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Abstract In the framework of an elliptic partial differential equation (PDE),
certain boundary conditions and a set of points to approximate in a Lipschitz
domain and arbitrary dimension, we use radial basis function (RBF) tech-
niques for the construction and characterization of discrete PDE splines. We
also show convergence and derive error estimates.

Keywords Approximation · interpolation · radial basis functions · PDE

Mathematics Subject Classification (2000) 41A25 · 41A30 · 41A63 ·
65D10 · 65N15

1 Introduction

Radial basis function (RBF) methods have emerged as an important and ef-
fective tool for the numerical solution of partial differential equations (PDE)
in any number of dimensions and for the approximation of an unknown mul-
tivariate function by interpolation at scattered sites [7,10,16,17,18], e.g. see
also [8], entering in a field traditionally tackled by finite element methods
(FEM) [9]. They have been used in many applications in engineering, medi-
cal imaging, computer aided geometric design (CAGD), neural networks, and
economics.
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Also, PDE surfaces, which are surfaces whose behaviour is governed by
PDEs [4], have been shown to possess many modelling advantages in a wide
range of fields and they frequently appear in a lot of physical problems. A
combination of conditions of interpolation and approximation can be used
for the PDE method of surface design, as it appears in [1,13,14,15]: on one
hand, the surface has to approximate a given data set, and on the other hand,
it has to be modelled by a partial differential equation. In addition, the sur-
face has to satisfy some boundary conditions that are included along with the
equation as a boundary value problem. This technique can be applied mainly
to CAGD and modeling fields as we can observe in [5]. Although the method
is not confined to any particular type of PDE, mainly elliptic PDEs have been
considered as they produce smooth surfaces for boundary value problems.
Moreover, this 2-dimensional approximation problem may be generalized to
the d-dimensional case, for any positive integer d.

By using RBF techniques we will study in this paper the existence and
the uniqueness of the solution of the generalized problem. Moreover, we will
show the convergence of this solution to a function from which the data val-
ues are obtained. More specifically, we will extend an approach of approxi-
mation method for multivariate functions from data constituted by a given
data point set and a PDE. In [13] this problem was formulated and solved
by variational methods. In [14], the authors discretized the problem by using
techniques in R2 based on FEM. However, several disadvantages appeared
for the PDE splines used in this approach: the domain was polygonal, there
was need for mesh generation and it was not useful for higher dimensions.

In this paper we improve the previous results. We solve the problem of
obtaining our discrete PDE spline for some more general domains, as Lips-
chitz domains are, and for arbitrary dimensions, by using RBF techniques.
We formulate our variational problem in an adequate function space, the na-
tive space, that can be the whole Sobolev space or a subset thereof. We dis-
cretize the solution of the problem in terms of RBF and we establish some
estimations of the error.

The outline of the paper is as follows: In Section 2, we briefly recall some
preliminary notations and results. In Section 3, the notion of a discrete PDE
spline is defined. Theorem 1 is stated, which will be crucial to the rest of the
paper. For the sake of clarity, the convergence results and estimates of the
approximation error are also presented in this section. In Section 4, a char-
acterization of the discrete PDE splines is obtained. Section 5 is dedicated to
prove the convergence results and error estimates stated in Section 3, after
establishing some relevant results on the interpolant to the given function.
Details of the computation are given in Section 6. The proof of Theorem 1
will appear in the Appendix.
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2 Preliminaries

Before we shall outline our problem at the beginning of the next section and
state it in more detail later-on, let us give some necessary definitions and
other preliminaries.

We use N (resp. N∗) for the set of non-negative integers (resp. for the set
of positive integers). Let d ∈ N∗,n ∈ N. Let Ω be a nonempty open set in Rd .
We will use the following notations:

– For p ∈ [0,∞), Lp(Ω) stands for the linear space of real Lebesgue measur-
able functions u such that

∫
Ω
|u(x)|pdx <∞;

– Hn(Ω) represents the usual Sobolev space of order n of (classes of) func-
tions u ∈ L2(Ω), having all their partial derivatives ∂iu, in the distribution
sense, of order |i| ≤ n, in L2(Ω), where for all i = (i1, . . . , id) ∈ Nd ,

|i| = i1 + · · ·+ id and ∂iu(x) =
∂|i|u(x)

∂xi11 . . .∂x
id
d

, for any x = (x1, . . . ,xd) ∈Ω.

The linear space L2(Ω) is equipped with the inner product

(u,v)0,Ω =
∫
Ω

u(x)v(x)dx

and the corresponding norm ‖u‖0,Ω = (u,u)
1
2
0,Ω.

Analogously, the Sobolev space Hn(Ω) is equipped with the norm

‖u‖n,Ω =

∑
|i|≤n
‖∂iu‖20,Ω


1/2

,

and the semi-norms

|u|k,Ω =

∑
|i|=k
‖∂iu‖20,Ω


1/2

, 0 ≤ k ≤ n.

We clarify that, for any compact set K ⊂ Rd whose interior K̊ is nonempty,
for the sake of simplicity we shall writeHn(K) instead ofHn(K̊), ‖·‖n,K instead
of ‖ · ‖n,K̊ , etc.

We shall also use the following notations:

–
∂jv

∂nj
(x), j ∈ N, will indicate the j-th derivative of v with respect to n at

x ∈ ∂Ω, where n(x) is the unit outer normal vector at x. For j = 0,
∂0v

∂n0 (x)

indicates v(x).
– For f ∈ L2(Rd), the Fourier transform of f is defined as

f̂ (y) :=
1

(2π)d/2

∫
Rd
e−ixT yf (x)dx.

We also use the generalized Fourier transform as it is defined in [11].
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– Finally, with the same letter C we will denote various strictly positive
constants.

We will use the theory of RBF. Denote by Pm−1, m ∈ N, the space of real-
valued d-variate polynomials of degree at most m − 1 (P−1 := {0}), and by
∆m its dimension. We suppose that Ω contains at least one Pm−1-unisolvent
subset.

Definition 1 A continuous symmetric function Φ : Ω ×Ω → R is called a
conditionally positive definite kernel on Ω with respect to Pm−1 if, for all
M ∈ N∗, all pairwise distinct centers x1, . . . ,xM ∈Ω, and all α = (α1, . . . ,αM ) ∈
RM \ {0} with

M∑
j=1

αjp(xj ) = 0

for all p ∈ Pm−1, the inequality

M∑
j=1

M∑
k=1

αjαkΦ(xj ,xk) > 0

is valid. A conditionally positive definite kernel on Ω with respect to {0} is
called a positive definite kernel on Ω.

We now introduce the native space, NΦ (Ω), for such a kernel Φ . Its defi-
nition will be based on finitely supported linear functionals on the space of
real-valued continuous functions on Ω, C(Ω), which vanish on Pm−1. Con-
sider the set

LPm−1
(Ω) :=

{
λM,α,{x1,...,xM } =

M∑
j=1

αjδxj :M ∈ N∗,α = (α1, . . . ,αM ) ∈ RM ,

{x1, . . . ,xM } ⊂Ω, with λM,α,{x1,...,xM }(p) = 0, for all p ∈ Pm−1

}
,

where δxj is the evaluation functional at xj , and equip LPm−1
(Ω) with the inner

product

(λM,α,{x1,...,xM },λN,β,{y1,...,yN })Φ :=
M∑
j=1

N∑
k=1

αjβkΦ(xj , yk).

Definition 2 The native space corresponding to a symmetric kernel Φ that is
conditionally positive definite on Ω with respect to Pm−1 is defined by

NΦ (Ω) = {f ∈ C(Ω) : |λ(f )| ≤ Cf ‖λ‖Φ for all λ ∈ LPm−1
(Ω)}.

This space carries the semi-norm

|f |NΦ (Ω) = sup
λ∈LPm−1 (Ω)

λ,0

|λ(f )|
‖λ‖Φ

. (1)
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The notion of a conditionally positive definite kernel generalizes the one
of a conditionally positive definite function.

Definition 3 A continuous, even function Φm : Rd → R is said to be condi-
tionally positive definite of order m if the kernel Φ : Rd × Rd → R defined
by Φ(x,y) := Φm(x− y) is conditionally positive definite on Rd with respect to
Pm−1. A conditionally positive definite function of order 0 is called a positive
definite function.

We will usually work in the context of conditionally positive definite
functions that will also be radial functions.

Definition 4 A function Φm : Rd → R is said to be radial if there exists a
function φ : [0,∞)→ R such that Φm(x) = φ(‖x‖2) for all x ∈ Rd .

3 Formulation of the problem, convergence and error estimates

In the sequel, we assume that n >
d
2

and that Ω ⊂ Rd is a Lipschitz domain,

i.e. a bounded, connected, nonempty, open subset of Rd with a Lipschitz-
continuous boundary in the J. Necas [12] sense.

Our objective is to find a function in a finite-dimensional space spanned
by radial basis function kernels (shifts in the easiest of all cases) satisfying
certain conditions regarding the boundary of Ω, while simultaneously the
function has to approximate a data point set in the interior of the same do-
main. This could take place either by interpolation or by smoothing, i.e. by
minimising a certain functional.

