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Abstract

It is well known that the problem of fitting a dataset by using a spline sur-
face minimizing an energy functional can be carried out by solving a linear
system. Such a linear system strongly depends on the underlying functional
space and, particularly, on the basis considered. Some papers in the liter-
ature study the numerical behavior and processing of the above-mentioned
linear systems in specific cases. The bases that have local support and con-
stitute a partition of unity have been shown to be interesting in the frame of
geometric problems. In this work, we investigate the numerical effects of con-
sidering these bases in the quadratic Powell-Sabin spline space. Specifically,
we present a direct approach to explore different preconditioning strategies
and assess whether the already known ‘good’ bases also possess favorable
numerical properties. Additionally, we introduce an inverse optimization
approach based on a nonlinear optimization model to identify new bases
that exhibit both good geometric and numerical properties.
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1. Introduction

The problem of obtaining fitting surfaces to cloud of points constitutes an
active research field due to its application to several problems arisen in dif-
ferent disciplines such as earth sciences, computer vision in robotics, struc-
tural simulations, and computer aided geometric design, among others; see
e.g., [4, 12].
In most approaches for solving this problem, the fitting surface is a spline
obtained by minimizing an energy functional defined in a suitable functional
vector space and, frequently, a linear system must be solved in order to
obtain it; see e.g., [1, 8, 15, 20]. For a review on this topic we recommend [14].
Most papers on the field of fitting surfaces rely on geometric aspects of
the problem (for example approximation order of the fitting surface to the
data points, smoothing properties, and geometric constraints to be fulfilled),
but the literature on the numerical issues concerning the solution of the
linear systems behind the fitting surface problem is still poorly explored.
We think that this is an interesting matter insofar as obtaining proper, –
faithful to the data points– fitting surfaces necessarily leads to large-scale
linear systems whose conditioning, moreover, is strongly linked to the basis
chosen in the spline functional. In this frame, in [20] an iterative proposal,
based on the preconditioned conjugate gradient method, is presented in
order to handle the linear system arisen when considering the usual Hermite
basis, while in [12] a numerical inverse-free recursive method is developed to
handle a fitting surface problem considered in a multi-resolution context. In
[13] the authors show that preconditioning the coefficient matrix of a linear
fitting system is in fact equivalent to considering the linear fitting system
when working with another basis, i.e., they determine that a basis can be
associated to each preconditioner and vice versa. In this frame, they consider
the problem of determining whether good (or effective) preconditioners lead
to good basis and vice versa, in the understanding that good bases are the
ones constituting a partition of unity. Nevertheless, no numerical studies
have been carried out in order to handle the linear systems arisen when using
bases that have local support and constitute a partition of unity (see e.g.
[8]). It is worth mentioning that these bases are considered to be somehow
‘good’ –and have been profusely used in the literature of fitting surfaces– as
they present some attractive properties when handling geometric problems.
In this work we study the numerical aspects and we develop preconditioning
strategies when considering these bases in the quadratic Powell-Sabin spline
space. More precisely, we determine whether the preconditioning strategies
for the ill-conditioned coefficient matrix of the linear system involved either
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cluster the eigenvalues or manage to shift them into a very few discrete
clusters.
Regarding Powell-Sabin, other literature has explored various aspects of
this topic. It is worthy to mention [21] (where polar forms of the Powell-
Sabin B-spline representation of quadratic polynomials or splines are intro-
duced); [10] (where quasi-interpolation in a space of sextic splines defined
over Powell-Sabin triangulations is studied); [16] (devoted to the construc-
tion of a normalized basis for a quadratic condensed Powell-Sabin-12 macro-
element space) and [23] (handling C1-cubic splines over a triangulation with
Powell-Sabin refinement).
The organization of the document is as follows. In Section 2 we recall the
necessary basic concepts for this work, most of them related to the con-
cept of partition of unity basis and to the underlying general fitting surface
problem. In Section 3 we present a direct approach, based on the use of
preconditioning strategies, to evaluate the numerical quality of known bases
that have good geometric properties. In Section 4 we introduce an inverse
approach, based on a nonlinear optimization model, for the discovery of po-
tential new bases that exhibit both good geometric and numerical properties.
Finally, in Section 5, we provide concluding remarks primarily focusing on
the numerical findings presented in Sections 3 and 4.

2. Preliminaries

2.1. Powell-Sabin sub-triangulation

Let D ⊂ R2 be a polygonal domain, let T be a ∆1- triangulation of D (see
e.g. [6]) and T6 let be its associated Powell-Sabin triangulation T (a detailed
description can be found in [13]). Let {tk = (xk, yk)}`k=1 be the knots of T .
It is well known ([17]) that:

Theorem 1. Given any set of triplets {Fk = (fk, fxk, fyk)}`k=1 there exists
a unique S in S1

2 (D, T6) =
{
S ∈ C1(D) : S|T ′ ∈ P2(T ′) ∀T ′ ∈ T6

}
such that

S(tk) = fk,
∂S

∂x
(tk) = fxk,

∂S

∂y
(tk) = fyk, for all k = 1, . . . , `. (1)

