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SUMMARY

During human development, signals that govern
lineage specification versus expansion of cells
committed to a cell fate are poorly understood. We
demonstrate that activation of canonical Wnt
signaling by Wnt3a promotes proliferation of human
embryonic stem cells (hESCs)—precursors already
committed to the hematopoietic lineage. In contrast,
noncanonical Wnt signals, activatedby Wnt11,control
exit from the pluripotent state and entry toward meso-
derm specification. Unique to embryoid body (EB)
formation of hESCs, Wnt11 induces development
and arrangement of cells expressing Brachyury that
coexpress E-cadherin and Frizzled-7 (Fzd7). Knock-
down of Fzd7 expression blocks Wnt11-dependent
specification. Our study reveals an unappreciated
role for noncanonical Wnt signaling in hESC specifica-
tion that involves development of unique mesoderm
precursors via morphogenic organization within
human EBs.

INTRODUCTION

Lineage specification is a highly coordinated phenomenon

delineated by temporal changes in gene expression at

a single-cell level that respond to changes at a multicellular

level. Such coordinated events are orchestrated by key

morphogenic signaling pathways (Kimelman, 2006) including

the highly conserved Wnt family members (Kimelman, 2006;

Logan and Nusse, 2004). Unlike invertebrate and other

nonhuman models, this has been more difficult to understand

in the human system, in which early developmental events

cannot be experimentally manipulated. Human embryonic

stem cells (hESCs) provide an invaluable approach to modeling

fundamental processes of development and provide a unique

opportunity to define cellular mechanisms by which complex
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development events are modulated and organized by inductive

signaling molecules such as Wnts.

Wnts are a family of 18 secreted glycoproteins that act as

ligands for the seven-pass transmembrane Frizzled receptors

(Fzd) and coreceptor LDL receptor-related protein (LRP5/6)

(Wu and Nusse, 2002). Fzd signaling activates b-catenin-depen-

dent (canonical) and -independent pathways (noncanonical) (van

Noort et al., 2002). Wnt/b-catenin signaling, mediated by Wnt

ligands such as Wnt3a, regulates the ubiquitin-proteasome

destruction complex (Axin, APC, GSK-3, CK-1), resulting in the

stabilization and translocation of b-catenin to the nucleus, where

it regulates gene expression (Moon, 2005; van Noort et al., 2002).

b-catenin-independent Wnt signaling is mediated by Wnt ligands

such as Wnt11 and acts through kinases such as c-Jun NH2-

terminal kinase (JNK) and the calcium-dependent kinases

(CaMKII) and PKC (Kuhl et al., 2000; Nateri et al., 2005; Topol

et al., 2003; Westfall et al., 2003). Although the Wnt signaling

contributes to multiple developmental events during embryo-

genesis and in homeostasis of adult tissues, the roles of canon-

ical and noncanonical Wnt pathways are poorly understood and

have yet to be studied in early human development.

Considerable species variation exists at very early stages of

development, especially during gastrulation and morphogen-

esis. Accordingly, the functions of soluble factors such as

Wnts can be cell and species dependent. For example, while

the embryos of Wnt3 null mice fail to develop mesoderm, inhibi-

tion of the canonical signaling in zebrafish and Xenopus results

only in the axis truncation (Liu et al., 1999; Humphrey et al.,

2004; Poon et al., 2006; Tavian and Peault, 2005; Xu et al.,

2002). This species variation also precludes precise extrapola-

tions from mouse to humans in assigning specific roles for

Wnts in development. Consistent with the importance of

Wnt3a in mesoderm development, there is emerging evidence

that temporal activation of Wnt/b-catenin signaling is crucial

for cardiac and hematopoietic fate during murine and zebrafish

embryogenesis (Naito et al., 2006; Ueno et al., 2007). Similarly,

in the adult system, Wnt3a-mediated signals that are important

for achieving a balance of proliferation, differentiation, and self-

renewal of the hematopoietic stem cell (HSC) originate from
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the mesoderm (Kirstetter et al., 2006; Reya et al., 2003; Scheller

et al., 2006; Willert et al., 2003). In contrast, the functional roles of

the b-catenin-independent Wnt pathways are less clear but may

involve regulating cell movements and frequent antagonization

of the b-catenin pathway (Kuhl, 2002). b-catenin-independent

Wnt signaling has been implicated in ventral cell fate choices,

epithelialization in the early quail mesoderm, and cardiomyocyte

differentiation in a number of species, such as quail, Xenopus,

zebrafish, and mouse ESCs (Eisenberg and Eisenberg, 1999;

Eisenberg et al., 1997; Kuhl et al., 2000; Naito et al., 2006; Pandur

et al., 2002; Ueno et al., 2007). In humans, noncanonical Wnt

pathways have been associated with adult stages of develop-

ment that control the diversification of blood cell types and

augment regenerative potential of human HSCs capable of repo-

pulating immune-compromised NOD-SCID mice (Brandon et al.,

2000; Murdoch et al., 2003), an observation also made in the

mouse (Nemeth et al., 2007).

The exact role of canonical versus noncanonical Wnts in

human mesoderm and blood development remains to be

defined. Capitalizing on the ability of hESCs to give rise to hemo-

genic precursors and primitive blood cells (Wang et al., 2004), we

utilized hESCs as a robust in vitro model to examine the function

of canonical and noncanonical Wnt activation during embryonic

mesodermal and hematopoietic cell fate determination. We

reveal a distinct temporal nature of canonical and noncanonical

signaling to promote early human hematopoietic development

and propose that these two Wnt pathways mediate their effects

via distinct cellular mechanisms to augment human blood cell

fate that was not predicted by other invertebrate and nonhuman

models of blood development.

RESULTS

Wnt3a Affects Commitment Subsequent
to Hematopoietic Precursor Development
Initial experiments were performed to provide evidence that Wnt

ligands Wnt3a and Wnt11 elicit signals along the expected

canonical and noncanonical Wnt cascades within hESCs. The

biological activity of the Wnts produced from L cells was charac-

terized on cells transfected with the TCF optimal promoter-GFP

reporter construct (see Figures S1A–S1C available online). In

addition, microarray analysis revealed the Wnt pathways are

active in hESCs and that these pathways are regulated within

the hematopoietic-derived hESC compartment, which were

cultured under feeder-free conditions to ensure transcript detec-

tion was not disrupted by feeder cells (Figure S1D) (Wang et al.,

2004). To evaluate the effects on the biochemistry of target

proteins integral to canonical Wnt signaling, the phosphorylation

status of b-catenin was assessed under control versus Wnt

ligand treatment in hESCs. Higher total levels of b-catenin were

observed under Wnt3a treatment, while reduced levels were

seen with Wnt11 stimulations compared to control condition

(Figure S1E). In addition, phosphorylated b-catenin (Ser33/37,

Thr41) levels were lower with Wnt3a stimulation but higher under

Wnt11 conditions compared to control (Figure S1E). Further-

more, accumulation of the nonphosphorylated form of b-catenin

was observed with Wnt3a stimulation and was reduced with

Wnt11 cotreatment (Figure S1F). These data are consistent

with the notion that noncanonical Wnt signaling inhibits its
canonical counterpart in hESCs and that Wnt3a and Wnt11

can modulate b-catenin-dependent and -independent Wnt

signaling, respectively.