Namely, we study the following problem: finding the (unique) minimizer
σθ of the cost functional J in the set HX , where (details will be given on the
following pages) J is the functional defined on Hn(Ω) by

J(v) = ‖ρv − β‖22 +θ
(
|v|2L − 2(f ,v)0,Ω

)
.

This functional J includes a term for the approximation to a data vector β
from the vector of pointwise values of v (through the evaluation operator
ρ) on a set A of interior points of Ω, together with the energy of a strongly
elliptic differential operator L in weak form, linked by a positive parameter
θ. HX will be a set of elements of the native space of a certain conditionally
positive definite kernel which interpolate the values of zero- to possibly high-
order normal derivatives on a finite set B of points on the boundary of Ω.

Let us now present all the details. Suppose we are given

– a non-negative integer m;
– an ordered set A = {a1, . . . , aM } of M ∈ N∗ distinct points of Ω such that

kerρ∩Pmax{m,n}−1 = {0}, (2)

where the operator ρ :Hn(Ω) −→ RM , is given by ρ(v) = (v(ai))i=1,...,M ;
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– a data vector β = (β1, . . . ,βM ) ∈ RM ;
– an ordered set B = {b1, . . . , bN } of N ∈ N∗ distinct points of ∂Ω, such that

there exists the unit outer normal vector n(b`), for each ` = 1, . . . ,N ;

For each ` = 1, . . . ,N and j = 0, . . . ,n − 1, we form the functionals λjN+` =

δb` ◦
∂j

∂nj
, where δb` is the evaluation functional at b`, i.e. λjN+`(v) =

∂jv

∂nj
(b`)

for each v ∈Hn(Ω). We will also suppose that

if v ∈ Pn−1 and λi(v) = 0, for all i = 1, . . . ,Nn, then v = 0.

Suppose we are also given Φm ∈ C2n(Rd) a conditionally positive definite
function of order m, such that it has a generalized Fourier transform Φ̂m of
order m that is continuous on Rd \ {0}. Let Φ : Rd ×Rd → R, Φ(x,y) := Φm(x −
y), be the corresponding conditionally positive definite kernel on Rd with
respect to Pm−1.

From (2) we may choose a Pm−1-unisolvent set Ξ = {ξ1, . . . ,ξ∆m } ⊂ Ω. Let
{p1, . . . ,p∆m } be a Lagrange basis of Pm−1 with respect to this set Ξ. Define the
kernel K : Rd ×Rd → R by

K(x,y) :=Φ(x,y)−
∆m∑
k=1

pk(y)Φ(x,ξk)−
∆m∑
k=1

pk(x)Φ(ξk , y)

+
∆m∑
k=1

∆m∑
`=1

pk(x)p`(y)Φ(ξk ,ξ`) +
∆m∑
k=1

pk(x)pk(y).

(3)

From [18, Th. 10.20], the native space NΦ (Rd) carries an inner product
(·, ·)NΦ (Rd ), with which NΦ (Rd) becomes a reproducing-kernel Hilbert space
with reproducing kernel K(·, ·). Moreover, K(·, ·) is a symmetric positive def-
inite kernel on Rd by [18, Th. 12.9]. Hence, the native space associated to
Φ , NΦ (Rd), coincides with the native space associated to K , NK (Rd), and the
inner products are the same, by [18, Th. 10.11].

We consider

– an ordered set {c1, . . . , cI0 } of I0 ∈ N∗ distinct points of Ω, and the corre-
sponding evaluation functionals λNn+i := δci , i = 1, . . . , I0,

– andX will denote the finite-dimensional subspace ofNΦ (Rd),with dimX =
I =Nn+ I0, given by

X := span{λyi K(·, y) : i = 1, . . . , I}, (4)

where the notation λyi indicates that the functional λi acts on K viewed as
a function of its second argument.

Remark 1 By restricting to our Lipschitz domain Ω, Φ may also be considered
as a conditionally positive definite kernel on Ω with respect to Pm−1 and, as
a consequence, X may also be seen as a finite-dimensional subspace of the
native spaceNΦ (Ω).
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Since each element of NΦ (Ω) can be extended to NΦ (Rd), and NΦ (Rd) ⊆
Cn(Rd) by [18, Th. 10.45], we derive that NΦ (Ω) ⊆ Hn(Ω). Therefore, the
whole Sobolev machinery can be used for the treatment of the elements of
X. ut

On the one hand, the function we are looking for as our objective will
have to approximate a certain data set point, and on the other hand, it will
have to be modelled by an elliptic partial differential equation. Moreover,
the function will have to satisfy some boundary conditions that are included
along with the equations as a boundary value problem.

We are obtaining this function by minimising a functional in a subset of
our finite-dimensional space X. The functional will contain the information
concerning the desired conditions.

Let us detail all of this. Let L : H2n(Ω)→ L2(Ω) be a differential operator
given by

Lu(x) =
∑
|i|,|j |≤n

(−1)|j |∂j (pij (x)∂iu(x)), x ∈Ω, (5)

where pij ∈ C |j |(Ω) and pij = pji for all |i|, |j | ≤ n. We now consider the sym-
metric bilinear form associated with L defined onHn(Ω)×Hn(Ω) by (u,v)L =∑
|i|,|j |≤n(pij∂iu,∂jv)0,Ω. In addition, we suppose that L is strongly elliptic on

Ω, i.e. ∑
|i|,|j |≤n−1

αipij (x)αj ≥ 0, ∀x ∈Ω, (6)

and that there exists ν > 0 such that∑
|i|,|j |=n

αipij (x)αj ≥ ν
∑
|i|=n

α2
i , ∀x ∈Ω, (7)

for all αi ∈ R, where i ∈ Nd .
According to the hypotheses (6)–(7) the bilinear form (·, ·)L defines a semi–

inner product on Hn(Ω) whose associated semi-norm is denoted by |u|L =

(u,u)
1
2
L .

Suppose we are given

– the functions f ∈ L2(Ω) and ηj ∈ C(Ω), for j = 0, . . . ,n− 1;
– a vector z = (zi)i=1...,Nn with zjN+` = ηj (b`), for ` = 1, . . . ,N , j = 0, . . . ,n− 1.

We define the vector space

HX
0 = {u ∈ X : λi(u) = 0, 1 ≤ i ≤Nn}

and the set
HX = {u ∈ X : λi(u) = zi , 1 ≤ i ≤Nn}.

Let L be the operator given in (5) and let us consider the problem
Lu(x) = f (x), x ∈Ω,
∂ju

∂nj
(x) = ηj (x), x ∈ ∂Ω, 0 ≤ j ≤ n− 1.
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Definition 5 We say that σθ is a discrete PDE spline in X associated to L,B, z,
A,β and θ > 0, if σθ is a solution of the problem{

σθ ∈HX ,
∀v ∈HX , J(σθ) ≤ J(v),

(8)

where J is the functional defined on Hn(Ω) by

J(v) = ‖ρv − β‖22 +θ
(
|v|2L − 2(f ,v)0,Ω

)
.

We will prove the existence and uniqueness of a solution for Problem (8)
and we will state an equivalent formulation of it in the next section, charac-
terizing the notion of a discrete PDE spline. An essential result which will
play a key rôle in our paper is contained in the following theorem whose
proof will be given in the Appendix:

Theorem 1 For any Q ∈ N∗, let α(1), . . . ,α(Q) ∈ Nd and x1, . . . ,xQ ∈ Rd . If the

functionals λ̃i := δxi ◦∂
α(i)

, 1 ≤ i ≤Q, with |α(i)| ≤ n, are pairwise distinct, mean-
ing that α(i) , α(j) if xi = xj for two different i , j, then they are also linearly
independent overNΦ (Rd).

To state the notion of a discrete PDE spline in Definition 5, the user pro-
vides, in the following order, the data: d,n,Ω,m,M,A,β,B,Φm and the corre-
sponding native space, the set of interior points {c1, . . . , cI0 }, and L, f ,ηj , for
j = 1, . . . ,n − 1, to formulate the boundary value problem (z is then obtained
by evaluation of the functions ηj at B).

To establish our convergence results and error estimates, we will consider
a function g ∈ NΦ (Ω). This function g will be our approximand, and the
convergence of the discrete PDE spline to g will be obtained by using, in
terms of g, some of the elements given for the definition of the discrete PDE
spline.

Firstly, the vector z for the discrete PDE spline will be taken as z = (zi)i=1...,Nn
with zi = λi(g), for i = 1, . . . ,Nn.