Theorem 1 shows that S1
2 (D, T6) has dimension N = 3` and provides an

interpolation scheme for constructing a basis of S1
2 (D, T6). Later on in this

work we will recall some well-known facts about how to construct ‘proper’
bases based on (1). In fact, we will study some numerical aspects related to
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the choice of these bases. Before, we describe the fitting problem posed on
the space S1

2 (D, T6) to be handled in the paper: let

P = {p1, . . . , pq} (2)

be set of data points in D; Z = {z1, . . . , zq} ∈ Rq, and ρ : S1
2 (D, T6) −→ Rq

defined by ρ(v) = (v(p1), . . . , v(pq)). Let | · |j represent the usual seminorm

|u|j =

∑
|β|=j

∫
D
∂βu(x)2dx

 1
2

, j = 1, 2;

for which (·, ·)j represents the corresponding inner semi-product

(u, v)j =
∑
|β|=j

∫
D
∂βu(x)∂βv(x)dx; j = 1, 2;

and let us consider the functional J : S1
2 (D, T6) −→ R defined by

J (v) =< ρ(v)−Z >2
q +τ1|v|21 + τ2|v|22, (3)

where τ1 ≥ 0, τ2 > 0, and < · >q stands for the usual Euclidean norm in Rq.
J provides a weighted measure of the fitting objective and of the ‘minimal
energy condition’. The functional J allows to dispose of certain fairness
control of the fitting surface. In [1] it is shown that:

Theorem 2. There exists a unique σ ∈ S1
2 (D, T6) minimizing J .

Given a basis B = {v1, . . . , vN} of S1
2 (D, T6), the vector (ξ1, . . . , ξN ) leading

to the unique σ =
∑N

i=1 ξivi in Theorem 2 is the solution of the linear system

MNx = bN , (4)

where MN = PN P
T
N +QN ,

PN =

 v1(p1) . . . v1(pq)
...

...
vN (p1) . . . vN (pq)

 ; QN = (τ1(vi, vj)1 + τ2(vi, vj)2)Ni,j=1 ;

and bN =
(
(< ρ(vi),Z >q)

N
i=1

)T
. MN is symmetric and, moreover, in [1]

it is shown that it is also positive definite for all bases B. An important
issue to consider when solving (4) is how to choose a proper basis on the
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interpolation scheme (1) insofar as the conditioning of this linear system
strongly depends on B. A very well-known one is the Hermite basis, defined
as the set {v1, . . . , vN} verifying

v3(i−1)+1(tk) = δik,
∂v3(i−1)+1

∂x (tk) = 0,
∂v3(i−1)+1

∂y (tk) = 0,


v3(i−1)+2(tk) = 0,
∂v3(i−1)+2

∂x (tk) = δik,
∂v3(i−1)+2

∂y (tk) = 0,


v3(i−1)+3(tk) = 0,
∂v3(i−1)+3

∂x (tk) = 0,
∂v3(i−1)+3

∂y (tk) = δik,

(5)
for i, k = 1, . . . , `.
In [8] the authors considered, for each tk, the B-splines Bj

k, for j = 1, 2, 3,
solutions of the interpolation problem (1) with data

F ji = (0, 0, 0) for i 6= k and j = 1, 2, 3,

F jk = (αjk, β
j
k, γ

j
k) 6= (0, 0, 0) for j = 1, 2, 3,

(6)

where (α1
k, β

1
k, γ

1
k), (α2

k, β
2
k, γ

2
k) and (α3

k, β
3
k, γ

3
k) are three linearly indepen-

dent vectors for each k. It holds then that {Bj
i }1≤i≤`,1≤j≤3 is a basis of

S1
2 (D, T6) where each basis function Bj

k has local support since it vanishes
outside the molecule Mk of vertex tk, defined as the union of all triangles
of T having tk as vertex.
It is well known (see e.g. [4]) that disposing ofB-spline basis {Bj

i }1≤i≤`,1≤j≤3

which form a partition of unity, i.e., verifying

∑̀
i=1

3∑
j=1

Bj
i (x, y) = 1 for all (x, y) ∈ D and (7)

Bj
k(x, y) ≥ 0 for all (x, y) ∈ D, (8)

has several geometric advantages. It easy to show that imposing (7) to the
basis {Bj

i }1≤i≤`,1≤j≤3 is equivalent to ask the equations

α1
k + α2

k + α3
k = 1; β1

k + β2
k + β3

k = 0; γ1
k + γ2

k + γ3
k = 0 (9)

hold for all k = 1, . . . , `. On the other hand, for all knot tk let Tk be the
associated so-called control triangle, defined as the one having vertices

Qk1 = (Xk1, Yk1) =
(
xk +

α2
kγ

1
k+γ2k(1−α1

k)
dk

, yk +
−α2

kβ
1
k−β

2
k(1−α1

k)
dk

)
,

Qk2 = (Xk2, Yk2) =
(
xk +

−α1
kγ

2
k−γ

1
k(1−α2

k)
dk

, yk +
α1
kβ

2
k+β1

k(1−α2
k)

dk

)
,

Qk3 = (Xk3, Yk3) =
(
xk +

−α1
kγ

2
k+γ1kα

2
k

dk
, yk +

α1
kβ

2
k−β

1
kα

2
k

dk

)
,

(10)
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where dk =

∣∣∣∣∣∣
α1
k α2

k α3
k

β1
k β2

k β3
k

γ1
k γ2

k γ3
k

∣∣∣∣∣∣ = β1
kγ

2
k − γ1

kβ
2
k 6= 0. In [8] it is shown that

in order that the functions Bj
k satisfy (8) we just have to consider values

{αjk, β
j
k, γ

j
k} in (6) in such a way that for all k = 1, . . . , `

Tk contains tk and all the points having barycentric coordinates
(1, 1, 0) and (1, 0, 1) with respect to all the triangles 4(tk, P,Q)
of T6 having tk as a common vertex.

