module.
• If N ⊆ M is a totally σ–primary submodule and p = rad(ClAσ ((N : M))), we call it a totally
p–primary submodule.

• A family of totally σ–primary submodules {Qi | i = 1, . . . , s} gives a totally σ–primary decom-
position of M whenever if Asstσ (Qi) = {pi}, then (1) pi , pj whenever i , j, and (2) σM = ∩si=1Qi .

We proceed now to characterize totally coprimary modules through associated totally prime ide-
als. First we extend Remark (4.6) to totally coprimary modules.

Proposition 6.8. If A is a totally σ–noetherian ring and M is a totally σ–coprimary module, then we have
Asstσ (M) = {p} whenever p = radσ (Ann(M)).

Proof. We may translate the problem to study M modulo σM. Thus, by Propositions (4.5) and (4.11),
we have ∅ , Asstσ (M) = Asstσ (M/σM) = Ass(M/σM). In addition A/σA is totally σ–noetherian.
We can assume that A is a torsionfree totally σ–noetherian ring, and M is a torsionfree totally σ–
coprimary module. Denote by p = rad(Ann(M)), and let q ∈ Ass(M); there exists m ∈ M such that
q = Ann(m); hence mq = 0, then, for any y ∈ q there exists ny ∈ N such that Myny = 0; therefore
y ∈ rad(Ann(M)), and q ⊆ rad(Ann(M)) = p; since Ann(M) ⊆ q we have the equality.

Alternatively we can use that q is totally σ–finitely generated; indeed, there exist h ∈ L(σ ) and
y1, . . . , yt ∈ q such that qh ⊆ ⟨y1, . . . , yt⟩; therefore, there exists n ∈ N such that (qh)n ⊆ ⟨y1, . . . , yt⟩t ⊆
Ann(M), and q ⊆ p.

The converse of this result also holds whenever we add an extra condition to M. Thus we have:

Theorem 6.9. Let A be a totally σ -noetherian ring and M a totally σ–finitely generated A–module
which is not totally σ–torsion. If Asstσ (M) = {p}, then p ∈ K(σ ) and M is totally p–coprimary.

Proof. Since M is totally σ–finitely generated then, h = Ann(σM) ∈ L(σ ). On the other hand, since
Asstσ (M) = {p}, there exists x ∈M \ σM such that p = (σM : x).

Let m ∈ M, and a ∈ A such that ma = 0. If m ∈ σM, then mh = 0. If m ∈ M \ σM we proceed as
follow. Define Γ = {(σM : z) | z ∈M \ σM and za = 0}. This family is non–empty because (σM : x) ∈
Γ . Since A is totally σ–noetherian, there is a companion ideal k ∈ L(σ ), and there are σ–maximal
elements in Γ . Say (σM : z) ∈ Γ an element σ–maximal, we show that (σM : z) ⊆ A is a prime ideal.
Let u,v ∈ A such that uv ∈ (σM : z) and u < (σM : z), then zu ∈M \ σM, and (σM : zu) ∈ Γ ; therefore,
(σM : zu)k ⊆ (σM : z); that is, vk ⊆ (σM : z); hence zvk ⊆ σM, and zv ∈ σM. This means that
(σM : z) ∈ Asstσ (M), so a ∈ (σM : z) = p. In conclusion, Ann(m) ⊆ p for every m ∈M \ σM.
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Since Ass(M) = {p}, by Theorem (5.2), there is a maximal p–extension of σM, say M1, that, by
Remark (4.6) is a σ–closed submodule.

Now using Theorem (5.4) we have Asstσ (M) = Asstσ (M1)∪Asstσ (M/M1); consequently, we have
Ass(M/M1) = {p}. In this way, if M1 ,M we can construct M2, and so on. Since M is noetherian, there
exists an index n such that Mn = M. This means that pn ⊆ (σM : M), and radσ (Ann(M)) = rad(σM :
M) = p. Therefore, an ∈ (σM : M), and anh = 0.

In view of this result, we will give the following definition: a non totally σ–torsion A–module M is
a totally p–cotertiary module whenever Asstσ (M) = {p}, for some p ∈ K(σ ). Consequently any totally
cotertiary A–module is a totally coprimary A–module. See [9] and [13] for the earliest definition of
tertiary modules.

At this point we may prove that every totally noetherian, non totally torsion, module has a totally
primary decomposition.

Theorem 6.10. If M is a totally σ–noetherian non totally σ–torsion A–module, there exists a totally
primary decomposition of M.