Suppose we are also given a subset H of (0,+∞) such that 0 ∈ H and, for
each h ∈ H, an ordered set Ah = {a1, . . . , aM } of M = M(h) ∈ N∗ distinct points
of Ω such that the following condition holds

sup
x∈Ω

min
a∈Ah
‖x − a‖ = h. (9)

For each h ∈ H, we define ρh :Hn(Ω) −→ RM as ρh(v) = (v(a))a∈Ah .
Finally, let us consider a data vector βh = (g(a))a∈Ah ∈ RM and X as the

finite-dimensional subspace of NΦ (Ω) given by (4), where we have taken
{c1, . . . , cI0 } :=A

h. We define the nonempty convex closed set

HX = {u ∈ X : λi(u) = zi , 1 ≤ i ≤Nn}

and HX
0 the same with zero boundary conditions.
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For most basis functions (as it is referred in page 14 previously to the
statement of Corollary 3) and denoting by σhθ the discrete PDE spline in X

associated to L,B, z,Ah,βh and θ > 0, we will prove in Section 5 the conver-
gence of σhθ to g as the fill distance h tends to 0 and we will get estimates
of the corresponding approximation error in terms of h. Specifically, we will
prove the following results:

Theorem 2 Suppose that θ :H→ (0,+∞) satisfies

θ = o(h−d), h→ 0. (10)

Then
lim
h→0
‖σhθ − g‖n,Ω = 0.

Theorem 3 For each θ > 0 and k = 0, . . . ,n− 1, we have

|g − σhθ |k,Ω =O
(
|σhθ − g |n,Ωh

n−k + h
d
2−kθ

1
2

)
, h→ 0.

Corollary 1 Let the conditions of Theorem 2 hold. Then we have the upper bounds

∀k = 0, . . . ,n− 1, |g − σhθ |k,Ω = o(hn−k) +O(h
d
2−kθ

1
2 ), h→ 0

and
|g − σhθ |n,Ω = o(1), h→ 0.

Remark 2 If, additionally, θ = o(h−d+2(n−1)), h→ 0, then Corollary 1 implies
for all k = 0, . . . ,n− 1, |g − σhθ |k,Ω = o(h(n−1)−k), h→ 0, which converges to 0.

ut

We note that the stated results require extensions of some earlier theo-
rems which make them applicable in our general framework of a Lipschitz
domain and arbitrary dimension. We do this by using the more general case
of conditionally positive definite basis functions in place of just positive defi-
nite ones (see, for instance, the weaker version of Theorem 1 in [18, Th. 16.4]
for the positive definite case).

4 Characterization of discrete PDE splines

Once Problem (8) has been stated, we are giving an equivalent formulation
of it. Our analysis aims now to address our problem into a symmetric collo-
cation problem. Theorem 1 will be crucial for our purpose.

Let us consider the assumptions and notations before Definition 5. We
firstly need to show that HX is a non-empty set.

The following result is a consequence of Theorem 1:

Corollary 2 The functionals λjN+` , 1 ≤ ` ≤ N, j < n, are linearly independent
overNΦ (Rd).
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Proof First, we point out that

λjN+` =
d∑
k=1

(njek )λ̃b` ,jek +
∑

α∈Nd\{je1,...,jed }
|α|=j

a
(j)
α λ̃b` ,α (11)

with a(j)
α ∈ R and λ̃b` ,α the functionals given by

λ̃b` ,α = δb` ◦∂
α .

Consider
N∑
`=1

n−1∑
j=0

c`jλjN+` = 0, c`j ∈ R.

We know that {λ̃b` ,α(j) }, for all ` and j, with α(j) ∈ Nd , |α(j)| = j, are linearly
independent by Theorem 1. Applying this result and (11) we have that for
each ` and j,

c`jn
jek = 0, ∀k = 1, . . . ,d,

and hence c`j = 0. ut

Consider now {λ1, . . . ,λNn} and the finite-dimensional subspace of the na-
tive spaceNΦ (Rd) defined by

span{λyi K(·, y) : i = 1, . . . ,Nn}.

Proposition 1 There exists a (unique) element u ∈ span{λyi K(·, y) : i = 1, . . . ,Nn}
such that, for all i = 1, . . . ,Nn,

λi(u) = zi .

Proof Let u be the element of span{λyi K(·, y) : i = 1, . . . ,Nn} given by

u(·) =
Nn∑
j=0

αjλ
y
jK(·, y).

Then, the system to be solved is

Aα = z,

where A = (aij )i,j=1,...,Nn with

aij = λxi λ
y
jK(x,y), α = (αj )j=1,...,Nn.

If we show thatA is a positive definite and symmetric matrix, then the system
has a unique solution.
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– A is symmetric. For any i, j = 1, . . . ,Nn, and applying [18, Th. 16.7], we
have

aij = λxi λ
y
jK(x,y) = (λi ,λj )NΦ (Rd )∗ = (λj ,λi)NΦ (Rd )∗ = λxj λ

y
i K(x,y)

= aji .

– A is positive definite. For each γ = (γi)i=1,...,Nn ∈ RNn,

γTAγ =
Nn∑
i=1

Nn∑
j=1

γiγjλ
x
i λ

y
jK(x,y) =

Nn∑
i=1

Nn∑
j=1

γiγj (λi ,λj )NΦ (Rd )∗

=

Nn∑
i=1

γiλi ,
Nn∑
j=1

γjλj


NΦ (Rd )∗

=
∥∥∥∥∥ Nn∑
i=1

γiλi

∥∥∥∥∥2

NΦ (Rd )∗
.

Hence, γTAγ ≥ 0 and if γTAγ = 0 then∥∥∥∥∥ Nn∑
i=1

γiλi

∥∥∥∥∥2

NΦ (Rd )∗
= 0 =⇒

Nn∑
i=1

γiλi = 0.

Now, the linear independence of {λi}i=1,...,Nn over NΦ (Rd) implies that
γi = 0, for all i = 1, . . . ,Nn.

ut

As a consequence, we obtain that HX is a non-empty set.
We also need this preparatory lemma:

Lemma 1 The map (·, ·)(θ) :Hn(Ω)×Hn(Ω) −→ R defined by

(u,v)(θ) = (ρu,ρv) +θ(u,v)L

is an inner product on Hn(Ω) and its associated norm ‖ · ‖(θ), given by

∀v ∈Hn(Ω), ‖v‖(θ) = (v,v)1/2
(θ) ,

is equivalent to the Sobolev norm ‖ · ‖n,Ω.

Proof This result is derived from our assumptions and [3, Th. 7.3.12]. ut

We are ready to give the following equivalent formulation of Problem (8)
which allows us to consider it in symmetric collocation:

Theorem 4 Problem (8) admits a unique solution which is also the unique solu-
tion of the variational problem: find σθ ∈HX such that

∀v ∈HX
0 , (ρσθ ,ρv) +θ(σθ ,v)L = (β,ρv) +θ(f ,v)0,Ω.
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Proof We consider the map a :Hn(Ω)×Hn(Ω)→ R, given by

a(u,v) = 2
(
(ρu,ρv) +θ(u,v)L

)
.

From Lemma 1, a(·, ·) is a continuous coercive symmetric bilinear form on
Hn(Ω).

Let F(v) = 2((β,ρv) + θ (f ,v)0,Ω), which is clearly linear and continuous
on Hn(Ω). As HX is a non-empty convex closed set we conclude, by applying
Stampacchia’s Theorem (see [6]), that there exists a unique σθ ∈HX such that
a(σθ ,w − σθ) ≥ F (w − σθ) , for all w ∈ HX , which implies that a(σθ ,v) ≥ F(v)
for all v ∈HX

0 . As HX
0 is a vector subspace, then if v ∈HX

0 hence −v ∈HX
0 , and

it follows that a(σθ ,−v) ≥ F(−v), for any v ∈HX
0 .

From this we obtain that a(σθ ,v) = F(v) for any v ∈ HX
0 . Furthermore, σθ

is the minimum in HX of the functional Θ(v) = 1
2a(v,v) − F(v), which is the

minimum of J since Θ(v) = J(v)− ‖β‖22. Hence we conclude the result. ut

We shall now prove a result that is very useful if we want to obtain an
expression of the discrete PDE spline.

Theorem 5 There exists a unique (σθ ,α) ∈HX ×RNn such that

(ρσθ ,ρv) +θ(σθ ,v)L +
Nn∑
i=1

αiλi(v) = (β,ρv) +θ(f ,v)0,Ω, (12)

for all v ∈ X,where σθ is the unique solution of Problem (8) and α = (α1, . . . ,αNn).

Proof By Proposition 1 we may consider {ψ1, . . . ,ψNn} functions ofX such that
λi(ψj ) = δij , for all i, j = 1, . . . ,Nn.

For each v ∈ X, let ψ = v −
Nn∑
j=1

λj (v)ψj .

Then, ψ ∈ X and for each i = 1, . . . ,Nn, we have

λi(ψ) = λi(v)−
Nn∑
j=1

λj (v)λi(ψj ) = 0

and consequently, ψ ∈ HX
0 . Let σθ be the (unique) solution of (8). Then, by

Theorem 4, we have σθ ∈HX and

(ρσθ ,ρψ) +θ(σθ ,ψ)L = (β,ρψ) +θ(f ,ψ)0,Ω,

that is,

(ρσθ ,ρ(v −
Nn∑
j=1

λj (v)ψj )) +θ(σθ ,v −
Nn∑
j=1

λj (v)ψj )L

= (β,ρ(v −
Nn∑
j=1

λj (v)ψj )) +θ(f ,v −
Nn∑
j=1

λj (v)ψj )0,Ω,
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and by linearity, we obtain

(ρσθ ,ρv) +
Nn∑
j=1

(
(β − ρσθ ,ρψj )−θ(σθ ,ψj )L +θ(f ,ψj )0,Ω

)
λj (v)

+θ(σθ ,v)L = (β,ρv) +θ(f ,v)0,Ω.