(11)

Summarizing, the basis {Bj
i }1≤i≤`,1≤j≤3 will constitute a partition of unity

whenever the values {αjk, β
j
k, γ

j
k} in (6) verify (9) and (11).

In order to construct partition of unity basis we can also consider the inverse
problem, i.e., to define, for k = 1, . . . , `, triangles

T̃k = {(X̃k1, Ỹk1), (X̃k2, Ỹk2), (X̃k3, Ỹk3)} (12)

containing all points described in (11) and then compute the values {αjk, β
j
k, γ

j
k}

by means of ([8]) α1
k α2

k α3
k

β1
k β2

k β3
k

γ1
k γ2

k γ3
k


 X̃k1 Ỹk1 1

X̃k2 Ỹk2 1

X̃k3 Ỹk3 1

 =

 xk yk 1
1 0 0
0 1 0

 . (13)

Next we describe some bases satisfying (9) and (11) previously introduced
in the literature. In all cases, it holds that Fk in (6) are the same for all
knots k. A more detailed introduction of these basis is provided in [13].

• BShi : They considered ([22]), for all k = 1, . . . , `,

F1
k =

(
1

4
, 0, ε

)
; F2

k =

(
1

4
, ε, 0

)
; F3

k =

(
1

2
,−ε,−ε

)
,

where ε ∈
[

1
4h ,

1
2h

]
and h is the length of the longest edge of T .

• BLP (bases based on linear programming): We consider

F1
k =

(
α1
k, 0, ε

)
; F2

k =
(
α2
k, ε, 0

)
; F3

k =
(
1− α1

k − α2
k,−ε,−ε

)
.

In the numerical sections of this work we will consider tD = (0, 1) ×
(0, 1) and the ∆1-triangulations T n, defined as the one associated to
the uniform partition of [0, 1] into n subintervals. It can be checked
by doing some calculations that for T n condition (11) is equivalent to

request ε ∈ [−n, n], ε 6= 0, and α1 = α2 = |ε|
3n .
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Figure 1: Spy plot of Mn for n = 5 and n = 10.

• BCT : For triangulations T n we have considered, for all k = 1, . . . , ` =
(n+ 1)2, the triangle T̃k introduced in (12) to be

(X̃k1, Ỹk1) = tk + 2rk(cos(ϕ), sin(ϕ)),

(X̃k2, Ỹk2) = tk + 2rk
(
cos
(
ϕ− 2π

3

)
, sin

(
ϕ− 2π

3

))
,

(X̃k3, Ỹk3) = tk + 2rk
(
cos
(
ϕ+ 2π

3

)
, sin

(
ϕ+ 2π

3

))
,

(14)

where r1 = r(n+1)2 = 1
4n , ri =

√
5

6n for i 6= 1, (n+ 1)2 and ϕ ∈
[
0, 2π

3

]
.

The sets F jk are then obtained by using (13).

3. Numerical assessment of some well-known partition of unity
bases

All the experiments in this section and in the next one have been carried out
(using Octave with double precision) over the domain D = (0, 1) × (0, 1),
using the triangulation T n, with q = 2000 data points in (2), and with
smoothing parameters values τ1 = 10−5 and τ2 = 10−9 in (3). Let us denote
the coefficient matrix MN in (4) to be Mn when handling the triangula-
tion T n. We are interested in solving the sparse large-scale linear system
Mnx = b using the well-known Preconditioned Conjugate Gradient method
(PCG). In this context, Mn is a sparse block tridiagonal matrix. Spy plots in
Figure 1 show the sparsity structure. The Conjugate Gradient (CG) iterative
scheme only requires one matrix-vector product per iteration and hence it is
computationally efficient. Moreover, at each iteration j, xj is the only point
in the subspace explored so far that minimizes the distance to the solution
x∗ in the Mn-norm (i.e., it minimizes ‖xj−x∗‖2Mn

= (xj−x∗)TMn(xj−x∗)).
Therefore, the CG method ends up with the unique solution of the system
Mnx = b in at most p iterations, where p is the number of distinct eigen-
values of Mn (see [5], [18]). In order to apply PCG we seek to evaluate
the performance of incomplete factorization preconditioners (accelerators).
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Figure 2: Condition number κ(MShi
n (ε)) vs. parameter ε (n = 10, 30).