Proof. Since M is totally σ–noetherian we know that for every non totally σ–torsion submodule or
homomorphic image X of M we have Asstσ (X) , ∅. In addition, σM is totally σ–torsion, hence we
shall assume that M is σ–torsionfree. Let us consider p ∈ Asstσ (M), and define Γ = {N ⊆ M | p <
Asstσ (N )}. Since 0 ∈ Γ , then Γ , ∅, and there are σ–maximal elements in Γ . Let Q ∈ Γ be a σ–maximal
element, hence Q ⫋ M is σ–closed; in the contrary there exist y ∈ ClMσ (Q) and k ∈ L(σ ) such that
p = (0 : y and 0 , yk ⊆Q, hence q ∈ Asstσ (Q), which is a contradiction. On the other hand, if Q ⊆M is
not p–tertiary, there exists q ∈ Asstσ (M/Q), q , p, and there exists H/Q ⊆M/Q such that A/q � H/Q,
hence Asstσ (H/Q) = {q}. Therefore, we have Asstσ (H) ⊆ Asstσ (Q)∪Asstσ (H/Q) ⊆ Asstσ (Q)∪{q}; hence,
H ∈ Γ , since Q ⊆H , there exists h ∈ L(σ ) such that Hh ⊆Q, which is a contradiction.

Injective hulls of modules

Now we study the relationship between coprimary modules and their injective hull. If M is an A–
module, we denote by E(M) its injective hull.

First we recall the theory in the absolute case, that is, when L(σ ) = {A}, then totally σ–noetherian is
exactly noetherian, totally σ–prime is prime, and so on. Let M be a p–coprimary A–module satisfying
Ass(M) = {p}, hence there exists 0 ,m ∈M such that p = Ann(m); therefore, A/p �mA ⊆M, and there
exists monomorphism E(A/p) ⊆ E(M). Consequently, if M is coirreducible, there is an isomorphism
E(A/p) � E(M). Since for any essential extension N ⊆e M we have Ass(N ) = Ass(M), then for any
coirreducible p–primary A–module M we have Ass(E(M)) = Ass(A/p) = {p}, which means that E(M)
is p–cotertiary, but non–necessarily p–coprimary.

For any hereditary torsion theory σ , the use of the lattices C(M,σ ), for any A–module M allows
the definitions of σ–noetherian, σ–prime and so on. This case is well understood, and decomposition
properties of modules relative to σ had been established. We are interested in the decomposition of
σ–torsionfree injective modules; we cite the following Matlis–like’s theorem.

Theorem 6.11 (Matlis–like’s theorem, [12, Propositions XIII.2.4 and 2.6]). Let σ be a hereditary tor-
sion theory in Mod–A, if A is a σ–noetherian ring the following statements hold:
(1) Every direct sum of σ–torsionfree injective modules is injective.
(2) Every σ–torsionfree injective module has a decomposition is a direct sum of indecomposable

injective modules.
(3) There is a bijective correspondence between the set of prime ideal K(σ ), and the set of isomor-

phism classes of a σ–torsionfree indecomposable injective modules.
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We are interested in totally σ–noetherian rings and modules, and we know that totally σ–noetherian
implies σ–noetherian, and we can apply the Matlis–like’s theorem in the totally σ–noetherian case.
In the following, in this section, the ring A will be a totally σ–noetherian ring.

Since the ring A is totally σ–noetherian then non totally σ–torsion submodules as well as direct
sum of p–cotertiary modules are totally σ–cotertiary.

By the Matlis–like’s correspondence if p ∈ K is a prime ideal its image is E(A/p), and if E is a σ–
torsionfree indecomposable injective A–module, it is cotertiary and there exists a prime ideal p ∈ K(σ )
such that Ass(E) = {p}, and define the image of E as p.

For any A–module M the uniform dimension of M is defined as the cardinal of an independent
family {Ui | i ∈ I}, of uniform submodules, such that ⊕iUi ⊆e M.

Proposition 6.12. If M is a σ–torsionfree and totally σ–noetherian, the uniform dimension of M is finite.

Proof. Let {Ui | i ∈ I} be an independent family of submodules of M; we consider {Vi = ClMσ (Ui) | i ∈
I}, which also is an independent family. Indeed, if x ∈ Vj ∩⊕i,jVi , for some index j ∈ I , there exists
an ideal k ∈ L(σ ) such that xk ∈Uj ∩⊕i,jUi = 0; hence x ∈ σM = 0.

Consider the family Γ = {⊕i∈FVi | F ⊆ I is finite}. Since M is totally σ–noetherian, there exists
a companion ideal h ∈ L(σ ) and σ–maximal elements in Γ . Let ⊕i∈FVi be a σ–maximal element; if
there exists h ∈ I \F, then ⊕i∈F∪{h}Vi ∈ Γ , and ⊕i∈FVi ⊆ ⊕i∈F∪{h}Vi , so (⊕i∈F∪{h}Vi)h ⊆ ⊕i∈FVi ; therefore
Vjh = 0, which is a contradiction. Consequently, I must be a finite set.