If we denote αj = (β − ρσθ ,ρψj ) − θ(σθ ,ψj )L + θ(f ,ψj )0,Ω, then we conclude

that for α =
(
αj

)
j=1,...,Nn

,

(ρσθ ,ρv) +θ(σθ ,v)L +
Nn∑
j=1

αjλj (v) = (β,ρv) +θ(f ,v)0,Ω,

and (12) holds. Now, we suppose that there exists α,α ∈ RNn such that (σθ ,α)
and (σθ ,α) satisfy (12). Then, for each v ∈ X, we have that

(ρσθ ,ρv) +θ(σθ ,v)L +
Nn∑
i=1

αiλi(v) = (β,ρv) +θ(f ,v)0,Ω,

(ρσθ ,ρv) +θ(σθ ,v)L +
Nn∑
i=1

αiλi(v) = (β,ρv) +θ(f ,v)0,Ω,

and, by subtracting, we have
∑Nn
i=1(αi −αi)λi(v) = 0. In particular, if we take

for each j = 1, . . . ,Nn, v = ψj , we have

0 =
Nn∑
i=1

(αi −αi)λi(ψj ) =
Nn∑
i=1

(αi −αi)δij = αj −αj

from which we derive α = α and, hence, the uniqueness of (σθ ,α). ut

Remark 3 It is easy to check that {ψ1, . . . ,ψNn} considered above are linearly
independent functions of X. ut

5 Proof of the convergence results and estimates of the approximation
error

Consider the assumptions and notations before Theorem 2.

Remark 4 Define the non-empty convex closed set

H̆ =
{
u ∈Hn(Ω)∩Cn−1(Ω) : λi(u) = zi , 1 ≤ i ≤Nn

}
and H̆0 the same with zero boundary conditions. Let J̃ be the functional de-
fined on Hn(Ω) by J̃(v) = |v|2L − 2(f ,v)0,Ω. Reasoning in a similar way as in
the proof of Theorem 4, we deduce that there exists a unique σ̃ ∈ H̆ such that
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J̃(σ̃ ) ≤ J̃(v), for all v ∈ H̆, which is characterized as the unique solution of the
variational problem: Find σ̃ ∈ H̆ such that

(σ̃ ,v)L = (f ,v)0,Ω, ∀v ∈ H̆0.

ut

Remark 5 Our assumptions imply that H is bounded and that the Hausdorff
distance between Ah and Ω tends to 0 as h does, i.e., the fact that 0 ∈ H and
(9) imply the weaker condition

lim
h→0

sup
x∈Ω

min
a∈Ah
‖x − a‖ = 0.

As H is bounded we may suppose that for each h ∈ H, Ah contains a
Pmax{m,n}−1-unisolvent set and, in particular, kerρh ∩Pmax{m,n}−1 = {0}. ut

5.1 First main results

A similar proof to the Proposition 1 gives us that there exists a (unique) ele-
ment shg ∈ X such that λi(shg ) = zi , for all i = 1, . . . ,Nn, and shg (a) = g(a), for all
a ∈ Ah.

Fix x ∈ Ω and α ∈ Nd with |α| ≤ n. The following error estimates for the
interpolant shg state our first main result:

Theorem 6 There exists a positive constant c(α)
2 such that

|∂αg(x)−∂αshg (x)| ≤ CCΦ (x)1/2hn−|α|‖g‖NΦ (Ω),

for small enough h. The function CΦ (x) is defined by

CΦ (x) := max
β,ν∈Nd
|β|+|ν|=2n

max
z,w∈Ω∩B(x,c(α)

2 h)
|∂β1∂

ν
2Φ(z,w)|,

where the constant C is independent of x, g and Φ , and where ∂β1 (or ∂ν2 , respec-
tively) denotes the derivative with respect to the first argument (or with respect to
the second argument, respectively).

As all derivatives of Φ of order 2n are continuous on Ω ×Ω, CΦ (x) is
uniformly bounded on Ω. Moreover, the former approximation order can be
improved for most basis functions (because of their infinite smoothness or by
squeezing out additional powers of h through the function CΦ (x)) (see [18,
Ch. 11]). For these basis functions, which will be considered for the rest of
the subsections of Section 5, we have the following corollary:

Corollary 3 For all k = 0, . . . ,n,

|g − shg |k,Ω = o(hn−k), h→ 0. (13)
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Before proving Theorem 6, we state two preparatory propositions. Here,
we need to make a suitable adaptation of several results of [18].

Consider the linear and continuous functional λ̃x,α :NΦ (Ω)→ R given by
λ̃x,α := δx ◦∂α .

Proposition 2 Set Λ2 := span{δai }i=1,...,M = span{λNn+i}i=1,...,M . Denote by PΛ2
(λ̃x,α)

the generalized power function given by

PΛ2
(λ̃x,α) = inf

µ∈Λ2
‖λ̃x,α −µ‖NΦ (Ω)∗ .

Then PΛ2
(λ̃x,α) ≤ P (α)

Φ ,Ah(x), where the power function P (α)
Φ ,Ah(x) is defined as the

minimum of the square root of the quadratic form Q : RM → R

Q(c) := ∂α1∂
α
2Φ(x,x)− 2

M∑
i=1

ci∂
α
1Φ(x,ai) +

M∑
j=1

M∑
i=1

cjciΦ(aj , ai),

on the set

Mα = {c = (c1, . . . , cM ) ∈ RM :
M∑
i=1

cip(ai) = ∂αp(x) for all p ∈ Pm−1}.

Proof Let Ξ = {ξ1, . . . ,ξ∆m } be a Pm−1-unisolvent subset of Ah and {p1, . . . ,p∆m }
a Lagrange basis of Pm−1 with respect to this set Ξ. Consider the kernel
K : Ω ×Ω → R given by (3). As the Riesz representer of λ̃x,α (or of δai , i =
1, . . . ,M, respectively) on the native Hilbert spaceNΦ (Ω) is given by ∂α2K(·,x)
(or K(·, ai), i = 1, . . . ,M, respectively), we thus have

PΛ2
(λ̃x,α) = inf

µ∈Λ2
‖λ̃x,α −µ‖NΦ (Ω)∗ = inf

c=(c1,...,cM )∈RM
‖λ̃x,α −

M∑
i=1

ciδai ‖NΦ (Ω)∗

= inf
c=(c1,...,cM )∈RM

‖∂α2K(·,x)−
M∑
i=1

ciK(·, ai)‖NΦ (Ω)

≤ inf
c=(c1,...,cM )∈Mα

‖∂α2K(·,x)−
M∑
i=1

ciK(·, ai)‖NΦ (Ω).

(14)

Taking into account that for each c = (c1, . . . , cM ) ∈Mα and k = 1, . . . ,∆m,

∂α2K(ξk ,x) = ∂αpk(x) =
M∑
i=1

cipk(ai) =
M∑
i=1

ciK(ξk , ai),

we obtain from (14) that

PΛ2
(λ̃x,α) ≤ inf

c=(c1,...,cM )∈Mα

|∂α2Φ(·,x)−
M∑
i=1

ciΦ(·, ai)|NΦ (Ω). (15)
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By applying [18, Lemma 11.3], the right-hand side of (15) is the infimum of
the square root of Q on Mα , which in fact is the minimum by [18, Th. 11.5].

ut

The following proposition can be directly derived from [18, Cor. 16.2].

Proposition 3 The interpolant shg is the best approximation from X to g in the
native space norm ‖ · ‖NΦ (Ω), i.e.

‖g − shg‖NΦ (Ω) = min{‖g − v‖NΦ (Ω) : v ∈ X}.

In particular, ‖g − shg‖NΦ (Ω) ≤ ‖g‖NΦ (Ω).

We are ready to prove Theorem 6:

Proof With the notation of Proposition 2, we have that, for each µ ∈Λ2,

|∂αg(x)−∂αshg (x)| = |λ̃x,α(g − shg )| = |(λ̃x,α −µ)(g − shg )|

≤ ‖λ̃x,α −µ‖NΦ (Ω)∗ ‖g − shg‖NΦ (Ω),

which implies

|∂αg(x)−∂αshg (x)| ≤ PΛ2
(λ̃x,α)‖g − shg‖NΦ (Ω).

By applying now Proposition 2, [18, Th. 11.5], the proof of [18, Th. 11.13],
and Proposition 3, we obtain the desired result. ut

5.2 Convergence

Here, and in the following subsection, we reformulate and adapt some results
in [2] to the theorems in our context. Their proofs are very closely related, but
we state and we detail them nonetheless for the convenience of the reader.

We will need the following result whose proof is similar to that of Propo-
sition V.1.2 in [2].