In particular, we are interested in observing if these preconditioners either
cluster the eigenvalues of the preconditioned matrix around unity and thus
κ(C−1Mn) � κ(Mn) or manage to shift the eigenvalues into a very few
discrete clusters (see e.g. [5, 18]). We present four classes of Mn matrices:
the ones associated to bases Shi, BLP and BCT, and the one associated to
Hermite basis (5), in order to compare the results for partition of unity basis
with another one not having this property. We report on the quality of the
preconditioners C from the incomplete factorizations family, in particular
Cholesky (ichol(0), C = LLT ≈ Mn) and LU (ilu(0), C = LU ≈ Mn).
These preconditioner have no fill-in. The matrices associated to Shi, BLP
and BCT depend on a parameter ε. In all cases, we first give an insight
of how the matrix condition number depends on ε. Then we construct
the preconditioner ichol(0) or ilu(0) and we show in the left column (in
blue) the eigenvalues and the associated histogram for Mn(ε∗), where ε∗

has been chosen as the one leading to a lower condition number. In the
right column (in red) are reported the eigenvalues for the preconditioned
matrix C−1Mn(ε∗). We also include a table reporting, for n = 5, . . . , 40, the
κ
(
Mn(ε∗)

)
, λmin/λmax of C−1Mn(ε∗) and its spectral radius (in these tables

‡ indicates that κ(Mn) is a coarse `1 estimation).

3.1. Class Shi

MatrixMShi
n (ε) is parameterized via ε ∈ [n/(4

√
2), n/(2

√
2)]. Figure 2 shows

the matrix condition number with respect to ε for different values of n.

3.2. Class BLP

Matrix MBLP
n (ε) is parameterized via ε ∈ [−n, n]\{0}. Figure 4 shows the

matrix condition number with respect to ε for different values of n. Very
poor conditioning can be observed in the neighborhood of zero.
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Figure 3: Histograms of eigenvalues for C−1MShi
n (ε∗) (n = 10, 20).
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Figure 4: Condition number κ(MBLP
n (ε)) vs. parameter ε (n = 10, 30).

Figure 5: Eigenvalues of C−1MBLP
n (ε∗) (left) and its corresponding Precond matrix

(right), for N = 10, 20.
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n κ(Mn) C λmax/λmin λ(C−1Mn)
5 8.127× 104 ichol 1.18 [0.923, 1.093]
10 9.19× 104 ichol 1.40 [0.8723, 1.224]
20 5.24× 104 ichol 1.59 [0.7883, 1.256]
30 ‡ 1.20× 105 ilu 1.84 [0.711, 1.306]
40 ‡ 9.86× 104 ichol 1.89 [0.693, 1.308]

Table 1: Conditioning of MShi
n .

n κ(Mn) C λmax/λmin λ(C−1Mn)
5 3.21× 103 ichol 1.05 [9.22e-1, 9.75e-1]
10 2.76× 104 ichol 1.17 [8.72e-1, 1.024]
20 1.99× 104 ichol 1.40 [7.88e-1, 1.107]
30 ‡ 1.38× 104 ilu 2.10 [7.11e-1, 1.493]
40 ‡ 9.07× 107 ichol 2.19 [6.92e-1, 1.523]

Table 2: Conditioning of MBLP
n .

3.3. Class BCT

Matrix MBCT
n (ϕ) is parameterized via ϕ ∈ [0, 2π/3]. Figure 6 shows the

matrix condition number with respect to ε for n = 5. For this case ϕ does
not influence the matrix condition number.

3.4. Class Hermite

For the Hermite basis, Mn does not depend on any parameter.
In Table 4,“ichol+d I” indicates that ichol(0) is applied to Mn + d In for
d > 0, and In being the identity matrix of size n. We note that the Hermite
basis is not competitive, from the numerical point of view, as compared with
the partition of unity bases.
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Figure 6: Condition number κ(MBCT
n (ε)) vs. parameter ε (n = 5).
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Figure 7: Histogram of eigenvalues of C−1MBCT
n (ε∗) (left) and its corresponding Precond

matrix (right), for n = 10, 20 and a suitable and arbitrary ϕ.

Figure 8: Histogram of eigenvalues of C−1MHermite
n (ε∗) (left) and its corresponding Pre-

cond matrix (right), for n = 10, 20.
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n κ(Mn) C λmax/λmin λ(C−1Mn)
5 1.44× 103 ichol 1.123 [9.22e-1, 1.036]
10 3.51× 104 ichol 1.345 [8.723e-1, 1.174]
20 7.34× 104 ichol 1.734 [7.883e-1, 1.367]
30 ‡ 1.73× 105 ilu 1.991 [7.110e-1, 1.415]
40 ‡ 2.20× 105 ichol 2.111 [6.925e-1, 1.462]

Table 3: Conditioning of MBCT
n .

n κ(Mn) C λmax/λmin λ(C−1Mn)
5 1.19× 105 ichol 1.524 [9.22e-1, 1.405]
10 3.14× 106 ichol 1.75 [8.72e-1, 1.153]
20 6.42× 106 ichol 1.9 [7.88e-1, 1.5]
30 ‡ 1.43× 107 ichol 2.107 [7.11e-1, 1.498]
40 ‡ 1.76× 107 ichol+0.1 I 7.003 [1.64e-1, 1.153]

Table 4: Conditioning of MHermite
n .