The proof of the next result is straightforward.

Lemma 6.13. Let M be a σ–torsionfree module, for any uniform submodule U ⊆M the σ–closure ClMσ (U ) ⊆
M is also uniform.

Let {Ui | i = 1, . . . , t} an independent family of σ–closed submodules of M such that ⊕ti=1Ui ⊆e M,
there exists an isomorphism

E(M) � E(U1 ⊕ · · · ⊕Ut) � E(U1)⊕ · · · ⊕E(Ut).

Let pi ⊆ A be the prime ideal such that Ass(E(Ui)) = {pi}, then Ass(M) = Ass(E(M)) = {p1, . . . ,pt}, where
in this family may be pi = pj even if i , j. By eliminating repetitions we have a set, say {p1, . . . ,ps}, and
putting together, in the same summand, all modules E(U ), with the same associated prime ideal, we
obtain a decomposition of E(M) as a direct sum of cotertiary injective modules:

E(M) � E1 ⊕ · · · ⊕Es,

being Ass(Ej ) = {pj} for i = 1, . . . , s.
For any index j ∈ {1, . . . , s} we have a map

fj : M −→ E(M) � E1 ⊕ · · · ⊕Es −→ Ej ,

if we call Qj = Ker(fj ), then M/Qj � Im(fj ) is a totally σ–noetherian totally pj–cotertiary module,
hence Qj ⊆ M is a totally p–primary submodule. In addition, we have the following intersection
∩sj=1Qj = 0.

Given a totally σ–noetherian A–module M a totally σ–primary decomposition of M is a finite
family of totally σ–primary submodules {Qi | i = 1, . . . , s} such that 0 = Q1 ∩ . . . ∩Qs. The above
exposition gives the proof of the following theorem.

Theorem 6.14. Any non totally σ–torsion totally σ–noetherian module has a totally σ–primary de-
composition.
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7 Applications

Let us consider a totally σ–artinian module M; by Lemma (4.8) we have that σM is totally σ–torsion.
Therefore, a module M is totally σ–artinian if, and only if M/σM and σM is totally σ–artinian and
totally σ–torsion.

Our aim is to check the associated totally σ–prime ideals to M, and, in particular, the set Asstσ (M).
An A–module M is totally σ–simple whenever it satisfies:

(1) M is not σ–torsion.
(2) σM is totally σ–torsion.
(3) There exists h ∈ L(σ ) such that, for every non σ–submodule N ⊆M we have Sh ⊆N .

A submodule N ⊆M is a σ–minimal submodule whenever
(1) N in not totally σ–torsion.
(2) There exists h ∈ L(σ ) such that for any non totally σ–torsion submodule H ⊆N , we have Nh ⊆H .

Note that a submodule S ⊆M of a module M, which is totally σ–simple, is a σ–minimal submod-
ule; the converse non necessarily holds.

Remark 7.1. We have that a σ–minimal submodule N ⊆ M is not totally σ–torsion, and satisfies
property (3) in the definition of totally σ–simple module, but we have no information on σN . Indeed,
is σN is not totally σ–torsion, then Nh ⊆ σN ; therefore, N is σ–torsion.

In consequence, for any non σ–torsion module M, with σM totally σ–torsion, the two notions
coincide: each σ–minimal submodule is a totally σ–simple module. This is the case of totally σ–
artinian modules.

Dually we may define σ–maximal submodules of a module M. A submodule N ⊆ M is a σ–
maximal submodule whenever
(1) M/N is not totally σ–torsion.
(2) There exists h ∈ L(σ ) such that for any submodule N ⊆ H ⊆M, with M/H non totally σ–torsion,

we have Hh ⊆N .

Remark 7.2. For a σ–maximal submodule N ⊆M we can consider the quotient M/N , which is not
totally σ–torsion, and satisfies (3) in the definition of totally σ–simple module. But, in general,
σ (M/N ) is not totally σ–torsion. As in Remark (7.1) the two notion coincide whenever M is non
σ–torsion and σM is totally σ–torsion. This is the case of totally σ–noetherian modules.

In this situation we have the following result.

Proposition 7.3. If A is not σ–torsion and σA is totally σ–torsion, for every σ–maximal ideal a ⊆ A we
have that A/σ is totally σ–simple.

The reciprocal of this result is the following one:

Proposition 7.4. Given a totally σ–simple module M we have that Ann(M) ⊆ A is σ–maximal.