Proposition 4 Let T0 = {t01, . . . , t0∆n } be a Pn−1-unisolvent set of points of Ω. For
any r > 0, we denote by Tr the family of all subsets T = {t1, . . . , t∆n } of Ω that
satisfy the condition

∀j = 1, . . . ,∆n, ‖tj − t0j‖2 ≤ r.
Then, there exists r0 > 0 such that the family Tr0 is formed by Pn−1-unisolvent
subsets and the mapping defined for any subset T = {t1, . . . , t∆n } of Ω by

∀v ∈Hn(Ω), v 7→

 ∆n∑
j=1

|v(tj )|2 + |v|2L


1
2

,

is, for every T ∈ Tr0 , a norm on Hn(Ω) uniformly equivalent on Tr0 to the usual
norm ‖ · ‖n,Ω.
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We are now ready to prove Theorem 2:

Proof Step 1: Let us prove that the family (σhθ )h∈H∩(0,h∗] is bounded in Hn(Ω)
for a certain h∗ > 0 :

By using Theorem 6, it is satisfied that

‖g − shg‖n,Ω =O(1), h→ 0. (16)

Let h ∈ H. Since shg ∈ HX , and σhθ is the minimum of the functional J in
HX , we have that

J(σhθ ) ≤ J(shg )

that is,

‖ρh(σhθ )− βh‖22 +θ
(
|σhθ |

2
L − 2(f ,σhθ )0,Ω

)
≤ θ

(
|shg |2L − 2(f , shg )0,Ω

)
, (17)

which implies
|σhθ |

2
L ≤ |s

h
g |2L + 2(f ,σhθ − s

h
g )0,Ω. (18)

By Remark 4 there exists a unique σ̃ ∈ H̆ such that

J̃(σ̃ ) ≤ J̃(v), ∀v ∈ H̆.

Moreover, this element is characterized as the unique solution of the follow-
ing variational problem: Find σ̃ ∈ H̆ such that

(σ̃ ,v)L = (f ,v)0,Ω, ∀v ∈ H̆0.

As σhθ − s
h
g ∈ H̆0, we have

(f ,σhθ − s
h
g )0,Ω = (σ̃ ,σhθ − s

h
g )L. (19)

By using (19) on the right-hand side of (18), we obtain

|σhθ |
2
L ≤ |s

h
g |2L + 2(σ̃ ,σhθ − s

h
g )L.

Now, by adding the term (σ̃ , σ̃ )L on both sides of the inequality and by rear-
ranging we obtain

|σhθ − σ̃ |
2
L ≤ |s

h
g − σ̃ |2L

and

|σhθ |L ≤ |s
h
g − g |L + |g − σ̃ |L + |σ̃ |L.

From Lemma 1

|shg − g |L = ‖shg − g‖(1) =O(‖shg − g‖n,Ω), h→ 0

and then, by using (16)

|σhθ |L − |g − σ̃ |L − |σ̃ |L =O(1), h→ 0. (20)
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Analogously, by (17)

‖ρhσhθ − β
h‖22 ≤ θ

(
|shg |2L + 2(f ,σhθ − s

h
g )0,Ω

)
= θ

(
|shg |2L + 2(σ̃ ,σhθ − s

h
g )L

)
≤ θ

(
|shg − g |2L + |g |2L + 2|shg − g |L|g |L + 2|σ̃ |L|shg − g |L + |σ̃ |2L + |σhθ |

2
L − 2(σ̃ , g)L

)
.

(21)

Therefore, from (21) and (20), we obtain

‖ρhσhθ − β
h‖22 =O(θ), h→ 0. (22)

Let T0 = {t01, . . . , t0∆n } be a Pn−1-unisolvent set of points of Ω. Then T0 ⊂ Ω

and we can find R0 such that B(t0j ,R0) ⊂Ω, for all j = 1, . . . ,∆n.
Let r0 be the constant given in Proposition 4 for the set T0 and let us

consider
r ′0 = min{R0, r0}.

By using (9) we obtain that

∀h ∈ H∩ (0, r ′0), ∀j = 1, . . . ,∆n, B(t0j , r
′
0 − h) ⊂

⋃
a∈Ah∩B(t0j ,r ′0)

B(a,h). (23)

Set Nj = card(Ah ∩B(t0j , r ′0)). From (23) we have that

∀h ∈ H∩ (0, r ′0), ∀j = 1, . . . ,∆n, (r ′0 − h)d ≤Njhd . (24)

Let us consider h0 ∈ (0, r ′0). Then, by (24), for all h ∈ H∩ (0,h0),

Nj ≥ (r ′0 − h)dh−d ≥ (r ′0 − h0)dh−d . (25)

On the other hand, for all j = 1, . . . ,∆n, we have∑
a∈Ah∩B(t0j ,r ′0)

|σhθ (a)− g(a)|2 ≤
∑
a∈Ah
|σhθ (a)− g(a)|2 = ‖ρhσhθ − β

h‖22.

Therefore, by using (22) and (10), we obtain∑
a∈Ah∩B(t0j ,r ′0)

|σhθ (a)− g(a)|2 = o(h−d), h→ 0. (26)

For each h ∈ H ∩ (0, r ′0) and j = 1, . . . ,∆n there exists at least one point
thj ∈ A

h ∩B(t0j , r ′0) such that

|σhθ (thj )− g(thj )| = min
a∈Ah∩B(t0j ,r ′0)

|σhθ (a)− g(a)|.
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Now, if we choose h0 as in (25), then, for each h ∈ H∩ (0,h0) and j = 1, . . . ,∆n,
we have ∑

a∈Ah∩B(t0j ,r ′0)

|σhθ (a)− g(a)|2 ≥Nj min
a∈Ah∩B(t0j ,r ′0)

|σhθ (a)− g(a)|2

=Nj |σhθ (thj )− g(thj )|2 ≥ (r ′0 − h0)dh−d |σhθ (thj )− g(thj )|2 ≥ 0,

and taking into account (26) we deduce that the nonnegative sequence (r ′0 −
h0)d |σhθ (thj )− g(thj )|2→ 0, as h→ 0.

This implies that for each h ∈ H∩ (0,h0) and j = 1, . . . ,∆n,

|σhθ (thj )− g(thj )| = o(1), h→ 0. (27)

Now, given h ∈ H∩ (0,h0), we take T h = {th1 , . . . , t
h
∆n
}. Since h ≤ h0 ≤ r ′0, for each

j = 1, . . . ,∆n

thj ∈ A
h ∩B(t0j , r

′
0)⇒ ‖thj − t0j‖2 ≤ r

′
0⇒ T h ∈ Tr ′0 ⊂ Tr0

and by Proposition 4

∀v ∈Hn(Ω), v 7→

 ∆n∑
j=1

|v(thj )|2 + |v|2L


1
2

,

is a norm on Hn(Ω) uniformly equivalent on Tr0 to the usual norm ‖ · ‖n,Ω.
Now, we have that for our element h ∈ H∩ (0,h0) and for each j = 1, . . . ,∆n

|σhθ (thj )| ≤ |σhθ (thj )− g(thj )|+ |g(thj )|. (28)

Since n >
d
2
, it is satisfied that Hn(Ω) ↪→ C0(Ω). As g ∈ Hn(Ω), we thus have

that g is bounded on Ω. Combining this with (27), and taking into account
(28), we deduce that

|σhθ (thj )| =O(1), h→ 0.

This fact, together with (20), allows us to obtain ∆n∑
j=1

|σhθ (thj )|2 + |σhθ |
2
L


1
2

=O(1), h→ 0.

Therefore, by applying Proposition 4, we conclude that there exist C > 0 and
h∗ > 0 such that for each h ∈ H∩ (0,h∗],

‖σhθ‖n,Ω ≤ C,

i.e., the family (σhθ )h∈H∩(0,h∗] contains bounded elements in Hn(Ω).
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As a consequence, there exists a subsequence (σh`θ` )`∈N extracted from the

family (σhθ )h∈H∩(0,h∗] such that, for each ` ∈ N, θ` = θ(h`) and

lim
`→+∞

h` = lim
`→+∞

hd`θ` = 0,

and there exists an element g∗ of Hn(Ω) such that

g∗ = lim
`→+∞

σ
h`
θ`

weakly inHn(Ω).

Step 2: In this step we prove that g∗ = g by contradiction. We suppose, that
g∗ , g, then by the continuous injection ofHn(Ω) into C0(Ω), there exist γ > 0
and a nonempty open set O ⊂Ω such that

∀x ∈ O , |g∗(x)− g(x)| > γ .

This injection is in fact compact. Hence, (σh`θ` )`∈N converges strongly to g∗ in

C0(Ω) and, as a consequence,

∃`0 ∈ N, ∀` ≥ `0, ∀x ∈ O, |σ
h`
θ`

(x)− g∗(x)| ≤
γ

2
.

Therefore,

∀` ≥ `0, ∀x ∈ O, |σ
h`
θ`

(x)− g(x)| ≥ |g∗(x)− g(x)| − |σh`θ` (x)− g∗(x)| >
γ

2
. (29)

Now, by reasoning as in Step 1, we can prove that, for sufficiently large ` ∈ N,
there exists th` ∈ Ah` ∩O such that

|σh`θ` (th` )− g(th` )|n = o(1), `→ +∞ ,

in contradiction to (29). Hence, g∗ = g.