4. Inverse approach to evaluate the relationship between numeri-
cal and geometric quality of bases

In Section 3, we have established that the 3 known bases (BShi, BLP and
BCT ), which have excellent geometric properties, also have very good nu-
merical properties for solving the associated linear systems. In this section,
we plan to study whether in fact any basis that satisfies the constraints (9)
also produces good numerical results. Furthermore, we would like to explore
the possibility that without forcing the geometric conditions given by (9),
we can still generate good bases from a numerical point of view. To accom-
plish these objectives, we will present a suitabrepeatle inverse model, and
we will propose a low-cost effective numerical scheme for iteratively solving
the constrained optimization problems that naturally arise from it.
Let us start by recollecting a few facts that will be needed throughout this
section: MN is symmetric and positive definite where N = 3(n + 1)2. The
matrices MN have a band structure, with a bandwidth much smaller than
the dimension (especially when the value of n increases), and within the
band there is a structure of zeros and non-zeros, that is, the band of MN is
in turn sparse. Moreover, the matrices MN are ill-conditioned, i.e., κ(MN ) =
λmax(MN )/λmin(MN ) is a large number, and that ill-conditioning increases
when the value of n increases.
As in BShi, BLP and BCT, we consider Fk in (6) to be the same for all
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knots, in such a way that MN and bN depend only on the 9 real parameters{
(αi, βi, γi), i = 1, 2, 3

}
, which in the direct problem (already understood

and solved in Section 3) are given, and in the inverse case they are the
unknowns whose values must be obtained.
Our plan is to explore an inverse approach, that is, assign values to the
parameters αi, βi, γi in such a way that the matrix MN has attractive prop-
erties when solving the linear system, always in the PCG context. Whether
they are attractive or good will become clear later and will be modeled with
an appropriate optimization problem based on a smooth objective function
subject to linear equality constraints.

Optimization model and a low-cost numerical method

Consider P = {pi = (αi, βi, γi) ∈ R3, i = 1, 2, 3)}, and let ΩMN
be the set of

all square matrices with the same dimension and sparse pattern of MN . We
propose to solve the following optimization problem:

min
p∈P

f(p) = 1
2

∥∥CN MN (p)− IN
∥∥2

F
(15)

subject to
∑3

i=1 αi = 1,
∑3

i=1 βi = 0,
∑3

i=1 γi = 0.

We note that the symmetric matrices IN (Identity matrix), CN , and MN (p)
are all N × N , and that the objective function f : R9 → R. From now
on, for simplicity, MN (p) will also be denoted as MN . We also note that
the 3 linear equality constraints, that define the feasible region of (15), have
been justified in Section 2 and can also be written as p1 + p4 + p7 = 1,
p2 + p5 + p8 = 0, and p3 + p6 + p9 = 0.
The motivation for the optimization problem (15) is the following. This
problem consists of finding a convenient matrix MN (choosing the 9 vari-
ables) so that later when applying the direct approach (already studied) a
preconditioning matrix CN of MN is obtained such that when multiplying
both, that product CN MN is as close as possible to the identity matrix IN
in Frobenius norm, which for a given matrix A is defined as

‖A‖F =

 N∑
i=1

N∑
j=1

|aij |2
1/2

.

This effectively indicates that CN approximates M−1
N without having to

compute the inverse explicitly. Then, of course, that matrix Cn will become

13



the preconditioner to be used when solving the system MNx = bN . Observe
that for any choice of the variables, the matrix MN will indeed have the
band sparse pattern already described above, and then, by solving the direct
problem on MN , a CN is generated with “Incomplete LU or Choleski” ideas
that generate a matrix CN ∈ ΩMN

with no additional effort. Hence, we do
not need to impose CN ∈ ΩMN

.
The methods to be proposed for solving the non-linear problem (15) are,
obviously, iterative. We can offer a general algorithmic scheme without
describing the appropriate method in detail. Starting at a feasible vector
p0, set k = 0 and do the following:

• Step 1: If the stopping criteria of the chosen numerical method are
satisfied, STOP (returning pk).

• Step 2: If not, build MN (pk) (that has the band structure described
above).

• Step 3: Apply to MN (pk) the direct approach (already developed) to
build CkN ∈ ΩMN

.

• Step 4: Using CkN as a fixed matrix, apply the chosen numerical
scheme to find a feasible vector pk+1 (the next iterate), set k = k + 1,
and repeat steps 1–4.

Notice that, as it usually happens, solving an inverse problem requires solv-
ing a sequence of direct problems, as indicated in Step 3 of the general
iterative algorithm. Effective low-cost numerical methods to solve (15) will
need the gradient of the function f(p) to obtain pk+1 at the Step 4 of the
algorithm. For the sake of simplicity, let us denote

F (p) = CN MN (p)− IN .