Since Wnt3a/canonical signaling has been implicated in many

aspects of hematopoietic differentiation (Kirstetter et al., 2006;

Reya et al., 2000; Scheller et al., 2006; Trowbridge et al.,

2006), we hypothesized that the effect of Wnt3a may be temporal

in nature, similar to its role during development in nonhuman

species (Ang et al., 2004; Na et al., 2006; Nohno et al., 1999).

To examine this, we characterized the effect of canonical

Wnt3a signaling in the hESC system, where hierarchical stages

of blood development have previously been characterized

(Figure 1A) (Chadwick et al., 2003; Wang et al., 2004). This devel-

opmental scheme of hematopoiesis from hESCS can be divided

into two stages: stages I and II. Stage I (days 0–7) encompasses

hemogenic lineage specification phase, characterized by the

initial appearance of the bipotential hemogenic cells to hemo-

genic and endothelial precursors (CD45�CD31+ cells) and by

the absence of hematopoietic (CD45+) cells and the lack of

progenitor capacity. Stage I is followed by the commitment

phase, stage II (days 7–15), characterized as the period in which

committed hematopoietic progenitors are detected by day 10

and peak at day 15.

Treatment with Wnt3a during stage I or stage II of EB develop-

ment revealed that Wnt3a increased both the hemogenic and

hematopoietic compartments only when present during the later

commitment stage II (7–15 days) of blood development from

hESCs. Restricted to stage II, Wnt3a induced a 2.4-fold increase

in hemogenic cell frequency and a 9.2-fold increase in total

hemogenic precursors (Figures 1B and 1C). Similarly, Wnt3a

induced a 2.8- and 3.8-fold increase in frequency of hematopoi-

etic cells and total hematopoietic progenitors, respectively, but

only when present at stage II of the hEB differentiation (Figures

1E and 1F), and not stage I (treated for 1, 3, or 7 days)

(Figure S2A). In addition, Wnt3a had no effect at stage I of hema-

topoietic development under serum-free conditions, indicating

that serum does not mask canonical Wnt3a effectiveness

(Figures S2B and S2C). Treatment with the canonical Wnt inhib-

itor, Dkk1, reduced both the hemogenic and hematopoietic

progenitors (CD34+CD45+) that were induced by Wnt3a during

this phase of blood development (Figures 1D and 1G). Evaluation

of the molecular activity of Wnt3a showed an increase in stable

b-catenin levels that was also Dkk1 sensitive (Figure 1H). These

data indicate that the effect of Wnt3a is regulated by canonical

Wnt signaling that uniquely targets only committed cells con-

tained withins day 7–15 hEBs (stage II) to augment hematopoi-

etic differentiation and does not affect specification of blood

fate from the pluripotent state that occurs at stage I (days 0–7)

(Figure S2A).

Wnt3a Induces Proliferation of Committed
Hematopoietic Precursors Derived from hESCs
To understand the cellular mechanism by which Wnt3a

augments hematopoiesis during later stages of hEB develop-

ment when cells are already destined to the hematopoietic

fate, we analyzed both cell death and proliferation of committed

cells. Augmentation of hemogenic and hematopoietic potential

from hESCs following Wnt3a treatment at stage II could not be

explained by affects on cell survival (data not shown). Using
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Figure 1. Wnt3a Is Important at Later Phases of hEB Development

(A) Schematic diagram of hematopoietic development from hESCs, segmented into different stages: stage I represents days 0–7 of hEB differentiation, defined by

specification of hESCs (day 0) to hemogenic CD31+CD45� precursors (day 7) and then toward emergence of blood lineage between days 7 and 15 as stage II,

where commitment to hematopoietic CD34+CD45+ progenitors (day 15) occurs. hEBs were treated during either developmental stage I or stage II and analyzed

for development into hemogenic and hematopoietic cells at day 15.

(B) Representative flow cytometry analysis of hemogenic cells following Wnt3a and control treatment (n = 6).
250 Cell Stem Cell 4, 248–262, March 6, 2009 ª2009 Elsevier Inc.
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markers of proliferation, proliferation cell nuclear antigen

(PCNA), and 5-bromo, 2-deoxyuridine (BrdU) incorporation, we

observed a 2.3-fold increase in number of PCNA-positive hEBs

upon Wnt3a stimulation as compared to control (Figures 2A–

2D). Confocal images of single cells isolated from day 15

BrdU-treated hEBs show robust BrdU staining of the hemogenic

(CD31+) and hematopoietic cells (CD45+) upon Wnt3a (Figures

S3A–S3C). Quantitative analysis of proliferative status upon

Wnt3a stimulation revealed that the overall cell proliferation,

enumerated as a proportion of BrdU-labeled versus nonlabeled

cells, was increased in the Wnt3a stage II-treated hEBs (66.5% ±

6%) compared to stage I (57.4% ± 0.1%) treated hEBs or

untreated (21.4% ± 2.7%) hEBs (data not shown). Importantly,

the BrdU incorporation (7ADD for DNA content) within the target

hemogenic compartment (CD31+CD45�) was 4.9-fold higher

during stage II treatment (Figures 2E and 2E0). Similarly, we

observed a 3.1-fold increase in frequencies of cycling hemato-

poietic cells (CD45+) (Figures 2F and 2F0) and a 5-fold increase

in the levels of the canonical Wnt target gene cyclin D1, associ-

ated with cellular proliferation (Figure 2G). These data indicate

that the cellular mechanism by which canonical Wnt (Wnt3a)

signaling promotes hematopoietic output from hESCs is medi-

ated by cell-cycle induction of previously committed hemogenic

and hematopoietic cells.

Wnt11 Affects Specification and Precursor Progression
at Early Stages of hEB Development
Given the temporal proliferative effects of Wnt3a on hESC-

derived blood development, we evaluated the effects of nonca-

nonical Wnt signals using Wnt11, based on established

responses to Wnt11 in hESCs (Figure S1). In contrast to Wnt3a

treatment, analysis of day 15 hEB differentiation revealed that

Wnt11 increased blood formation during the initial stage of

hematopoietic development from hESCs (stage I). The frequency

of hematopoietic cells and hematopoietic progenitor numbers

was upregulated by 2-fold and 2.5-fold, respectively, when

Wnt11 was present during the specification phase (stage I)

(Figures 3A and 3B). Similar to Wnt11, stimulation with Wnt5a

(another noncanonical Wnt pathway ligand) during stage I of

hEB differentiation also increased hematopoiesis (Figures

S4A–S4D). Additionally, Wnt11 treatment during stage I of differ-

entiation increased primitive hematopoietic programs, as indi-

cated by z- and 3-globin expression, which were 16-fold and

4.6-fold higher, respectively, compared to control conditions,

while definitive hematopoiesis (b-globin) was unaffected

(Figure S4G). Although Wnt11 was shown to function as an inhib-

itor of b-catenin (Figure 3D), cotreatment of Wnt11 with Dkk1

(200 ng/ml; as optimized dose of DKK1, Figure S2D) did not

affect the Wnt11 response seen at stage I of treatment

(Figure 3C). Dkk1 addition was able to reduce endogenous levels
of b-catenin (Figure 3E), indirectly suggesting that canonical

Wnts are produced by hEB cells, but have no biological affect

on hematopoietic development (Figure 3F, or at any other dose

of Dkk-1 tested, Figure S2D). Together, these observations

suggest that inhibition of endogenous canonical Wnt signaling

cascade is not sufficient to affect hematopoietic differentiation

and that Wnt11 signaling functionally enhances and temporally

regulates hematopoiesis during stage I (days 0–7) of hEB devel-

opment.