Step 3: Since g∗ = g and the space Hn(Ω) is compactly imbedded in Hn−1(Ω),
we have that (σh`θ` )`∈N strongly converges to g in Hn−1(Ω), i.e.

g = lim
`→+∞

σ
h`
θ`

in Hn−1(Ω) . (30)

From the definitions of the seminorm | · |n,Ω, the semi-inner product (·, ·)L
and the strongly ellipticity of the operator L on Ω, we can prove that there
exists ν > 0 such that

|σh`θ` − g |
2
n,Ω ≤

1
ν

[
2
(
|g |2L − (σh`θ` , g)L

)
+ 2

(
(f ,σh`θ` )0,Ω − (f ,g)0,Ω

)
+|sh`g − g |2L + 2|sh`g − g |L|g |L + 2(f ,g − sh`g )0,Ω

]
.

(31)
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From the weak convergence of σh`θ` to g in Hn(Ω) we obtain

lim
`→+∞

(σh`θ` , g)L = (g,g)L = |g |2L. (32)

Analogously, from the compact and continuous injection ofHn(Ω) into L2(Ω),

lim
`→+∞

(f ,σh`θ` )0,Ω = lim
`→+∞

(f ,g)0,Ω (33)

and from Corollary 3,

lim
`→+∞

[
|sh`g − g |2L + 2|sh`g − g |L|g |L + 2(f ,g − sh`g )0,Ω

]
= 0. (34)

Hence, by using (32), (33) and (34) in (31) we have that

lim
`→+∞

|σh`θ` − g |
2
n,Ω = 0,

that, jointly with (30), implies that

lim
`→+∞

‖σh`θ` − g‖
2
n,Ω = 0.

Step 4: To conclude the proof, we argue by contradiction. Assume that ‖σhθ −
g‖n,Ω does not tend to 0 when h→ 0. Then there exists a real number r > 0
and two sequences (h′`)`∈N ⊂ H and (θ′`)`∈N ⊂ (0,+∞) with, for each ` ∈ N,
θ′` = θ(h′`) and

lim
`→+∞

h′` = lim
`→+∞

(h′`)
dθ′` = 0,

satisfying

∀` ∈ N, ‖σh
′
`
θ′`
− g‖n,Ω ≥ r. (35)

Now, the sequence (σ
h′`
θ′`

)`∈N is bounded in Hn(Ω). A similar argument to that

of steps 1, 2, 3, proves that there exists a subsequence of (σ
h′`
θ′`

)`∈N which con-

verges to g in Hn(Ω), in contradiction to (35). This observation completes the
proof. ut

5.3 Estimates of the approximation error

Let us remark some facts we will need:

– By [2, Prop. II-6.1], there exist constants ϑ > 1 and κ0 > 0 such that, for all
κ ∈ (0,κ0], there exists a Tκ ⊂Ω satisfying:

∀t ∈ Tκ, B(t,κ) ⊂Ω and Ω ⊂
⋃
t∈Tκ

B(t,ϑκ).
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– By [2, Prop. II-6.6], there exist constants R > 1 and C > 0 and, for each h ∈
H∩ (0,κ0/R] and t ∈ TRh, ∆n closed balls B1, . . . ,B∆n of radius h, contained
in the ball B(t,Rh) such that, for any v ∈Hn(B(t,ϑRh)) which is zero at one
point or more of each of the balls B1, . . . ,B∆n , we have

∀k = 0, . . . ,n− 1, |v|k,B(t,ϑRh) ≤ Ch
n−k |v|n,B(t,ϑRh).

Moreover, any ∆n-tuple belonging to Π
∆n
j=1Bj is Pn−1-unisolvent.

From (9), there exists a ∆n-tuple aht = (ah1t , . . . , a
h
∆nt

) ∈Π∆n
j=1(Bj ∩Ah). Since

aht is Pn−1-unisolvent, it is possible to define onHn(B(t,ϑRh)) the Lagrange
Pn−1-interpolating operator Πh

t given by

Πh
t v ∈ Pn−1 and, for j = 1, . . . ,∆n, Πh

t v(ahjt) = v(ahjt).

For each h ∈ H, we let uhθ = σhθ − g and ũhθ = P̃ uhθ , where P̃ = P (I −Πn−1) +
EΠn−1 is the prolongation operator defined over Hn(Ω) in [2, II-6.2].

Proposition 5 For any θ > 0 and k = 0, . . . ,n− 1, we have∑
t∈TRh

|ũhθ −Π
h
t ũ

h
θ |

2
k,B(t,ϑRh)

=O(h2(n−k)|uhθ |
2
n,Ω), h→ 0.

Proof Let h ∈ H∩ (0,κ0/R], θ > 0 and t ∈ TRh.
First, it is clear that ũhθ −Π

h
t ũ

h
θ ∈H

n(B(t,ϑRh)). For each j = 1, . . . ,∆n, (ũhθ −
Πh
t ũ

h
θ)(ahjt) = 0, i.e. (ũhθ − Πh

t ũ
h
θ) vanishes at least in a point of every ball

B1, . . . ,B∆n . By applying [2, Prop. II-6.6], we have

∀k = 0, . . . ,n− 1, |ũhθ −Π
h
t ũ

h
θ |k,B(t,ϑRh) =O(hn−k |ũhθ −Π

h
t ũ

h
θ |n,B(t,ϑRh)), h→ 0.

As a consequence, for each k = 0, . . . ,n− 1,∑
t∈TRh

|ũhθ −Π
h
t ũ

h
θ |

2
k,B(t,ϑRh)

=O(h2(n−k)
∑
t∈TRh

|ũhθ −Π
h
t ũ

h
θ |

2
n,B(t,ϑRh)

), h→ 0. (36)

By [2, Prop. II-6.1], the sum∑
t∈TRh

χB(t,ϑRh) is uniformly bounded, (37)

where χB(t,ϑRh) denotes the characteristic function of the set B(t,ϑRh). Hence

∑
t∈TRh

|ũhθ −Π
h
t ũ

h
θ |

2
n,B(t,ϑRh)

=
∑
t∈TRh

∫
Rd
χB(t,ϑRh)

∑
|α|=n
|∂α(ũhθ −Π

h
t ũ

h
θ)(x)|2

dx
=

∑
t∈TRh

∫
Rd
χB(t,ϑRh)

∑
|α|=n
|∂αũhθ(x)|2

dx =O(|ũhθ |
2
n,Rd ), h→ 0.

(38)
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By [2, Prop. II-6.3]

|ũhθ |n,Rd =O(|uhθ |n,Ω), h→ 0.

By substituting in the last term of (38) we obtain∑
t∈TRh

|ũhθ −Π
h
t ũ

h
θ |

2
n,B(t,ϑRh)

=O(|uhθ |
2
n,Ω), h→ 0

and, now replacing it in (36), we deduce that∑
t∈TRh

|ũhθ −Π
h
t ũ

h
θ |

2
k,B(t,ϑRh)

=O(h2(n−k)|uhθ |
2
n,Ω), h→ 0. (39)

This completes the proof. ut

Proposition 6 For any θ > 0, we have

∀k = 0, . . . ,n− 1,
∑
t∈TRh

|Πh
t ũ

h
θ |

2
k,B(t,ϑRh)

=O(hd−2kθ), h→ 0. (40)

Proof Let h ∈ H∩ (0,κ0/R], θ > 0 and t ∈ TRh.

Step 1:

From the proof of [2, Prop. II.6.6] we know that:

– There exists a set {α̂1, . . . , α̂∆n } ⊂ Rd such that Π
∆n
j=1B(α̂j ,1) is a compact

subset of (Rd)∆n formed by Pn−1-unisolvent ∆n-tuples; the constant R is

chosen, in fact, so that, for some â ∈ Rd ,
∆n⋃
j=1

B(α̂j ,1) ⊂ B(â,R).

– The closed balls of radius h, Bj ⊂ B(t,Rh), j = 1, . . . ,∆n are defined as fol-
lows

Bj = Fht (B(α̂j ,1)),∀j = 1, . . . ,∆n,

where Fht : Rd → Rd is the invertible affine map given by

Fht (x) = t + h(x − â), ∀x ∈ Rd .

– Each ∆n-tuple belonging to Π
∆n
j=1Bj is Pn−1-unisolvent.

Step 2:

The balls B(â,ϑR) and B(t,ϑRh) are affine-equivalent because the affine
bijection Fht transforms the former ball into the latter.

Now, applying [2, Prop. II-6.4, (ii)] with F = Fht ,‖L−1‖ = h−1 and det L = hd ,
we obtain

|Πh
t ũ

h
θ |k,B(t,ϑRh) =O(h−kh

d
2 |Πh

t ũ
h
θ ◦F

h
t |k,B(â,ϑR)), h→ 0. (41)
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Now, we can check that the application v 7→

 ∆n∑
j=1

|v(α̂j )|2 + |v|2
n,B(â,ϑR)


1
2

is a

norm overHn(B(â,ϑR)) which is equivalent to the norm ‖·‖n,B(â,ϑR). Therefore,

‖Πh
t ũ

h
θ ◦F

h
t ‖n,B(â,ϑR) =O(

 ∆n∑
j=1

|Πh
t ũ

h
θ ◦F

h
t (α̂j )|2 + |Πh

t ũ
h
θ ◦F

h
t |2n,B(â,ϑR)


1
2

), h→ 0.