Notice that F : R9 → RN×N , and also that f(p) can be written as

f(p) =
1

2
〈F (p), F (p)〉F ,

where for any given square matrix A, 〈A,A〉F = trace(ATA) = ‖A‖2F . Con-
sider the auxiliary function g : R → R, given by g(t) = f(p + tZ), for any
arbitrary vector Z. From basic calculus we know that g′(0) = 〈∇f(p), Z〉F .
After simple manipulations, using trace properties, we obtain

g′(0) = 〈F (p), F ′(p)Z〉F = 〈F ′(p)TF (p), Z〉F .
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Consequently, the gradient of f(p), ∇f(p) : R9 → R9, is given by

∇f(p) = F ′(p)TF (p),

where F ′(p) (the first derivative or Fréchet derivative, also called “Jacobian”
of F at p) is given by F ′(p) = CN M

′
N (p), where in turn M ′N (p) is the first

derivative of MN (p). Hence, recalling that CN is symmetric, we obtain

∇f(p) = M ′N (p)T (CNF (p)). (16)

As expected, ∇f(p) in (16) is a vector (one column) in R9. The N × N
matrix CNF (p) can be conveniently transformed (stacking up its columns)
into a one vector in RN2

. Similarly, let us visualize MN (p) as a long vector
of N2 functions, each one of them depending on the 9 parameters. That
way, M ′N (p) is a genuine Jacobian matrix with N2 rows and 9 columns.
Therefore, the inner product in (16) returns a vector in R9. Concerning
the low-cost numerical methods to obtain pk+1 at Step 4, a convenient
gradient-type scheme is the (inexact) Spectral Projected Gradient (SPG)
method [2]. In the SPG method, the iterates are given by

pk+1 = pk + αk(PΩ(pk − λk∇f(pk))− pk),

where PΩ(z) denotes the projection of z onto the intersection of the 3 linear
constraints, the step length λk > 0 is obtained with two inner products in-
volving the gradient vector, and 0 < αk ≤ 1 is chosen using a non-monotone
backtracking globalization strategy. At each SPG iteration we need only
one projection on the feasible convex set, and that can be obtained using
the classical alternating projection scheme on the intersection of the 3 linear
varieties; see, e.g., [11, Chapter 3]. If we want to ignore the 3 constraints
(i.e., if we do not want to force the geometric conditions given by (9)),
this method is also convenient, and we only need to forget the projection
operator and set αk = 1 for all k. In that case, the iterates are given by

pk+1 = pk − λk∇f(pk),

and the backtracking, if needed, is performed directly on λk. In the case
of avoiding the 3 linear constraints, another practical option is the Gauss-
Newton method pk+1 = pk + λkd

GN
k , where λk = 1 unless a backtracking

is required and if so, we reduce λk properly. The search direction dGNk is
obtained by solving the linear system (F ′(pk)

TF ′(pk))d
GN
k = −∇f(pk); see,

e.g., [7] for details. Notice that, using the stacking strategy described above,
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this linear system involves 9 equations with 9 unknowns. Hence, the Gauss-
Newton method requires additional computational cost per iteration, but it
approximates the Newton direction locally and thus it might require fewer
iterations than the SPG scheme. A clear advantage of the SPG method is
that it is easy to code, requires low storage, and avoids the need for matrix
factorizations (no Hessian matrix is used). More details can be found in [3]
and references therein.

Numerical results

We conducted a large number of numerical experiments using the SPG
method within the general iterative algorithm, described above, starting
from random initial points p0 ∈ R9. Our goal was to identify bases with
good numerical properties. We ran these experiments by either forcing the
solution vector p to be within the feasible region of (15) or by ignoring the 3
linear constraints. To achieve this goal, we set n = 5, resulting in N = 108.
It is important to note that Steps 2 and 3 of the general iterative algorithm
are computationally very expensive, and this cost increases significantly with
larger values of N . We are convinced that to conduct thorough exploratory
work, by running a large number of tests, selecting N = 108 is adequate.
This initial set of experiments reveals that, with few exceptions, the solutions
obtained from random initial points are numerically poor. Most of the time,
both the condition number of the matrix MN and the matrix CN MN , where
CN is obtained after applying preconditioning techniques, are very high. The
typical obtained condition numbers are κ(MN ) ≈ 109 and κ(CN MN ) ≈ 106.
Although the condition number of CN MN is lower than that of MN , it is still
very high. In other words, using those bases would require a large number
of PCG iterations to solve the preconditioned linear system, regardless of
whether p is forced to be in the feasible region or not. Although there
is a slight tendency to find good bases when the three linear constraints
are imposed, it is almost imperceptible. Nevertheless, using this random
exploration, numerically good bases have been discovered (very seldom).
Table 5 presents two of those numerically good bases: one within the feasible
region and the other outside of it. For both bases, we are reporting the
entries of the p vector, the evaluation of the 3 linear constraints, the value
of the objective function f(p), κ(MN ), and κ(CN MN ).
For our second set of experiments, we aimed to evaluate the quality of the
three known bases (BShi(ε), BLP(ε) and BCT (ϕ)) using the inverse ap-
proach. To do this, we reapply the SPG method within the framework of
the general iterative algorithm, but now choosing as initial iterations small
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p (feasible) p (not feasible)