To further evaluate the early effects of Wnt11, hEBs were

treated with Wnt11 for 1 day and analyzed at day 15. This

24 hr Wnt11 exposure was sufficient to promote blood develop-

ment of both hemogenic precursors (Figure 3G) and hematopoi-

etic progenitors (Figures 3I). Total CFU production, as a func-

tional measure of hematopoietic progenitor capacity, was

determined for CD31+CD45� cells derived from day 10 and

day 15 hEBs treated with Wnt11 (Figure 3H) and demonstrated

that Wnt11 increases CFU output from this population. Interest-

ingly, unlike the modest affects seen during continued treatment

through stages I and II on hemogenic precursor output (Figures

S4E and S4F), a single exposure of Wnt11 in the first 24 hr

upon hEB formation was sufficient to increase the hemogenic

precursor frequencies by 2.4-fold compared to control (Fig-

ure 3I). This 24 hr effect was also demonstrated under serum-

free conditions, indicating that serum does not play a role in

Wnt11 effects (Figures S2B and S2C). Similar to effects on

hemogenic precursors, 24 hr of Wnt11 treatment resulted in a

2.2-fold increase in CFU production arising from CD34+CD45+

cells at day 15 of hEB development (Figure 3J). These data

suggest that 24 hr of Wnt11 treatment (day 1 of stage I) equally

augments both the hemogenic and hematopoietic progenitor

phenotype and function progenitor capacity during hEB hemato-

poietic development.

Based on the requirements of Wnt11 during the early phase

(stage I), but not the later phase (stage II) of blood differentiation,

and the immediacy of Wnt11 effects (24 hr), we hypothesized

that Wnt11 may promote the progression of unknown early

precursors of the blood lineage and may direct control genes

associated with the ground state of pluripotency (Boyer et al.,

2005; Chambers et al., 2003; Niwa et al., 2000; Zeineddine

et al., 2006).

Wnt11 Modulates Pluripotent Factors and Induces
Expression of Early Mesoderm
Given the immediate effects of Wnt11 in induction of hematopoi-

esis and sustained expression of both Nanog and Oct4 within the

first 2 days of hEB formation (data not shown), we examined the

potential association of Wnt11 with Oct4 and Nanog transcript

regulation during the 24 hr of Wnt11 treatment. Changes in

Oct4 and Nanog expression were monitored over time, from
(C) Hemogenic cells (CD31+CD45�) population is upregulated exclusively by Wnt3a treatment at stage II (n = 8) and had no effect at stage I treatment (n = 6)

compared to control treated.

(D) Inhibition of Wnt3a induced hemogenic differentiation at Stage II by Dkk1 (200 ng/ml; n = 4).

(E) Representative flow cytometry analysis indicating increase in hematopoietic progenitor (CD34+CD45+) cells by Wnt3a treatment at stage II versus control

treatment (n = 6).

(F) Wnt3a treatment at stage II promotes total hematopoietic progenitor output (n = 8).

(G) Dkk1 inhibits stage II-induced Wnt3a increases of total hematopoietic progenitors (n = 4).

(H) Immunoblot showing stabilization of b-catenin (probed for dephosphorylated b-catenin) in hEB treated with Wnt3a or treated with Dkk1 and Wnt3a (n = 6).

Controls are shown as a horizontal dashed line (*p < 0.01).
Cell Stem Cell 4, 248–262, March 6, 2009 ª2009 Elsevier Inc. 251
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Figure 2. Wnt3a Promotes Hemogenic and Hematopoietic Cell Proliferation

(A) Percent PCNA-positive hEB at day 15 following Wnt3a stimulation compared to control treatment.

(B–D) Immunocytochemistry of hEB stained for PCNA demonstrated a higher number of PCNA-positive cells with Wnt3a treatment versus control. Scale

bar, 50 mm.

(E) Representative flow cytometry of hemogenic cell distribution in different cell-cycle compartments showing that higher frequencies of hemogenic

(CD31+CD45�) cells have incorporated BrdU upon Wnt3a exposure versus control conditions (n = 3). (E0) Fold change in the ratios of BrdU+/BrdU� in hemogenic

cells following Wnt3a treatment compared to control (n = 3).

(F) Representative flow cytometry analysis showing higher frequencies of hematopoietic (CD45�) cells have incorporated BrdU upon Wnt3a stimulation versus

control treatment (n = 3). (F0) Fold change in the ratios of BrdU+/BrdU� in hematopoietic progenitors (CD34+CD45+) following Wnt3a treatment is higher

compared to control treatment (n = 3).

(G) Upregulation of cyclin D1 by Wnt3a quantified by real-time PCR compared to controls (dashed horizontal line) (n = 4; *p < 0.01).
the undifferentiated hESC state to 24 hr after hEB formation and

posttreatment (Figure 4A). Oct4 transcript was increased upon

hESC aggregation (Figure 4B), and rapid up- and downregulation

of Oct4 was consistently observed upon Wnt11 treatment

compared to control treated cells in the absence of Wnt11

(Figure 4C). While levels of Oct4 transcript were lower under

control conditions by 24 hr, Oct4 expression was maintained in

response to Wnt11 (Figure 4C). Furthermore, the frequency of

Oct4-positive cells measured by intracellular staining for Oct4

protein, as well as western blot analysis of Oct4 protein levels,

demonstrated Oct4 was regulated in response to Wnt11 stimu-

lation compared to control conditions (Figures S5A and S5B).

Given that the stability and turnover of the Oct4 protein is not

well defined, the differences between the protein level and tran-

script expression are likely to differ (Wei et al., 2007); however,
252 Cell Stem Cell 4, 248–262, March 6, 2009 ª2009 Elsevier Inc.
Wnt11 equally affected Oct4 protein and transcript, albeit with

different kinetics due to the nature of transcript versus protein

regulation. Similar to Oct4, Nanog transcript levels were found

to be upregulated 24 hr after hEB formation (Figure 4D) and re-

sponded to Wnt11 treatment (Figure 4E). Our data suggest that

Wnt11 regulates factors associated with pluripotent state, in

addition to affecting lineage specification genes toward meso-

dermal development.

To test this hypothesis, we monitored changes in gene expres-

sion for factors associated with mesoderm specification,

including T box and homeobox factors within the developing

hEBs. The expression of stem cell leukemia factor (SCL/Tal1),

important during hematopoietic development, and the

homeobox gene MixL1 and the T box gene Brachyury, surrogate

markers of primitive streak and blood-mesoderm development
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Figure 3. Wnt11 Regulates Blood Lineage Specification

(A) Representative flow cytometry analysis showing hematopoietic cell development induced by Wnt11 at stage I versus stage II of treatment (n = 7).

(B) Histogram showing upregulation of total hematopoietic progenitors (CD34+CD45+) comparing the effects of Wnt11 treatment at stage I versus stage II and to

control (n = 7).

