
Introduction

The term microgel refers to a “colloidal suspension of gel particles”. (1) That is, they
are porous particles formed by cross-linked polymer chains dispersed in a solvent.
They are also called nanogels, as their diameter usually varies from 10 to 1000 nm.
Their main feature is the ability to swell or shrink as a response to a wide variety of
parameters such as temperature, pH, solute concentration, or solvent nature. (2, 3)
Microgels respond to external stimuli much faster than macroscopic gels, with a
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velocity increased by some orders of magnitude. (1) This feature is an advantage for
a broad range of biotechnological applications. (4) In particular, the design of new
intelligent drug transport and delivery systems is gaining attention in recent years.
(5-7) Microgel particles are suitable for this purpose, since a therapeutic molecule
can be encapsulated inside the particle and be transported to different parts of the
human body, avoiding its degradation before it reaches the place where it has to be
released. (8) With this aim, microgels and the interaction with different solutes, such
as drugs and DNA, are being widely investigated. (9-12)

Ionic microgels, formed by cross-linked polyelectrolyte chains, are essential for most
of biomedical applications, because drugs and other biomolecules are usually
charged solutes dissolved in the medium where microgels are dispersed. For this
reason, many authors have developed theoretical studies to analyze the permeation
of ions and solutes inside microgels and to estimate the swelling equilibrium state of
the particle. (13-16) Most of these works assume that ion permeation inside the
microgel is controlled exclusively by the electrostatic interactions. In principle, this is
a good approximation for loose, expanded microgel networks, where the pore size
between polymer fibers is large enough to guarantee that ions can freely penetrate.
However, this may not be the case of denser shrunken microgels, where the large
packing fraction of the polymer network exerts an additional excluded volume
repulsion that might partially hinder the migration of ions or other kind of solutes to
the region inside the particle. This repulsive force is usually referred as steric
interaction, and its study is the main goal of this work. Although there does not exist
a general equation for the steric interaction between a cross-linked microgel and an
incoming solute or ion valid for every type of particle, there are some approximated
models that assume certain morphologies of the polymer network. These are based
on the equilibrium partitioning effect, which states that solute concentration inside a
neutral porous medium is smaller than the one in the bulk solution. (17)

In this work we focus on the effect that the microgel-ion steric repulsive interaction
has on the permeation of counterions inside microgel particles that become
heterogeneous as temperature increases. For this purpose, we use a novel hybrid
method that blends Ornstein–Zernike integral equations and Monte Carlo
simulations. On the one hand, Monte Carlo simulations have been previously used to
study volume exclusion effects in gel systems with neutral solutes (18) so they are
expected to be appropriate also for microgel particles. Even though this method
requires more computational resources than integral equations, it provides accurate
predictions of the equilibrium distribution of the cross-linked polymer network and
the ionic density profiles. Microgel particles are simulated using a coarse-grained
model, the so-called bead–spring model. This model has been widely used in Monte
Carlo and molecular dynamics simulations of different polyelectrolytes, (19-26) gels,
(27-30) microgels, (31-34) and even more complex mesoscopic systems (e.g.,
viruses (12)). Moreover, it has been successfully employed to compare simulation



results with experimental swelling data of microgel particles, not only qualitatively
but quantitatively as well. (35)

On the other hand, Ornstein–Zernike integral equations with HNC closure relations
have demonstrated to be a powerful tool to study the permeation of ions inside
microgel particles. (36) We solve these equations for the three-component system
microgel-coion-counterion using as input parameters the equilibrium density profiles
of charged monomers and the polymer mass distribution obtained from simulations.
This method allows the calculation of the radial distribution functions and, from
them, the density profiles of ions inside and around the microgel particle. These
results constitute a novelty in the sense that we are able to predict not only the net
permeation of ions inside the microgel, but also to determine the region where they
become preferentially adsorbed. (36, 37) The integral equations formalism is also
especially useful because it takes explicitly ion–ion correlations into account. These
correlations, which arise from the finite size of the ions, can be very important at high
electrolyte concentration, in regions where they are strongly confined or close to
colloidal surfaces. (38) Moreover, nonlinear effects resulting from highly charged
colloid-ion systems can be studied with this method as well. The combination of
simulations and integral equations provide a method to clearly estimate to what
extent excluded volume forces influence the ionic permeation inside fibrous
microgels.

Two important properties have been obtained using both methods, namely the
microgel effective charge and the counterion and coion radial distribution functions.
On the one hand, the effective charge is defined as the sum of the total charge of the
porous particle, considering as well inner ions, with their respective positive or
negative charge. This magnitude strongly depends on the number of counterions
that have penetrated inside the microgel particle, and represents an estimate of how
efficiently the microgel bare charge has been screened. Its importance may be seen
in many aspects. For instance, effective charge controls the volume phase transition
of charged microgel particles under weak screening conditions. (39) Moreover,
stability of the suspensions strongly depends on this quantity, because it controls the
electrostatic interaction between colloidal particles. (36, 40) On the other hand, the
ionic density profiles provide detailed information about where ions are preferentially
adsorbed inside the microgel particles, which is in general difficult to achieve
experimentally. This is really helpful to study the local effects of microgel-ion
interaction that arise for highly charged microgels and low ionic strengths. Up to
now, most studies regarding interaction of solute with gels and microgels have been
performed considering that the polymer packing fraction and the charge distribution
inside the microgel are homogeneous. (41-43) However, when solute concentration
is low and microgel charge distribution is nonhomogeneous, the counterion
adsorption inside the microgel becomes highly dependent on the charge and
polymer mass distribution. These local effects are expected to have a relevant effect



on many microgel applications, in particular in drug transport and delivery.

