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S.1. Probability density function

To generate a polydisperse set of nanoparticles (NPs), a probability density function (pdf) is

needed. One of the most common pdfs fitting NP size distribution is the Log-normal distribu-

tion, whose pdf is given in (Eq. S1):

fLN(σn; µ, ζ) =
1

ζ
√

2π

1
σn

e−(lnσn−µ)2/2ζ2
, (S1)

where σn is the NP’s diameter, and the parameters µ and ζ are the mean and standard deviation,

respectively, of the natural logarithm of σn. The average value of the diameter reads:

〈σn〉 = eµ+
ζ2
2 , (S2)
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whereas the polydispersity index, ΠD̄, measuring the distribution of the NP’s size, is defined as

ΠD̄ ≡
v
〈σn〉

2 = eζ
2
− 1, (S3)

with v = [exp(ζ2)− 1][exp(2µ+ ζ2)] the variance of the Log-normal distribution. The distributions

used in this article to generate NPs are plotted in Fig. S1. The Log-normal moments read:

〈σN
n 〉 = 〈σn〉

N(1 + ΠD̄)(N2−N)/2, ∀N ∈ R. (S4)
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Figure S1: Log-normal probability density functions (Eq. S1) used in this work. Vertical lines are
pdfs with ΠD̄, ζ → 0 and

∫ ∞
0

dσn fLN(σn; µ, ζ → 0) = 1. The other distributions have a non-zero
standard deviation. In particular, their polydispersity indices are ΠD̄ = {0.05, 0.10, 0.15, 0.20}.

To exclude from this distributions NPs with size unrealistically smaller than the polymer bead

diameter, only NPs with σn/σm > 1 were selected. When an attempt to create a NP did not fulfil

this condition, a new attempt was made. Mathematically, this process translates into the area below

the cutoff diameter being removed and log-normally redistributed along the remaining part of the

distribution (Fig. S2). Thus, the distribution used to generate the NPs reads:

fLNc(σn; µ, ζ, dc) =
H(σn − dc)

Ω
fLN(σn; µ, ζ) =

H(σn − dc)
Ω

1

ζ
√

2π

1
σn

e−
(lnσn−µ)2

2ζ2 , (S5)

where dc/σm = 1 is the cutoff diameter, H is Heaviside’s step function, and Ω the normalization
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Figure S2: Log-normal probability density function (Eq. S1) with 〈σn〉/σm = 2 and ΠD̄ = 0.2
(black continuous line), exhibiting the removed area (red), its redistribution (blue) and the remain-
ing area of the original LN pdf (green). The modified pdf (Eq. S5) is also outlined (blue dashed
line). The red dotted line stands at the cutoff diameter dc/σm = 1.

constant. The normalization constant and the moments of the modified Log-normal distribution

respectively read:

Ω =

∫ ∞

0
dσn fLNc(σn; µ, ζ, dc) =

1
2

erfc

 ln
(
dc

√
1 + ΠD̄/〈σn〉

)
√

2 ln(1 + ΠD̄)

 , (S6)

〈σN
n 〉dc =

〈σn〉
N(1 + ΠD̄)(N2−N)/2

2Ω
erfc

 ln
(
dc(1 + ΠD̄)1/2−N/〈σn〉

)
√

2 ln(1 + ΠD̄)

 , ∀N ∈ R, (S7)

where erfc(x) is the complementary error function, and 〈...〉dc means average over (Eq. S5). The

value of Ω, corresponding the red (or blue) area in Fig. S2, is plotted in Fig. S3. For most

of the systems studied in this article Ω < 1%, which, to a good approximation, makes the NP

size distribution in these systems virtually Log-normal. Nevertheless, the few systems with larger

values of Ω may show non-negligible discrepancies in their predictions. As a consequence, the use

of Eq. (S5) is imperative in order to validate our simulation data.
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Figure S3: Normalization constant of (Eq. S2). Lines are the curves at constant ΠD̄ = 0.00 (contin-
uous black), ΠD̄ = 0.05 (dashed red), ΠD̄ = 0.10 (dotted blue), ΠD̄ = 0.15 (dashed dotted green),
and ΠD̄ = 0.20 (continuous magenta). Symbols correspond to the systems studied in this article.

S.2. Simulations set up

The model of NPs employed in this work, preventing the overlap of the NP cores either with each

other or with the polymer chain beads, together with the NP size dispersity, may hamper or delay

the process of equilibration. In order to overcome this problem, the dispersion of NPs inside the

simulation box was addressed in first place. To this end, the initial configuration consisted of

polymer chains sequentially arranged as in a lattice network at an end of the box, see Fig. S4, and

separated from the NPs. The simulation box initially had a tetragonal geometry, with dimensions

Lbox × Lbox × Lz0, where Lbox is the length of the final cubic box side, and Lz0 > Lbox the initial

length of the elongated side. In particular, Lbox = [NcLcρ
−1
m (1 − φn)−1](1/3), where Nc is the number

of polymer chains, Lc = 10 the number of beads constituting the chain, ρm/σ
−3
m = 0.7 the target

polymer chain bead number density, and φn the target NP volume fraction. To achieve the final

density, we first allowed the NPs to perform Monte Carlo (MC) moves, according to the Metropolis

algorithm and the Boltzmann condition,1 while keeping the polymer chains frozen. The NPs were

allowed to move to that region of the simulation box not occupied by the polymer chains. For

every single MC cycle, one attempt to reduce Lz by a random length between 0 and 0.1σm was

made. If accepted, the positions of the NPs were rescaled by the same factor inside the permitted

region. The move was accepted if and only if no violation of the minimum allowed NP-NP and

NP-monomer distances occurred, but did not follow the Boltzmann conditions, as it would in an
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NPT ensemble. Typically, the system needed ∼ 102 − 103 MC cycles before the box reached its

final dimensions. An additional amount of 500 cycles were run to relax the NPs. Once a perfect

cubic geometry was obtained, the whole system was equilibrated by running Molecular Dynamics

(MD) simulations in LAMMPS,2 with chains and NPs moving freely in the conditions described

in the article. A minimum amount of 6 × 106, and up to 107, MD steps were needed to relax the

energy to a steady value within statistical fluctuations.