(C) Lack of effects of Dkk1 addition (200 ng/ml) in the presence of Wnt11 stimulated promotion of hematopoietic progenitors compared to controls (n = 4).

(D) Immunoblot of dephosphorylated (stable) b-catenin protein levels in day 1 hEB upon a 2 hr exposure to Wnt11 compared to control treatment and quantitated

in bar graphs (n = 3).

(E) Immunoblot against dephosphorylated (stable) b-catenin in hEB-treated Dkk1 compared to control and relative protein levels quantitated in bar graphs (n = 3).

(F) Effects of Dkk1 present during stage I versus stage II of hematopoietic development. No changes in hematopoietic progenitors levels were observed when

Dkk1 was present at either stage compared to basal control hematopoietic conditions (n = 3).

(G) Fold changes in hemogenic (CD31+CD45�) development following 24 hr (1 day) or 7 day Wnt11 treatment compared to control treatment at the same time

points.

(H) Total CFU was compared from sorted CD31+CD45� precursors derived from day 10 and day 15 EBs treated with Wnt11 (0–1 day) or control-CM treated.

(I) Frequency of hematopoietic progenitors (CD34+CD45+) from day 15 hEBs treated from 0 to 1 day versus 0–7 days of Wnt11 or control treatment (n = 4).

(J) Total number of CFUs from day 15 hEBs treated with Wnt11 versus control for 1 day (n = 3). Control treatments shown as horizontal dashed line (*p < 0.01).
Cell Stem Cell 4, 248–262, March 6, 2009 ª2009 Elsevier Inc. 253



Cell Stem Cell

Wnt Signals Temporally Induce hESC Hematopoiesis
CB D E

J

H I

GF

A

Figure 4. Regulation of Pluripotent and Differentiation Factors by Wnt11 Stimulation

(A) Experimental schema. hESCs were used to form hEBs that were stimulated with Wnt11 24 hr after EB formation (aggregation). QRT-PCR was carried on

Wnt11 and control-treated hEBs isolated at 4, 8, 12, and 24 hr after treatment.

(B) Oct4 transcript levels, relative to undifferentiated hESCs, were measured 24 hr after EB formation (n = 3, *p < 0.05).

(C) Regulation of Oct4 transcript after Wnt11 hEB treatment at 4, 8, 12, and 24 hr compared to control levels from untreated hEBs at the same time points,

represented by dashed line (n = 3, *p < 0.05).

(D) Nanog transcript levels, relative to undifferentiated hESCs, were measured 24 hr after EB formation (n = 3, *p < 0.04).

(E) Regulation of Nanog transcript after Wnt11 hEB treatment at 4, 8, 12, and 24 hr compared to control levels from untreated hEBs at the same time points,

represented by dashed line (n = 3, *p < 0.05).

(F–H) Regulation of Scl/Tal1 (*p < 0.01), Brachyury (*p < 0.01), and MixL1 in day 1 hEB treated with Wnt11 (for 24 hr). Expression levels are relative to control

conditions shown and are indicated by horizontal dashed line (n = 8).

(I) Wnt11 modulation of mesodermal genes (Scl/Tal1, MixL1, Eomesodermin [Eomes] and Brachyury [Brach]) and endodermal genes (Gata5, FoxA2, Hnf3a).

Expression levels are relative to control conditions (n = 3).

(J) Wnt11 induced changes in Frizzled-2 and -7 expression at day 1 of hEB development as quantified by real-time PCR. Wnt11 treatment only induced Fzd7

expression. Expression levels are relative to control conditions (n = 6, *p < 0.01).
during early embryogenesis (Huber et al., 2004; Ng et al., 2005;

Shivdasani et al., 1995), were analyzed over time with Wnt11

treatment. Interestingly, undifferentiated hESCs express a wide
254 Cell Stem Cell 4, 248–262, March 6, 2009 ª2009 Elsevier Inc.
range of mesoderm (Eomesodermin, Brachyury, MixL1, SCL/

TAL1) and endoderm genes (FoxA2, Gata5, Hnf3a). Prior to treat-

ment with the Wnt11, i.e., 24 hr post-hEB formation, endoderm
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genes are downregulated while mesoderm genes like Brachyury

and Mixl1 are upregulated (Figure S5C). Upon 24 hr of Wnt11

treatment, SCL/Tal1 and Brachyury expression were positively

regulated by 2-fold and 2.3-fold, respectively (Figures 4F and

4G). While Brachyury expression levels peaked in day 1 hEBs,

MixL1 remained largely unchanged upon Wnt11 stimulation

(Figure 4H). Furthermore, Wnt11 induced Brachyury and SCL/

Tal1 expression also suggested a previously associated role of

Wnt signaling in mesendodermal transition (Hart et al., 2002;

Maduro et al., 2005; McLean et al., 2007). To assess the speci-

ficity of Wnt11 stimulation, we analyzed the expression of surro-

gate genes associated with mesoderm and endoderm hours

after Wnt11 treatment. Wnt11 stimulation preferentially

promotes the early differentiation of mesoderm from hESCs

(Figure 4I). These results indicate that Wnt11 represents a key

signal that dually orchestrates genes involved in sustaining the

pluripotent state, together with those involved in mesendoder-

mal lineage induction, thereby revealing a novel role of nonca-

nonical Wnt signals in human cell fate decisions.

Fzd7 Represents a Target of Wnt11 to Induce
Mesodermal Specification
To better understand the receptor and cellular targets for Wnt11

in hESCs, we evaluated expression of candidate Fzd receptors

associated with mesoderm lineage development previously

linked to Wnt ligand activity in nonhuman models (Toyofuku

et al., 2000; Witzel et al., 2006; Djiane et al., 2000). These

included the Fzd2 and Fzd7 receptors. In comparison to Fzd2,

a 2-fold upregulation in Fzd7 expression was observed with

24 hr of Wnt11 stimulation compared to control-treated hEBs

(Figure 4J). This was consistent with observations in the devel-

oping mouse embryo, in which unique changes in the Fzd7

expression were induced upon Wnt11 exposure and were reflec-

tive of morphogenesis (Djiane et al., 2000; Winklbauer et al.,

2001). To further examine the potential relationship between

Wnt11-induced mesodermal specification and Fzd7 expression,

we stained Wnt11-treated hEBs (Figures 5B–5D) with the early

mesodermal marker (Brachyury) and Fzd7 and compared them

to control hEBs (Figures 5A and 5C). We could only observe

Fzd7 and Brachyury costained cells in the Wnt11-treated hEBs

(Figures 5B–5D0). To detail this Wnt11 response, we examined

cells for coexpression Fzd7 and Brachyury in control versus

Wnt11-treated hEBs via immunofluorescence staining and flow

cytometry analysis. Although we observed similar proportions

of Brachyury+ hEBs and Fzd7+ hEBs in both control and Wnt11

treatment, Wnt11 stimulation caused 8.3-fold or 7.9-fold

increases in percentage of cells expressing Brachyury or Fzd7

proteins, respectively (Figure 5E). Importantly, the identification

of cells coexpressing Fzd7 and Brachyury was seen exclusively

in the presence of Wnt11 treatment (Figure 5F and Figure S6).

Based on these observations, we hypothesized that Wnt11

may act through a primitive Fzd7 receptive target population

for mesoderm specification.