(42)
Since Πh

t ũ
h
θ ∈ Pn−1, it follows that |Πh

t ũ
h
θ ◦ F

h
t |n,B(â,ϑR) = 0. So, from (41)–(42)

and the fact |v|k,B(â,ϑR) ≤ ‖v‖n,B(â,ϑR) we deduce

|Πh
t ũ

h
θ |k,B(t,ϑRh) =O(h

d
2−k

 ∆n∑
j=1

|Πh
t ũ

h
θ ◦F

h
t (α̂j )|2


1
2

), h→ 0. (43)

Step 3:

Let B̂ = Π
∆n
j=1B(α̂j ,1). Let {p̃1, . . . , p̃∆n } be a basis of Pn−1 and, for any b̂ =

(b̂1, . . . , b̂∆n ) ∈ B̂, let M(b̂) =
(
p̃i(b̂j )

)
1≤i,j≤∆n

.

Taking into account that b̂ is Pn−1-unisolvent we deduce that M(b̂) is reg-
ular. So, if we denote M(b̂)−1 =

(
m′ij (b̂))

)
1≤i,j≤∆n

we have that

∀Ψ ∈ Pn−1, Ψ =
∆n∑
i,j=1

Ψ (b̂i)m
′
ij (b̂)p̃j .

Now, as the matrix inversion is a continuous operation, each function m′ij (b̂)

is bounded over the compact set B̂. If we denote

γ0 = max
1≤i,j≤∆n

sup
b̂∈B̂
|m′ij (b̂)| and γ1 = max

1≤i,j≤∆n
|p̃j (α̂i)|,

we have that for all Ψ ∈ Pn−1, b̂ = (b̂1, . . . , b̂∆n ) ∈ B̂, for all j = 1, . . . ,∆n,

|Ψ (α̂j )| ≤ γ0γ1

∣∣∣∣∣ ∆n∑
i=1

Ψ (b̂i)
∣∣∣∣∣.

Therefore

|Ψ (α̂j )|2 ≤ γ2
0γ

2
1 |

∆n∑
i=1

Ψ (b̂i)|2 ≤ γ2
0γ

2
1 2∆n−1

∆n∑
i=1

|Ψ (b̂i)|2
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and we have obtained that for all Ψ ∈ Pn−1, for all b̂ = (b̂1, . . . , b̂∆n ) ∈ B̂, there
exists a constant C > 0 such that

∆n∑
j=1

|Ψ (α̂j )|2 ≤ C
∆n∑
i=1

|Ψ (b̂i)|2. (44)

Now, for each j = 1, . . . ,∆n, let âhjt = (Fht )−1(ahjt). By the definition of Fht and aht ,

the ∆n-tuple âht = (âh1t , . . . , â
h
∆nt

) belongs to B̂. By using (44) with Ψ = (Πh
t ũ

h
θ) ◦

Fht and b̂ = âht , and taking into account that

Ψ (b̂j ) =
(
(Πh

t ũ
h
θ) ◦Fht

)
(b̂j ) =

(
(Πh

t ũ
h
θ) ◦Fht

)
(âhjt)

=
(
(Πh

t ũ
h
θ) ◦Fht

)(
(Fht )−1ahjt

)
= (Πh

t ũ
h
θ)(ahjt)

=ũhθ(ahjt),

we have that
∆n∑
j=1

|(Πh
t ũ

h
θ) ◦Fht (α̂j )|2 ≤ C

∆n∑
j=1

|ũhθ(ahjt)|
2.

By replacing in (43), we obtain

|Πh
t ũ

h
θ |k,B(t,ϑRh) =O

h d2−k
 ∆n∑
j=1

|ũhθ(ahjt)|
2


1
2
 , h→ 0. (45)

Step 4:

From (45) we have that

|Πh
t ũ

h
θ |

2
k,B(t,ϑRh)

=O

hd−2k

 ∆n∑
j=1

|ũhθ(ahjt)|
2


 , h→ 0,

and ∑
t∈TRh

|Πh
t ũ

h
θ |

2
k,B(t,ϑRh)

=O

hd−2k
∑
t∈TRh

 ∆n∑
j=1

|ũhθ(ahjt)|
2




=O

hd−2k
∑
t∈TRh

 ∑
a∈Ah∩B(t,ϑRh)

|ũhθ(a)|2



=O

hd−2k
∑
t∈TRh

∑
a∈Ah

χB(t,ϑRh)(a)|ũhθ(a)|2



=O

hd−2k
∑
a∈Ah

|ũhθ(a)|2
∑
t∈TRh

χB(t,ϑRh)(a)


 , h→ 0.
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Hence, by using (37), we obtain

∑
t∈TRh

|Πh
t ũ

h
θ |

2
k,B(t,ϑRh)

=O

hd−2k
∑
a∈Ah

|ũhθ(a)|2
 , h→ 0. (46)

Now, since Ah ⊂Ω and (ũhθ)|Ω = (P̃ uhθ)|Ω = uhθ , we have that∑
a∈Ah

|ũhθ(a)|2 =
∑
a∈Ah

|uhθ(a)|2 = ‖ρhuhθ‖
2
2 = ‖ρh(σhθ − g)‖22

= ‖ρh(σhθ )− βh‖22 =O(θ), h→ 0,

(47)

where (22) has been used. From (46) and (47) we derive (40) . ut

We are now ready to prove Theorem 3:

Proof Let k be an integer with 0 ≤ k ≤ n − 1. Let κ0 be the constant given by
[2, Prop. II-6.1] and R > 1 be the constant of [2, Prop. II-6.6].

For each h ∈ H∩(0,κ0/R] and θ > 0, we have that hR ∈ (0,κ0], and applying
[2, Prop. II-6.1] we have

Ω ⊂
⋃
t∈TRh

B(t,ϑRh).

Since P̃ is a prolongation operator from Hn(Ω) to Hn(Rd) we have that

|uhθ |
2
k,Ω ≤ |ũ

h
θ |

2
k,
⋃
t∈TRh B(t,ϑRh)

≤
∑
t∈TRh

|ũhθ |
2
k,B(t,ϑRh)

. (48)

Now, it is clear that

|ũhθ |
2
k,B(t,ϑRh)

≤ 2
(
|ũhθ −Π

h
t ũ

h
θ |

2
k,B(t,ϑRh)

+ |Πh
t ũ

h
θ |

2
k,B(t,ϑRh)

)
.

So, (48) can be expressed as

|uhθ |
2
k,Ω ≤ 2

∑
t∈TRh

|ũhθ −Π
h
t ũ

h
θ |

2
k,B(t,ϑRh)

+
∑
t∈TRh

|Πh
t ũ

h
θ |

2
k,B(t,ϑRh)

 . (49)

By introducing (39) and (40) in (49) we have that

|uhθ |
2
k,Ω =O(|uhθ |

2
n,Ωh

2(n−k) + hd−2kθ), h→ 0,

i.e.
|σhθ − g |

2
k,Ω =O(|σhθ − g |

2
n,Ωh

2(n−k) + hd−2kθ), h→ 0,

from which we deduce the result. ut
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Corollary 1 is now derived as a consequence of Theorem 2 and Theorem 3:
Proof of Corollary 1 By Theorem 2, ‖g − σhθ‖n,Ω = o(1), h→ 0. Therefore, since
|g − σhθ |n,Ω ≤ ‖g − σ

h
θ‖n,Ω, we have that

|g − σhθ |n,Ω = o(1), h→ 0. (50)

From (50) we also have that, for any k = 0, . . . ,n− 1,

|g − σhθ |n,Ω · h
n−k = o(hn−k), h→ 0.

and applying Theorem 3,

|g − σhθ |k,Ω = o(hn−k) +O(h
d
2−kθ

1
2 ), h→ 0.

ut

6 Computation

We are now going to obtain the expression of the discrete PDE spline σθ .
We number the basis functions of the space X, ω1, . . . ,ωI . We can then

express σθ as the linear combination σθ(x) =
∑I
i=1γiωi(x), and if we calculate

the unknown coefficients γi , we then have the expression of σθ .
By substituting in (12), we obtain, for all v ∈ X,

I∑
i=1

γi ((ρωi ,ρv) +θ(ωi ,v)L) +
Nn∑
k=1

αkλk(v) = (β,ρv) +θ (f ,v)0,Ω ,

subject to the restrictions λj

 I∑
i=1

γiωi

 = zj , 0 ≤ j ≤Nn, which are equivalent

to 

I∑
i=1

γi
(
(ρωi ,ρωj ) +θ(ωi ,ωj )L

)
+
Nn∑
k=1

αkλk(ωj )

= (β,ρωj ) +θ(f ,ωj )0,Ω, 1 ≤ j ≤ I,
I∑
i=1

γiλj (ωi) = zj , 0 ≤ j ≤Nn,

that is, a linear system with I +Nn equations and the unknowns

γ1, . . . ,γI ,α1, . . . ,αNn.