0.76494 0.07239
1.79997 1.95058
1.03767 -0.66282
-0.28752 -0.25973
-0.52458 1.08007
-2.88065 1.12298
0.52258 0.44957
-1.27539 0.95001
1.84298 0.80622

p(1) + p(4) + p(7) = 1 p(1) + p(4) + p(7) = 0.26223
p(2) + p(5) + p(8) = 0 p(2) + p(5) + p(8) = 3.98066
p(3) + p(6) + p(9) = 0 p(3) + p(6) + p(9) = 1.26639

f(p) = 35.82 f(p) = 26.4056
κ(MN ) = 3.6× 104 κ(MN ) = 1.1× 104

κ(CN MN ) = 125 κ(CN MN ) = 80.07

Table 5: Two numerically good bases obtained using the SPG method from random initial
points.

random perturbations of the three bases, and making several valid choices
of the parameters (ε or ϕ) in each case (see Section 3). The results obtained
show that the three bases are solutions to the optimization problem (15)
for any valid choice of parameters. Furthermore, as a by-product, we note
that the objective function in (15) alone can be used as a merit function to
evaluate the numerical quality of any potential basis. Similarly, it is also
worth noting that κ(CN MN ) (when compared with κ(MN )) resulting from
Steps 2 and 3 of the general iterative algorithm is also a reliable measure of
the numerical quality of potential bases. Associated with the three known
bases, and taking advantage on those merit functions that we have detected
thanks to the inverse approach, Table 6 shows the 3 best versions with their
respective optimal parameters. Note that the best versions of each basis
match the results reported in Section 3 (Figures 2, 4, and 6).
Based on the latest results and the availability of three reliable numerical
merit functions, we are motivated to study the bases that can be found
within the triangle in R9 that is defined by the three optimal bases mentioned
in Table 6, which are used as the vertices of the triangle. The values of p
leading to the three optimal bases, or vertices of the triangle, will be denoted
as BShi* (ε), BLP* (ε) and BCT* (ϕ), respectively. The associated optimal
bases will be denoted as BShi*, BLP*, and BCT*.
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p = BShi* (ε), ε = n/(2
√

2) p = BLP* (ε), ε = n p = BCT* (ϕ), ϕ = 1

1/4 1/3 1/3
0 0 2.4163

1.76776 5.0 3.7632
1/4 1/3 1/3

1.76776 5.0 2.05085
0 0 -3.97416

1/2 1/3 1/3
-1.76776 -5.0 -4.46715
-1.76776 -5.0 0.211

f(p) = 26.82 f(p) = 7.71 f(p) = 10.1
κ(MN ) = 8270.3 κ(MN ) = 930.3 κ(MN ) = 1442.4
κ(CN MN ) = 32.2 κ(CN MN ) = 6.37 κ(CN MN ) = 8.73

Table 6: The 3 feasible bases BShi*, BLP*, and BCT* for the best possible parameters
(ε or ϕ), and the value of the numerical merit functions f(p), κ(MN ), and κ(CN MN ).

Notice now that if we consider convex combinations of the form

p = γ1 BShi*(ε) + γ2 BLP*(ε) + γ3 BCT*(ϕ), (17)

where γ1 + γ2 + γ3 = 1 and γi ≥ 0 for 1 ≤ i ≤ 3, and since the 3 bases sat-
isfy the 3 linear constraints, then automatically p is a point of that triangle
that satisfies the linear constraints, and therefore p is in the feasible region.
In fact any convex combination of the bases BShi*, BLP*, and BCT* will
be a partition of unity basis. It is worth noting that this triangle, which
is a proper subset of the feasible region, offers the possibility of obtaining
infinitely many bases with good numerical quality. Table 7 displays a dis-
crete selection of these bases, and their corresponding numerical properties,
generated by systematically exploring the interior of the triangle.
The first three rows in Table 7 correspond to the bases at the center of each
edge of the triangle. The fourth row corresponds to the midpoint of the
triangle, and the last 3 rows are bases also inside but each one closer to one
of the corners of the triangle. Obviously, there are many more good quality
bases inside the triangle, which can be obtained by changing γi (1 ≤ i ≤ 3)
according to (17). We note from this discrete set of bases that convex linear
combinations of the three corners of the triangle have very good numerical
quality, better the closer they are to the BLP* – BCT* edge.
To complete the numerical study developed in this section, we find it inter-
esting to include a measure of how good are the bases presented in Tables 1,
2 and 3 from the geometrical point of view. To this end, we have computed
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p f(p) κ(MN )(p) κ(CN MN )(p)

γ1 = 0, γ2 = 0.5, γ3 = 0.5 9.735 1093.9 6.739
γ1 = 0.5, γ2 = 0, γ3 = 0.5 16.344 2727.7 15.633
γ1 = 0.5, γ2 = 0.5, γ3 = 0 12.79 2079.2 10.658
γ1 = 1/3, γ2 = 1/3, γ3 = 1/3 12.84 1666.0 9.179
γ1 = 0.2, γ2 = 0.2, γ3 = 0.6 12.0 1613.7 8.987
γ1 = 0.2, γ2 = 0.6, γ3 = 0.2 10.38 1317.9 7.814
γ1 = 0.6, γ2 = 0.2, γ3 = 0.2 16.8 2823.7 14.173