To understand the role of Fzd7, we used a loss-of-function

approach by silencing Fzd7 during blood differentiation induced

by Wnt11. The effect of the Fzd7 siRNAs was demonstrated via

changes in the Fzd7+ population frequency (i.e., cell numbers).

Treatment of Wnt11-hEBs with siRNA against Fzd7 effectively

decreased the percentage of Fzd7+ cells (which are only detec-
tible under Wnt11 treatment) within the developing hEBs 48 hr

posttransfection, and reduced the frequencies of day 15 hema-

topoietic cells from the Wnt11 stimulated hEBs (Figures 5G and

5H). Silencing of other frizzled receptors, such as Fzd2 that has

been associated with the canonical Wnt response, did not affect

hematopoietic differentiation induced by Wnt11, further

supportive of the specific importance of noncanonical Wnt

signaling during early hEB differentiation (Figure S7). Reductions

in blood development caused by these Fzd7 siRNAs were

dependent on the presence of Wnt11 (Figure 5H). Interestingly,

silencing of Fzd7 within the Wnt11-stimulated hEBs also resulted

in significant downregulation of the pluripotent factors Oct-4 and

Nanog, mesoderm gene Brachyury and MixL1, and slight down-

regulation in endodermal genes Hnf3a and Gata5 but had little

affect on SCL/Tal1 expression levels (Figures 5I and 5J). These

data reveal that Wnt11 stimulation induces a unique Fzd7+ pop-

ulation not present in the absence of Wnt11 stimulation.

Wnt11 Modulates E-Cadherin Expression
and Patterning in Early Mesoderm from hESCs
The noncanonical Wnt signaling is known to play a pivotal role in

cellular movements in the embryo proper that may be mediated

by architectural scaffolds receptive to signaling cascades that

promote lineage differentiation via critical cellular interactions

(Dang et al., 2002; Skerjanc et al., 1994). To test if structure alters

the receptivity of Wnt11 stimulation to augment hematopoietic

development, we compared treatment of hESCs assembled

into hEBs versus hESCs in monolayers. EBs and monolayers

of hESCs were treated under identical Wnt11 or control condi-

tions and then assayed for blood development. Hematopoietic

differentiation induced by Wnt11 was only observed upon EB

formation from hESCs and not monolayers cultured and treated

under identical conditions (Figure 6A). Molecular analysis after

1 day of hEB formation revealed an intense upregulation of phos-

phorylated CaMKII activity, which was exclusive to the 30 min

Wnt11-treated hEBs and was not observed in hESCs treated in

monolayer cultures (Figures 6B and 6C). Undifferentiated hESCs

also expressed basal CaMKII activity; however, 30 min stimula-

tion with Wnt11 only increased CaMKII activity in hESCs in EBs

and not in hESCs-assembled monolayers. The rapid response of

CaMKII in hEBs suggests a direct activation of this signaling

cascade by Wnt11. These data support a b-catenin-independent

mechanism for Wnt11 action via CaMKII that is interconnected

and dependent on cellular interactions supported in complex

EB formation and architecture not available in hESCs treated

under identical conditions assembled in monolayers.

Early events of mesoderm development in mammalian

embryos have been associated with changes in dynamic move-

ment and adhesion properties of nascent mesodermal progeni-

tors (Burdsal et al., 1993; Solnica-Krezel, 2006). In addition,

Wnt11 signaling has been shown to mediate E-cadherin-depen-

dent morphogenesis (Burdsal et al., 1993; Toyofuku et al., 2000;

Ulrich et al., 2005). To determine if similar mechanisms were

responsible for Wnt11 responsiveness in hEBs undergoing meso-

dermal specification, we examined the expression patterns of

E-cadherin in hEBs stimulated with Wnt11 for 24 hr compared to

control. Under control conditions, E-cadherin+ cells were present

on the periphery of hEBs (Figure 6D, open arrow), whereas Wnt11

treatment induced clustering of E-cadherin-expressing cells
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Figure 5. Identification of Wnt11-Responsive Population

(A–D0) Serial section of day 1 hEB showing immunolocalization of Fzd7 (green) and Brachyury (red) exclusively in the Wnt11 treatment. Scale bar, 50 mm.

(E) Percent Fzd7- and Brachyury-positive cells in the hEBs treated with Wnt11 compared to control conditions.

(F) Histogram representing fold change in Fzd7+Brachyury+ cell population measured by flow cytometry analysis following 24 hr of Wnt11 treatment at stage I

(day1) of hEB development (n = 3, p < 0.01). Side panels correspond to the histogram beside and are representative flow cytometry plots indicating that the

presence of the Fzd7+Brachyury+ cells is Wnt11 dependent (n = 4).

(G) Percentage of Fzd7+ cells within Wnt11 treated hEBs 48 hr after siRNA (scrambled siRNA versus Fzd7 siRNA) treatment.

(H) Frequencies of hematopoietic cells from day 15 hEBs following Fzd7 silencing within Wnt11 versus control-treated hEBs.

(I) Relative gene expression of pluripotent factors Oct 3/4 (n = 3) and Nanog (n = 3) 48 hr after siRNA (scrambled siRNA versus Fzd7 siRNA) treatment within

Wnt11-treated hEBs.

(J) Relative gene expression of mesoderm genes (Brachyury, Scl/Tal1, MixL1) and endoderm genes (Gata5, Hnf3a) 48 hr after siRNA (scrambled siRNA versus

Fzd7 siRNA) treatment within Wnt11-treated hEBs, where Brachyury and MixL1 were reduced (n = 3; *p < 0.01).
(Figure 6E, closed arrow). Although the percentages of E-cad-

herin+ hEBs between the control and Wnt11 treatments were

similar (data not shown), the Wnt11-treated hEBs showed a higher

frequency of these clusters as compared to controls (Figure 6J).

The immediate effect of Wnt11 on cellular organization within
256 Cell Stem Cell 4, 248–262, March 6, 2009 ª2009 Elsevier Inc.
hEBs is consistent to that recently observed in murine EB devel-

opment in response to Wnts (ten Berge et al., 2008). Serial

sections stained for Fzd7 and E-cadherin demonstrated

colocalization exclusively in the Wnt11-treated hEBs (Figures

6H–6I00) versus the control (Figures 6F–6G00). Interestingly, the
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Figure 6. Structural Requirements of Wnt11 Stimulation

(A) Frequency of hemogenic precursors between hESCs assembled in monolayers versus embryoid bodies cultured under identical media conditions in the pres-

ence of Wnt11 (n = 4).

(B) Levels of phosphorylated CaMKII protein from monolayer cultures after 30 min exposure to Wnt11 versus control (n = 4).

(C) Levels of phosphorylated CaMKII protein from hEB cultures after 30 min exposure to Wnt11 versus control (n = 3).

(D) Immunostaining of E-cadherin in hEB under control conditions, showing presence of internal E-cadherin cluster (solid arrow) versus E-cadherin staining

around the periphery of hEBs (open arrow) Scale bar, 50 mm (n = 4).

(E) Immunostaining of E-cadherin in hEB under Wnt11 conditions showing multiple E-cadherin-rich internal clusters (solid arrows) Scale bar, 50 mm.

(F–G00) Magnification of inset of control-treated hEBs showing lack of immunolocalization of E-cadherin and Fzd7.