Figure S4: Representative snapshots of the process of equilibration of a polymer melt incorporating
30 polydisperse (〈σn〉/σm = 6, ΠD̄ = 0.20) NPs, and 7798 polymer chains. The hard core and soft
shell of the NPs are shown in purple and semi transparent red, respectively, while the polymer
chains are displayed in green and reduced in size for clarity. In this particular case, an elongated
simulation box of dimensions Vbox,0/σ

3
m = 48.95 × 48.95 × 175.81 (left frame) was set containing

a crystallyne ordered polymer at one end and an arrangement of ordered NPs at the other. A
MC simulation were then performed, allowing NP moves and box resizing, while polymer chains
remained in their initial positions. When the target volume was obtained, namely Vbox/σ

3
m =

48.95 × 48.95 × 48.95 (center frame), an MD simulation was run, allowing every component to
move freely until the equilibrium configuration is reached (right frame). This figure has been
generated with the Visual Molecular Dynamics (VMD) software.3
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S.4. Ould-Kaddour-Levesque’s average diffusivity for dc/σm < 1

The average diffusivity obtained from Ould-Kaddour and Levesque’s model, must be calculated

separately for the cases dc/σm < 1 and dc/σm > 1, the latter being the case discussed in the article.

For the sake of completeness, we show here the average value left out of the main publication:

〈DOL
n 〉dc<1 =

1
Ω

〈DOL
n 〉 +

kBT
6πη0

∞∑
N=1

(−1)N 〈σn〉
N−1

σN
m

(1 + ΠD̄)N(N−3)/2+1erfc

 ln
(
〈σn〉

dc
(1 + ΠD̄)N−3/2

)
√

2 ln(1 + ΠD̄)


 ,

(S8)

where

〈DOL
n 〉 =

kBT (1 + ΠD̄)
6πη0〈σn〉

{
erfc

 ln
(
σm
〈σn〉

(1 + ΠD̄)3/2
)

√
2 ln(1 + ΠD̄)

 +

+

∞∑
N=1

(−1)N

[
−

(
〈σn〉

σm

)N

(1 + ΠD̄)N(N−3)/2erfc

 ln
(
〈σn〉

σm
(1 + ΠD̄)N−3/2

)
√

2 ln(1 + ΠD̄)

 +

+

(
σm

〈σn〉

)N

(1 + ΠD̄)N(N+3)/2erfc

 ln
(
σm
〈σn〉

(1 + ΠD̄)N+3/2
)

√
2 ln(1 + ΠD̄)

]},
(S9)

and kB is Boltzmann’s constant, T is the absolute temperature, and η0 the viscosity of the pure

polymer.
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S.5. Additional results on NP diffusivity

The models by Yamamoto and Schweizer, and Ould-Kaddour and Levesque, are respectively com-

pared to our results in Figs. S5 and S6. While Yamamoto and Schweizer’s model overestimates

the diffusivity values when σn < 2Rg, Ould-Kaddour and Levesque’s underpredict them.
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Figure S5: Average diffusion coefficients of NPs in melts of unentangled polymer chains as a
function of the average NP diameter (a, c) and polydispersity index (b, d). Symbols refer to simu-
lation results, whereas dashed lines to the theoretical predictions of the Yamamoto and Schweizer’s
model within a Log-normal (a, b) and modified Log-normal (c, d) size distribution. Left frames:
ΠD̄ = 0.00 (#), 0.05 (_), 0.10 (S), 0.15 (N), and 0.20 (�). Right frames: 〈σn〉/2Rg = 1/3 (N),
2/3 (�), 1 (#), 4/3 (_), 2 (S), 8/3 (H), and 10/3 ( ). The range of colors used for the dashed lines
follows the same description as the symbols. Error bars are smaller than the symbol size and might
not be visible.
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Figure S6: Average diffusion coefficients of NPs in melts of unentangled polymer chains as a func-
tion of the average NP diameter (a, c) and polydispersity index (b, d). Symbols refer to simulation
results, whereas dashed lines to the theoretical predictions of the Ould-Kaddour and Levesque’s
model within a Log-normal (a, b) and modified Log-normal (c, d) size distribution. Left frames:
ΠD̄ = 0.00 (#), 0.05 (_), 0.10 (S), 0.15 (N), and 0.20 (�). Right frames: 〈σn〉/2Rg = 1/3 (N),
2/3 (�), 1 (#), 4/3 (_), 2 (S), 8/3 (H), and 10/3 ( ). The range of colors used for the dashed lines
follows the same description as the symbols. Error bars are smaller than the symbol size and might
not be visible. Mathematica was used to compute the theoretical curves.4
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