Table 7: A discrete selection of bases p in the triangle defined by BShi*, BLP* and BCT*,
obtained following (17), and the associated values f(p), κ(MN )(p), and κ(CN MN )(p).

the area A of the control triangles (10) associated to each one of the values
of p reported in the aforementioned tables (recall that vector p ∈ R9 in this
section is (α1, β1, γ1, α2, β2, γ2, α3, β3, γ3) in (10)). It is well-known ([8] or
[9]) that the smaller the area of the control triangles of a partition of unity
basis, the better the geometrical properties of the bases. As desired, the
results provided in Table 8 show that A decreases as κ(CN MN ) does.

p
κ(CN MN )(p)

κ(MN )(p)
A

γ1 = 1, γ2 = 0, γ3 = 0 (BShi* (ε) in Table 6) 3.89× 10−3 0.013
γ1 = 0.6, γ2 = 0.2, γ3 = 0.2 in Table 7 5.02× 10−3 0.020
γ1 = 0.5, γ2 = 0.5, γ3 = 0 in Table 7 5.12× 10−3 0.024
γ1 = 1/3, γ2 = 1/3, γ3 = 1/3 in Table 7 5.51× 10−3 0.028
γ1 = 0.2, γ2 = 0.2, γ3 = 0.6 in Table 7 5.57× 10−3 0.030
γ1 = 0.5, γ2 = 0, γ3 = 0.5 in Table 7 5.73× 10−3 0.040
γ1 = 0.2, γ2 = 0.6, γ3 = 0.2 in Table 7 5.93× 10−3 0.044
γ1 = 0, γ2 = 0, γ3 = 1 (BCT* (ϕ) in Table 6 ) 6.05× 10−3 0.044
γ1 = 0, γ2 = 0.5, γ3 = 0.5 in Table 7 6.16× 10−3 0.065
γ1 = 0, γ2 = 1, γ3 = 0 (BLP* (ε) in Table 6) 6.85× 10−3 0.079

Table 8: Area of the control triangles vs. κ(CN MN )(p)
κ(MN )(p)

for partition of unity bases in Tables
6 and 7.

5. Final remarks

For solving the linear systems related to the fitting surface problem on
Powell-Sabin triangulations, the bases BShi, BLP and BCT, are known to
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have excellent geometric properties. In this work, by using the precondi-
tioned conjugate gradient (PCG) method for solving those large-scale linear
systems, we have found that these three bases also have very good numerical
properties. To accomplish this task, we focused on the use of two well-known
preconditioning strategies: ichol(0) and ilu(0), noting that both have shown
very good performance. Indeed, the reported results (Section 3) show how
consistently the eigenvalues are clustered around the identity, which is the
most important feature to evaluate the effect of a preconditioning technique.
We have also noticed that in some cases the preferred ichol(0) fails for which
ilu(0) is used performing in a similar attractive way.
Motivated by these positive results associated to the three known bases, we
decided to analyze whether any basis that has good geometric properties (in
the sense that it constitutes a partition of unity) also has good numerical
properties in the context of using the PCG method for solving the linear
systems. Furthermore, we were interested in studying whether geometric
properties are a necessary condition for a basis to have good numerical
properties. In other words, we wanted to answer the question: Can there
be bases with good numerical properties that do not satisfy the traditional
geometric requirements?
To explore this line of thought we have introduced an inverse approach (Sec-
tion 4), which requires to solve a linearly equality constrained optimization
problem. To solve the optimization problems, we use a suitable well-known
low-cost method. The obtained numerical results provided us with some
interesting evidence. First, with very few exceptions, the solutions obtained
from a random exploration of all possible options are numerically poor, re-
gardless of the geometric quality of the basis. Second, as expected, the
bases BShi, BLP and BCT are solutions to the considered optimization
problem, showing that they in fact have both good geometric and good nu-
merical quality. As a by-product, we detected a couple of trustworthy merit
functions that can be used to evaluate the numerical quality of any poten-
tial basis. Based on these merit functions, we discovered that the triangle
defined by the three known bases (as vertices of the triangle) offers the pos-
sibility of obtaining infinitely many bases with good numerical quality and
good geometric properties. By exploring this triangle, we have displayed a
discrete selection of these specialized new bases.
In terms of practical implications of this paper, the background in the field
of fitting surfaces -and its applications- reveals that using the classical Her-
mite basis or, more generally, another spline bases not being partition of
the unity, leads to very ill-conditioned linear systems. This fact becomes a
drawback in several cases, for example when the triangulations to be con-
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sidered must be particularly fine because the dataset is very large, or simply
because the surface must be very close to the dataset. Also when non-
uniform triangulations are recommended as a consequence of the sparsity
of the dataset, because handling non-uniform triangulations usually leads
to acute triangles showing a very bad behavior from the numerical point of
view. We think that it may be appropriate to undertake further experimen-
tations in problems somehow related to fitting surface by using basis that
present both good numerical and geometrical properties. More precisely,
we find it interesting to consider such a bases in the two specific problems
previously described.
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