(H–I00) Magnification of inset of Wnt11-treated hEB, showing immunolocalization of E-cadherin and Fzd7.

(J) Quantitative analysis of the frequencies of hEB with E-cadherin internal clusters under Wnt11 treatment compared to control (n = 4).

(K–M00) Serial section of day 1 Wnt11-treated hEB, showing immunolocalization of E-cadherin, Fzd7, and Brachyury proteins (n = 6; *p < 0.01).
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Figure 7. Schematic Representation of the Relationship between Wnts and the Hierarchical Cellular Development of Hematopoietic Cell Fate

from hESCs

Noncanonical and canonical Wnt pathways play early and late roles during the sequential development of hematopoietic lineage from hESC, respectively. Under

hematopoietic conducive conditions, human ESCs undergo spontaneous differentiation, initially giving rise to the bipotential hemogenic cells (represented in

yellow) that can give rise to CD45+ blood cells (represented in red) and endothelial cells. b-catenin-independent (noncanonical Wnt) signaling directed by

Wnt11 functions to augment hematopoietic differentiation by combined CaMKII and b-catenin regulation, and morphogenic organization (curved arrows) within

the hEBs to cause the exit of pluripotency and induction of mesendoderm genes. In this schema, it is envisaged that the noncanonical Wnt signaling, directed by

Wnt11, functions to augment hematopoietic differentiation by regulating mesoderm cell patterning by inducing the expression of Fzd7-, Brachyury-, and E-cad-

herin-positive cell populations that arise during the specification/initial stages of hEB development. The aggregation of such cell types (Fzd7/E-cadherin/Bra-

chyury positive cells) promotes differentiation toward the blood lineage. In contrast, the canonical Wnt pathway governed by Wnt3a is important in the prolifer-

ation of the committed hemogenic and hematopoietic progenitors emerging later during the hEB development, similar to its previously defined role in somatic

blood stem cells.
Wnt11-treated hEBs uniquely accumulate Fzd7+, E-cadherin+,

and Brachyury+ cells (Figures 6K–6M00). This unique population

of Frd7+E-cadherin+Brachyury+ was never detectable in the

absence of Wnt11. Taken together, these results describe unique

responses to noncanonical Wnt11-induced signals in hEBs that

lead to the emergence of unique mesodermal population not

present in the absence of Wnt11.

DISCUSSION

Understanding the cellular and molecular processes during

lineage specification in vivo forms an important basis to attempt

to control in vitro differentiation of hESCs. Reciprocally, hESC

differentiation has been suggested as a model to map complex

cellular interactions and movement that cannot be accessed in

the human embryo. However, these applications have yet to

be fully demonstrated in the hESC system. Using mesodermal

and subsequent hematopoietic development from hESCs as

a basis, our current study identifies an unpredicted role for non-

canonical Wnt signaling to induce exit and hematopoietic spec-

ification of the hESCs, whereas canonical Wnt signaling was

revealed to be limited to proliferation of hemogenic precursors

already committed to the blood lineage. Based on our results,

we propose a model by which Wnts temporally regulate hemato-

poietic development from hESCs via unique mechanisms known

to be important in the developing embryo (Figure 7).

In vivo generation of initial blood-forming stem cells involves

several developmental stages coupled to anatomical movement

in the human (Tavian and Peault, 2005). Accordingly, it is likely

that signaling factors governing this process are diverse and

that noncanonical and canonical Wnts would affect different

stages and target populations contributing to mammalian

embryonic hematopoiesis similar to their effects in other lineages

(Logan and Nusse, 2004). In vitro, specification events and

expansion of the hematopoietic compartment can only be
258 Cell Stem Cell 4, 248–262, March 6, 2009 ª2009 Elsevier Inc.
modeled using pluripotent cells required to make lineage choice.

This cellular process has been broadly envisioned as a loss of

pluripotent state and subsequent emergence of hemogenic

precursors responsible for final hematopoietic differentiation

and blood cell output (Ogawa et al., 2001). Although this model

has been recapitulated in several species, the earlier events

from pluripotent stage to mesodermal transitions and the growth

factors required have not been extensively studied. Taking the

current model of hESC blood development into account (Wang

et al., 2004), we reveal a unique role for noncanonical Wnt

signaling mediated through Wnt11 that promotes exit from the

pluripotent state to mesodermal specification. The effect of

Wnt11 was dependent on hESC assembly into EB structures,

since no effect on hematopoietic output was induced using

monolayers of hESCs (Figure 7). Wnt11 induces blood cell fate

through combined CaMKII and b-catenin regulation and

morphogenic organization within hEBs and causes changes in

expression of pluripotent factors Oct and Nanog as mesodermal

genes are rapidly induced (Figure 7). These combined processes

cause the development of a unique subset of Fzd7 expressing

cells that coexpress Brachyury and E-cadherin, both associated

with mesodermal development and mesodermal cell movement

in early mammalian development (Huber et al., 2004; Kwan and

Kirschner, 2003; Winklbauer et al., 2001; Yamanaka and Nishida,

2007).

This is the first report revealing the importance of noncanoni-

cal Wnt signaling during human embryonic hematopoiesis;

however, Wnt11 and similar cellular signals have been associ-

ated with hematopoietic output in other species. The presence

of Brachyury+, Fzd7+, and E-cadherin+ mesoderm progenitors

as clusters within the Wnt11-treated hEBs, together with

changes in mesendoderm to mesoderm gene expression, illus-

trate the role of the noncanonical Wnt signaling during embry-

onic mesoderm induction from hESCs. Association of Wnt11 to

blood development has been reported in early avian and
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amphibian development, in which Wnt11 influences the multili-

neage potential of blood cells from avian mesoderm stem cells

(Eisenberg and Eisenberg, 1999; Eisenberg et al., 1997). Further-

more, a recent report by Kim et al. showed preferential expres-

sion of Wnt11 and Fzd7 within the Flk+ (hemogenic cell marker)

population derived from mESCs (Kim et al., 2008). At the

signaling level, the robust upregulation of phosphorylated

CaMKII observed immediately upon Wnt11 exposure of hEBs

correlates with the previous observation that CaMKII activation

induced by noncanonical Wnt pathway in the Xenopus embryos

is able to promote hematopoietic-associated ventral cell fates

(Kuhl et al., 2000; Moon et al., 1993). Importantly, the exclusive

increase of phosphorylated levels of CaMKII within the hEBs

and not in treated monolayers of hESCs underscores the impor-

tance of 3D structure (Duprat, 1996; Gurdon et al., 1993; Kato

and Gurdon, 1993) and cellular movement required to mediate

mesodermal inductive Wnt11 effects. E-cadherin has been

specifically implicated in the polarized segregation of meso-

dermal progenitor cells undergoing EMT at the primitive streak

(Burdsal et al., 1993; Ciruna and Rossant, 2001). Taken together,

our observations using the hESC system complement observed

effects of Wnt11-based CaMKII signaling in other species, in

which the earliest events of specification toward mesoderm

can be moderated.