Proof. Let h ∈ L(σ ) the companion ideal of M. Since M is totally σ–simple, for any m ∈M \ σM we
have Mh ⊆mA, then we have MhAnn(m) ⊆mAnn(m) = 0, and Ann(M)h ⊆ Ann(m) ⊆ Ann(M).

For any ideal a < L(σ ) such that Ann(m) ⊆ a ⊆ A we have a/ Ann(m) ⊆ A/ Ann(m) = mA. If
a/ Ann(m) is not totally σ–torsion, we have (A/ Ann(m))h ⊆ a/ Ann(m), hence h ⊆ a, which is a con-
tradiction. If a/ Ann(m) is totally σ–torsion, there exists k = (0 : σM) ∈ L(σ ) such that ak ⊆ Ann(m).
Consequently, Ann(m) ⊆ A is σ–maximal.

Proposition 7.5. If M is a non totally σ–torsion and totally σ–artinian module, the following statements
are equivalent:
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(a) M is totally σ–prime module.
(b) The ideal Ann(M) ⊆ A is σ–maximal ideal.

Proof. (a)⇒ (b) If M is totally σ–prime consider the family

Γ = {N ⊆M | N is not totally σ–torsion}.

Since M ∈ Γ , there exists a σ–minimal element N ∈ Γ . Let h ∈ L(σ ) be the companion ideal of N . For
any n ∈N \ σN we have Nh ⊆ nA. Therefore, Ann(N ) = Ann(m) ⊆ A is a σ–maximal ideal.

(b) ⇒ (a). Let h = Ann(σM). If Ann(M) ⊆ A is σ–maximal, since for any m ∈ M \ σM we have
Ann(M) ⊆ Ann(m), then Ann(m)h ⊆ Ann(M).

For any x ∈M and a ∈ A such that xa = 0, if x ∈ σM, then xh = 0; if x ∈M \ σM, then Ann(x)h ⊆
Ann(M); therefore, ah ⊆ Ann(M). In conclusion, M is totally σ–prime.

Corollary 7.6. Every associated totally σ–prime ideal to a totally σ–artinian module is σ–maximal.

Proof. For any p ∈ Asstσ (M) there exists a totally σ–prime module N ⊆M such that p = (σN : N ), or
equivalently, p = (σM : m) for some m ∈M \ σM.

Corollary 7.7. For any totally σ–artinian module M the set Asstσ (M) is finite.

References

[1] D. D. Anderson and T. Dumitrescu, S-noetherian rings, Comm. Algebra 30(9) (2002), 4407–4416.

[2] H. Ansari-Toroghy and S. S. Pourmortazavi, On S–primary submodules, Int. Electron. J. Algebra
31 (2022), 74–89.

[3] T. Duraivel, S. Mangayarcarassy, and K. Premkumar, Prime extension filtration of modules, Int. J.
Pure Appl. Mathematics 98 (2) (2015), 211–220.

[4] A. Hamed and A. Malek, S–prime ideals of a commutative ring, Beitr. Algebra Geom. 61 (2020),
533–542.

[5] P. Jara, An extension of S–artinian rings and modules to a hereditary torsion thery setting, Comm.
Algebra 49 (2021), 1583–1599.

[6] , An extension of S–noetherian rings and modules, Int. Electron. J. Algebra 34 (2023), 1–20,
arXiv: 2011.03008.

[7] P. Jara, F. Omar, and E. Santos, An extension of S–noetherian spectrum property, Journal Algebra
Appl. . (2023), 17 pp., Granada.

[8] , Totally simple modules, Granada, 2023.

[9] L. Lesieur and R. Croisot, Algèbre noethérienne non commutative, Gautier–Villars, 1963.

[10] J. W. Lim, A note on S–noetherian domains, Kyungpook Math. J. 55 (2015), 507–514.

[11] E. S. Sevim, T. Arabaci, U. Tekir, and S. Koc, On S–prime submodules, Turkish J. Math. 43 (2019),
1036–1046.

[12] B. Stenström, Rings of quotients, Springer–Verlag, Berlin, 1975.



Associated ideals to totally noetherian modules 17

[13] A. Verschoren, Tertiary decomposition in Grothendieck categories, Czechoslovak Mathematical
Journal 30 (1980), 661–672.

[14] S. Visweswaran, Some results on S–primary ideals of a commutative ring, Beitr. Algebra Geom. 63
(2022), 247–266.


	Introduction
	Background on hereditary torsion theories
	Totally noetherian modules
	Totally prime submodules
	Filtration of prime submodules
	Primary decomposition
	Applications