Its matricial form is (
G D
DT 0

)(
γ
α

)
=

(
f̌
z

)
,
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where G = (gij )1≤i,j≤I , with gij = (ρωi ,ρωj ) + θ
(
ωi ,ωj

)
L
, D = (dij )

1≤i≤I
1≤j≤Nn

,

with dij = λj (ωi), γ = (γ1, . . . ,γI )T , α = (α1, . . . ,αNn)T ,
f̌ = ((β,ρω1) +θ(f ,ω1)0,Ω, . . . , (β,ρωI ) +θ(f ,ωI )0,Ω)T , z = (z1, . . . , zNn)T .

If we call

A =
(
ωj (ai)

)
1≤i≤M
1≤j≤I

,R =
(
(ωi ,ωj )L

)
1≤i,j≤I

,and f̃ =
(
(ω1, f )0,Ω, . . . , (ωI , f )0,Ω

)T ,
then G = ATA+θR and f̌ = AT β +θf̃ .

Appendix

It is known that every conditionally positive definite function of order m
grows at most like a polynomial of degree 2m, i.e. it is a slowly increasing
function. Moreover, its corresponding native space admits the following char-
acterization:

Theorem 7 Suppose that Φm : Rd → R is a conditionally positive definite func-
tion of order m. Suppose further that Φm has a generalized Fourier transform Φ̂m
of order m that is continuous on Rd \ {0}. Let G be the real vector space consisting
of all continuous functions f : Rd → R that are slowly increasing and have a gen-

eralized Fourier transform f̂ of order m/2 that satisfies f̂
/√

Φ̂m ∈ L2(Rd). Then G

is the native space corresponding to Φ(x,y) := Φm(x−y), i.e. G =NΦ (Rd), and the
semi-norm defined on G by the square root of

(2π)−d/2
∫
Rd

|f̂ (ω)|2

Φ̂m(ω)
dω,

coincides with the semi-norm given by (1).

Within the assumptions and notations before Theorem 1, let us now prove
it:
Proof of Theorem 1

Let (ci)
Q
i=1 be a set of real coefficients such that

Q∑
i=1

ci λ̃i = 0 (51)

on NΦ (Rd). Then, as the native space norm, ‖ · ‖NΦ (Rd ), is given, for each v ∈
NΦ (Rd), by

‖v‖2NΦ (Rd ) = |v|2NΦ (Rd ) +
∆m∑
k=1

|v(ξk)|2,
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where | · |NΦ (Rd ) is the native space semi-norm defined in (1), and taking into
account that, for every i = 1, . . . ,Q, the Riesz representer of λ̃i on the native
Hilbert spaceNΦ (Rd) is λ̃yi K(·, y), by [18, Th. 16.7], we have that:

0 =

∥∥∥∥∥∥∥
Q∑
i=1

ci λ̃i

∥∥∥∥∥∥∥
2

NΦ (Rd )∗

=

∥∥∥∥∥∥∥
Q∑
i=1

ci λ̃
y
i K(·, y)

∥∥∥∥∥∥∥
2

NΦ (Rd )

=

∣∣∣∣∣∣∣
Q∑
i=1

ci λ̃
y
i K(·, y)

∣∣∣∣∣∣∣
2

NΦ (Rd )

+
∆m∑
k=1

∣∣∣∣∣∣∣
Q∑
i=1

ci λ̃
y
i K(ξk , y)

∣∣∣∣∣∣∣
2

and, as a consequence, in the native space semi-norm | · |NΦ (Rd ),∣∣∣∣∣∣∣
Q∑
i=1

ci λ̃
y
i K(·, y)

∣∣∣∣∣∣∣
2

NΦ (Rd )

= 0. (52)

From (51) we obtain that
Q∑
i=1

ci λ̃i(p) = 0 (53)

for all p ∈ Pm−1. Thus

Q∑
i=1

ci λ̃
y
i Φ(·, y)−

Q∑
i=1

ci

∆m∑
k=1

Φ(·,ξk)λ̃i(pk)

=
Q∑
i=1

ci λ̃
y
i Φ(·, y)−

∆m∑
k=1

Φ(·,ξk)
Q∑
i=1

ci λ̃i(pk) =
Q∑
i=1

ci λ̃
y
i Φ(·, y)

and taking into account that λ̃yi Φ(·, y)−
∑∆m
k=1Φ(·,ξk)λ̃i(pk) and λ̃yi K(·, y) differ

only by a polynomial in Pm−1, we obtain from (52) that∣∣∣∣∣∣∣
Q∑
i=1

ci λ̃
y
i Φ(·, y)

∣∣∣∣∣∣∣
2

NΦ (Rd )

= 0. (54)

For each i = 1, . . . ,Q, it is satisfied that

λ̃
y
i Φ(·, y) = λ̃yi Φm(· − y) = (−1)|α

(i) |(∂α
(i)
Φm)(· − xi)

and
(λ̃yi Φ(·, y))∧(ω) = (−iω)α

(i)
e−iωT xi Φ̂m(ω) = λ̃yi (e−iωT y)Φ̂m(ω). (55)

On the other hand, for fixed ω ∈ Rd , the expansion of the exponential
function gives us that

e−iωT y =
∞∑
k=0

(−i)k

k!
(ωT y)k
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and then
Q∑
i=1

ci λ̃
y
i e−iωT y =

∞∑
k=0

(−i)k

k!

Q∑
i=1

ci λ̃
y
i (ωT y)k .

By applying (53) we have that, for each k = 0, . . . ,m− 1,

Q∑
i=1

ci λ̃
y
i (ωT y)k = 0

and therefore
Q∑
i=1

ci λ̃
y
i e−iωT y =

∞∑
k=m

(−i)k

k!

Q∑
i=1

ci λ̃
y
i (ωT y)k ,

which leads to
Q∑
i=1

ci λ̃
y
i e−iωT y =O(‖ω‖m2 ), ‖ω‖2→ 0. (56)

Therefore, taking into account (54) and (55), and by applying Theorem 7,
we obtain that

0 =

∣∣∣∣∣∣∣
Q∑
i=1

ci λ̃
y
i Φ(·, y)

∣∣∣∣∣∣∣
2

NΦ (Rd )

= (2π)−d/2
∫
Rd

∣∣∣∣∣∣∣
Q∑
i=1

ci λ̃
y
i e−iωT y

∣∣∣∣∣∣∣
2

Φ̂m(ω)dω, (57)

where this integral is well defined by (56).
Since Φm is a conditionally positive definite function of order m that has

a nonnegative and nonvanishing generalised Fourier transform Φ̂m of order
m which is continuous on Rd \ {0}, there exists an open set U ⊆ Rd where
Φ̂m(ω) > 0. Hence, from (57), we obtain that

Q∑
i=1

ci λ̃
y
i eiωT y = 0

for all ω with −ω ∈U and then, by analytic continuation, we derive that

Q∑
i=1

ci λ̃
y
i eiωT y = 0

for all ω ∈ Rd .
Therefore, for the Fourier transform û of any test function u ∈ S (being S

the Schwartz space of test functions of rapid decay [11], i.e., the space of all
functions u ∈ C∞(Rd) which satisfy that xα∂βu is uniformly bounded on Rd ,
for all multi-indices α,β ∈ Nd), we have the identity

0 =
Q∑
i=1

ci λ̃
y
i eiωT y û(ω) =

Q∑
i=1

ci(iω)α
(i)

eiωT xi û(ω) =

 Q∑
i=1

ci(∂
α(i)
u)(· + xi)


∧

(ω)



Radial discrete PDE splines on Lipschitz domains 31

for all ω ∈ Rd , which implies

Q∑
i=1

ci(∂
α(i)
u)(x + xi) = 0, x ∈ Rd ,

and in particular, taking x = 0,

Q∑
i=1

ci λ̃i(u) = 0. (58)

Let us find now Q test functions uj ∈ S , j = 1, . . . ,Q, such that

λ̃i(uj ) = δij , i, j ∈ {1, . . . ,Q}.

Let u0 ∈ C∞(Rd) be a compactly supported function with support con-
tained in the ball around zero with radius 0 < ε < minj,k ‖xj − xk‖2 and
u0(x) = 1 if ‖x‖2 < ε/2. For j = 1, . . . ,Q we define

uj (x) :=
(x − xj )α

(j)

α(j)!
u0(x − xj ), x ∈ Rd .

We then have that uj ∈ S and λ̃i(uj ) = δij , for all i, j ∈ {1, . . . ,Q}. Now, by
applying (58), we get, for each j = 1, . . . ,Q,

0 =
Q∑
i=1

ci λ̃i(uj ) = cj

and hence our result. ut
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2. Arcangéli, R., de Silanes, M.C.L., Torrens, J.J.: Multidimensional Minimizing Splines. The-
ory and Applications. Kluwer Academic Publishers (2004)

3. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework.
Springer–Verlag, Nueva York (2001)

4. Bloor, M.I.G., Wilson, M.J.: Representing pde surfaces in terms of b-splines. Comput. Aided
Des. 22(6), 324–331 (1990)

5. Braun, M.: Differential Equations and Their Applications. Springer-Verlag New York (1983)
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