The role of Wnt3a to enhance blood production has been

observed in several systems, such as zebrafish specification to

hemogenic mesoderm (Martin and Kimelman, 2008; Shimizu

et al., 2005), early mouse embryo development (Lindsley et al.,

2006; Liu et al., 1999), mESC-hematopoiesis (Lengerke et al.,

2008; Nostro et al., 2008), and hESC-derived hematopoiesis

(Woll et al., 2007). However, the temporal nature of the signaling

and cellular mechanism of Wnt3a actions was not delineated, nor

were the potential interactions and effects of noncanonical path-

ways and associated ligands such as Wnt11. Similar to these

previous studies, addition of Wnt3a augmented hematopoiesis

derived from hESCs here and further revealed the action of

Wnt3a was mediated via induced proliferation of cells already

committed to the blood lineage and not early specification events

(Figure 7). The biological effect of canonical Wnt observed here in

hESCs is consistent with multiple studies showing the prolifera-

tive effects of canonical Wnt activation on mouse and human

somatic blood stem cells (Kirstetter et al., 2006; Reya et al.,

2003; Scheller et al., 2006; Trowbridge et al., 2006; Willert et al.,

2003). Accordingly, despite the previously recognized role of

canonical Wnt signals in mesodermal development, the interplay

of noncanonical Wnt signaling should be examined in other

development systems based on our current observations in

hESCs. Moreover, interplay of canonical and noncanonical Wnt

pathways in the context of human mesodermal and endodermal

development cannot be ruled out, and it can set the platform for

further studies, utilizing loss-of-function and gain-of-function

genetic techniques, that could clarify these complex interactions.

Our study reveals that noncanonical versus canonical Wnt

signaling is capable of guiding differentiation of embryonic

stem cells toward mesoderm and subsequent hematopoietic

fate, respectively, thereby establishing that members of the

Wnt family are capable of controlling unique transitions of blood

development in the human. These observations provide unique

insights into early developmental events in the human, given
the inability to access these processes in the human embryo.

Since Wnt11 induces emergence of a unique population of

Fzd7+/Brachury+/E-cadherin+ cells, it will be important to eval-

uate the lineage potential of these cells that may possess broader

potent developmental capacity to other mesodermal lineages

such as muscle, cardiac, and bone derivatives. These capacities

are currently being explored in our lab, along with defining culture

methods to sustain this subpopulation in vitro. The ability to

sustain these cells in culture will further allow examination of

the role of Wnts in combination with others associated with

ventral mesodermal fate such as BMP-4 toward a better under-

standing organization of signals required for hESC hematopoietic

differentiation. Collectively, these findings will need to be applied

to clinical goals of generating sufficient numbers of appropriately

programmed hematopoietic cells from hESCs that possess HSC

properties of in vivo reconstituting function similar to HSCs ob-

tained from human bone marrow or cord blood.

EXPERIMENTAL PROCEDURES

Preparation of Soluble Wnt Proteins

Control and Wnt-expressing L cells were grown in media used to culture the

hEBs. The hEB media consisted of 80% knockout Dulbecco’s modified

Eagle’s medium (KO-DMEM; GIBCO, Burlington, ON, Canada), 20% non-

heat-inactivated FBS (Hyclone), 1% nonessential amino (GIBCO) acids,

1 mM L-glutamine (GIBCO), and 0.1 mM b-mercaptoethanol (Sigma, Oakville,

ON, Canada). The CM-containing active Wnt3a, Wnt11, and CM from control

L cells were collected every 3 days, and two collections were carried out

before use. Cell debris was removed from the CM by centrifugation at 250 g

for 10 min.

hESCs Derived from Embryos and hEB Cultures

Human ESC lines H1 and H9 were cultured in MEF-CM supplemented with

8 ng/ml of bFGF (Invitrogen) as a feeder-free culture on Matrigel (BD Biosci-

ences, Mississauga, ON, Canada). When hESC cultures have reached 80%–

90% confluence and hESC colonies are dense, the cultures are disassociated

using 200 U/ml Collagenase IV (GIBCO) and passaged as 1:2 ratios onto fresh

Matrigel. The media were changed every day. All experiments were carried out

on both the H1 and H9 cell lines. Human embryoid bodies (hEBs) were formed

as previously described (Chadwick et al., 2003). The hEBs were cultured under

hematopoietic conducive conditions (300 ng/ml SCF, 300 ng/ml Flt-3L,

10 ng/ml IL3 and IL-6, 50 ng/ml G-CSF, 25 ng/ml BMP-4) and supplemented

with 4% vol/vol of either control Wnt3a or Wnt11 CM the day after hEB forma-

tion. Conditioned media were supplemented either during the entire hEB

differentiation or during 0–7 days (stage I) or 7–15 days (stage II) of the devel-

oping hEB. Time zero thus represents the day at which the cytokines, growth

factor, or CM are added. Dkk1 treatment (200 ng/ml) was done during stage I,

stage II, or both stages of hEB differentiation.

Assessment of Hematopoietic Differentiation and E-Cadherin

Expression by Flow Cytometry and Data Analysis

Hemogenic (recognized phenotypicially as CD45�CD31+) and hematopoietic

cells (CD45+) were identified by staining single cells (2–5 3 105 cells/ml) iso-

lated from hEBs disassociated with 0.4 U/ml Collagenase B (Roche Diagnos-

tics, Laval, QC, Canada) from day 15 with fluorochrome-conjugated mono-

clonal antibodies (mAb) CD31-PE and pan-leukocyte marker CD45-APC

(Milteny Biotech, Germany). The mAb and their corresponding isotypes were

used at 1–2 mg/ml. Frequencies of cells possessing the hemogenic and hema-

topoietic phenotypes were determined on live cells by 7AAD (Immunotech)

exclusion, using FACSCalibur, and analysis was performed using the FlowJo

software (Tree Star). Hemogenic and hematopoietic cellularity was determined

by multiplying total cellular yield by their respective frequencies. For data anal-

ysis, effect on frequencies and total hemogenic and hematopoietic output by

the Wnt-CMs were normalized to the control-CM within each experiment. Data

presented are mean ± SEM of pooled normalized values between
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experiments. Statistical significance was determined using the ANOVA-Tukey

HSD test and is reported as p < 0.05. For E-cadherin analysis, 2 mg/ml of

monoclonal anti-human APC-conjugated E-cadherin and APC-labeled mouse

IgG2a isotype were used (R&D Systems). For Fzd7 and Brachyury analysis,

0.5 mg/ml anti-human Fzd7 (R&D Systems) conjugated with FITC and anti-

human PE-conjugated Brachyury (R&D Systems) were used.

Hematopoietic Progenitor Assay, CFU Assay

Clonogenic blood progenitor assays were carried out by plating 10–15 3 103

single cells from day 15 hEBs onto methylcellulose H4230 (StemCell Technol-

ogies, Vancouver, BC, Canada) supplemented with human recombinant

growth factors described previously (Wang et al., 2004). Differential colonies

in the methylcellulose culture were scored based on standard morphological

criteria after 14 days incubation at 37�C in a humidified chamber.

Cell-Cycle Analysis

hEBs were pulsed with 10 mM BrdU (Becton Dickinson) 24 hr before hEB

disassociation. 1 3 106 single cells were stained for membrane CD proteins

with fluorochrome-conjugated CD31-PE and CD45-FITC (Milteny Biotech,

Germany) prior to processing for intracellular staining with BrdU-APC mAb

(Becton Dickinson). The cells were fixed and permeabilized according to the

manufacturer protocol (Becton Dickinson). Cellular proliferation was quantified

by flow cytometry and qualified by Spinning Disk Confocal microscopy. For

image analysis, the fluorochrome-immunostained single cells were cytospun

and excited with a 488 (FITC detection), 543 (PE) or 647 nm (APC) laser path

on the Lieca DMI 6000 B microscope (Bernsheim, Germany). Images were

acquired with the Volocity 4 (Improvision, Coventry, UK) and analyzed with

the ImageJ v1.37 (http://rsb.info.nih.gov/ij/) and ImagePro plus v6.1 software.

siRNA Transfection

For siRNA transfections, clumps of hESC colonies were obtained as previously

mentioned and transferred to 6-well ultra-low attachment plates (Corning). Cell

were transfected in EB differentiation medium using lipofectamine (Ambion,

Inc., USA) and 50–100 nM siRNA according to the manufacturer’s instructions.

After 24 hr, medium was changed to EB differentiation medium supplemented

with hematopoietic growth factors. All siRNAs were purchased from Ambion,

Inc., and their effects were tested individually and in combination. The

following siRNAs were used: Fzd2 siRNA, ID 4057, 45981, and 3962; Fzd7

siRNA, ID 4955 and 4861; Scrambled siRNA #1. siRNA transfection efficiency

was assessed using a Silencer Cy3-labeled negative Control #1 siRNA

(Ambion, Inc.).

Western and Immunoprecipitation

hESCs (1–3 3 106) or day 1 hEB cells or 2–4 3 105 cells of day 15 hEBs were

lysed with buffer containing 1% Triton X-100, 150 mM NaCl, 10 mM Tris-HCl,

5 mM EDTA, 10 mg/ml protease inhibitors (Leupeptin, Aprotonin, Apeptin),

0.5 mM PMSF, and phophatase inhibitor cocktail (SetIV, Calbiochem). For

western blots, equal amount of proteins (20 mg) were separated using 12%–

15% SDS-PAGE and transferred to PVDF membrane. Membranes were

blocked with 5% skimmed milk for 2 hr and blotted with the primary antibody

overnight at 4�C. The following primary antibodies were used: rabbit phospho-

b-catenin (Ser33/37, Thr41) (1:1000, Cell Signaling), mouse monoclonal

dephopho b-catenin (1:500, Alexis Biochemicals), mouse monoclonal total

b-catenin (1:1000, Becton Dickinson), rabbit polyclonal phospho-CaMKII

(1:1000, Cell Signaling), mouse monoclonal phospho-SAPK/JNK (1:2000,

Cell Signaling), and mouse monoclonal Oct4 (1:1000, BD Transduction Lab).

The membranes were washed and stained with HRP-conjugated goat anti-

rabbit or anti-mouse Ab (1:10 000, Santa Cruz), and signals were detected

with the enhanced chemiluminescence method (Pierce); membranes were

exposed to X-ray film and UVP Bioimaging system (UVP, California), and

band intensities were subsequently quantified using the ImagePro software.

Immunoprecipitation (IP) was performed for detection of CaMKII and JNK

activity. hESCs or hEB cell lysates (300–500 mg of total) were allowed to

interact with rabbit polyclonal total CaMKII (1:250, Cell Signaling) or total

JNK (1:250, Cell Signaling) immobilized antibodies (Aminolink Plus Coupling

Gel, Pierce Biotechnology) according to the manufacturer’s protocol. Western

blots were performed on the total CaMKII and JNK IP proteins, and phosphor-

ylated versions of the respective proteins were identified with the phospho-
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CaMKII and phospho-JNK Ab. Immunoblots were stripped and reblotted for

either mouse polyclonal b-actin (1:5,000; Sigma), mouse GAPDH (1:10,000;

Cell Signaling); or total JNK (1:1,000; Cell Signaling) as loading control.

Immunocytochemistry

Wnt- and control-treated hEBs were washed two to three times in 1 3 PBS/3%

FCS, fixed with 4% paraformaldehyde/PBS for 2 hr, embedded, and then snap

frozen in liquid nitrogen and stored at �80�C for staining with Fzd7, E-cad-

herin, Brachyury, and PCNA. Cryostat serial sections (8 mM) were made for

each treated specimen, and successive serial sections were single-stained

with Fzd7, E-cadherin, and Brachyury proteins for detection within the same

hEB region. For each single staining, three sections at an interval of seven to

ten (25–30 mm) serial sections were used. The sections were hydrated with

1 3 PBS and permeabilized with 0.3% Saponin/PBS for staining Fzd7 and

E-cadherin, and 0.1% Triton X-100/PBS for Brachyury and PCNA. All

Ab-stained sections were washed in their respective permeabilization buffer.

Sections were blocked with either 10% normal goat serum (Fzd7 and E-cad-

herin), 10% normal donkey serum (for Brachyury), or 10% normal rabbit serum

(PCNA) + 1% BSA at room temperature (RT) for 2 hr. The following primary

antibody and dilutions were used: rabbit polyclonal Fzd7 (13 mg/ml, Abcam),

goat affinity-purified Brachyury (10 mg/ml, R&D Systems), mouse monoclonal

E-cadherin (10 mg/ml, Alexis), and mouse monoclonal PCNA-FITC (1:250,

Abcam). Sections were incubated with primary antibodies overnight and

subsequently secondary stained for 1 hr with Alexa Fluor 488 goat anti-rabbit

IgG (Molecular Probes) for Fzd7, Alexa Fluor 594 goat anti-mouse IgG (Molec-

ular Probes) for E-cadherin, or Alexa Fluor 594 donkey anti-goat IgG (Molec-

ular Probes) for Brachyury at 2 mg/ml. Slides were mounted and counter-

stained using VECTASHIELD HardSet Mounting Medium with DAPI (Vector

Labs). Sections were examined using the Olympus I 3 18 microscope, and

images were captured with a Photometrix Cool Snap HQ2 camera using

in vivo version 3.1.2 (Photometrix) software. Images were pseudocolored

and analyzed using Image-Pro software.

Quantitative Real-Time PCR

Total RNA was isolated from hEBs using the QIAGEN AllPrep RNA Mini Kit

(QIAGEN). Complementary DNA (cDNA) was made with 1–5 mg of total RNA

using the first-strand cDNA synthesis kit (Amersham Biosciences), and subse-

quent quantitative real-time PCR (Q-rtPCR) was carried out in duplicate, using

Platinum SYBR Green qPCR Super Mix-UDG on an Mx3000P Q-PCR System

according to the manufacturer’s instructions (Invitrogen). Amplifications were

performed using the following conditions: 95�C, 10 min and 40 cycles 95�C,

30 s; 60�C, 1 min; 72�C, 30 s. All data were normalized to GAPDH, and relative

gene quantification for Wnt effects was calibrated against the following

control-CM effects: Wnt and control treatment Ct-Gapdh Ct = DCt then

Wnt D Ct – control D Ct = DD Ct, and relative expression is expressed as

2(�DD Ct). Q-rtPCR primers are listed in Table S1.

SUPPLEMENTAL DATA

The Supplemental Data include seven figures and one table and can be found

with this article online at http://www.cell.com/cell-stem-cell/supplemental/

S1934-5909(09)00003-4.
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