In addition, by comparing the results given by both integral equations and Monte
Carlo simulations we show that electrostatic interactions are not enough to describe
the ionic permeation inside the microgel in thermal conditions at which the particle is
collapsed. This finding supports the inclusion of an additional steric microgel-ion
repulsion in the theoretical model to correctly explain ionic permeation close to the
shrunken state. Once this steric effect is taken into account, the comparison
between theory and simulations is in general very good.

This paper is organized in the following manner. In the first section we describe the
theoretical framework and explain the numerical resolution of Ornstein–Zernike
integral equations. Monte Carlo simulations are described in the next section. Then,
the results obtained by both methods are shown and discussed, and finally, the
conclusions of this work are summarized.

Theory

The system under study is a mixture of spherical microgel particles dispersed in
water with 1:1 electrolyte. As the solvent is considered a background continuum, the
system is formed by a ternary mixture in equilibrium of Nm microgels, N+

counterions, and N– coions. Their bare charges are given, respectively, by −Ze, +e,
and −e, with e being the elementary charge. Hence, to fulfill electroneutrality we get
N+ = N– + ZNm. Polymer mass distribution and charge distribution inside the
microgel network are obtained from the Monte Carlo simulation results.

Particle Interactions



In order to apply the integral equation method is necessary to define the pair
interactions between any type of particle of the system (counterions, coions and
microgel particles). Ion–ion interaction is assumed to be a combination of a short-
range hard-core potential with a long-range Coulombic tail

(1)

where r is the distance between the centers of the ions, σi and zi are, respectively, the
diameter and valence of particle i, and β ≡ 1/(kBT) . lB is the so-called Bjerrum length,
defined as lB ≡ e2/4π ϵrϵ0kBT, where ϵ0 is the vacuum permittivity, kB is the Boltzmann
constant, and T the absolute temperature. The Bjerrum length also depends on
temperature T through the relative permittivity ϵr. In this work, we assume that the
solvent is water, with a permittivity given by the following T-dependence (44)

(2)

It is important to note that this pair interaction takes the finite size of the ions into
account, which can induce relevant correlations at sufficiently large electrolyte
concentration.

In order to obtain realistic predictions for ion penetration inside the microgel particle,
a suitable model for microgel-ion interaction is required. When ions diffuse through
microgel pores, electrostatic interaction may not be the only one that intervenes.
There might be also an effective steric repulsion, whose relevance increases as
microgel shrinks, that prevents the ion permeation. This repulsion is present even in
the limit of point-like ions, since part of the volume available for the ion is already
occupied by the polymer fibers. For ions of finite size, the excluded volume effect
becomes logically more important, as ions also have to fit inside the internal pores of
the microgel. Here, we assume that the microgel-ion potential can be split into two
additive contributions, given by the electrostatic and steric terms, respectively

(3)

This potential only depends on the distance between the ion and the microgel center,
r, because microgel particles are considered spherical. The electrostatic contribution
can be calculated from the equilibrium spatial distribution of charged monomers.
Note that in this work we do not assume any model for the distribution of charged
groups inside the microgels, but instead, we use the distribution actually obtained
from the Monte Carlo simulations. The expression of the electrostatic interaction
potential between the microgel and certain ion located outside the microgel at a
distance r from the its center can be expressed as



(4)

where Rm is the external radius of the microgel. For r < Rm, the electrostatic
interaction depends on the specific distribution of charged groups and must be
obtained numerically from the electric field generated by the microgel particle, E(r):

(5)

From Gauss’s law, the electric field is given by

(6)

where Zin(r) is the number of charged monomers enclosed within a sphere of radius
r. It is calculated by integration of number density of charged monomers, ρc(r), which
is directly obtained from the simulations:

(7)

The next step involves the deduction of some expression for the steric repulsion that
appears when an uncharged solute permeates through the polymeric microgel
network and experiences the volume exclusion exerted by the polymer fibers. This
interaction depends on the size of the incoming solute, the size of monomeric units,
the polymer packing fraction and, in general, on the internal morphology of the
microgel polymer network. In this work we use two different models previously
employed by several authors. (17, 36, 45) In the first one the internal structure of the
microgel is approximated by an assembly of randomly placed spherical monomers.
(46) The second model (also called the Ogston model (47)) assumes that the
internal polymer distribution is given by an assembly of infinitely long cylinders of
constant radius, which are randomly distributed and mutually interpenetrable. Both of
them may be expressed as the following equation for the steric microgel-ion
interaction

(8)

where ϕ(r) is the local polymer volume fraction inside the microgel, σi is the diameter
of the incoming ion, and σf stands for the typical size of an elementary unit of the
polymer network. The exponent n is given by n = 3, if we assume that the microgel is
formed by an assembly of spherical monomers, and n = 2, if we use the Ogston
model instead. In the first case, σf corresponds to the monomer diameter, σmon. In
the second case, the effective diameter of the fiber is given by σf = (2/3)1/2 σmon. (18)

It should be emphasized that both analytical expressions for the steric repulsion



have been corrected to take the overlapping volume between the polymer fibers into
account. (48) As a result of this, both models are consistent with the limiting cases
of high and low volume packing fraction. That is, for ϕ(r) → 0 there is enough room
for ions to penetrate, so Vmister → 0. If the polymer volume fraction is very high, the
microgel tends to behave as an impenetrable hard sphere, so Vmister → ∞.

In Figure 1, both microgel-ion steric potentials are plotted as a function of the
polymer packing fraction, using the same parameter values considered in
simulations and theoretical calculations. It is observed that the steric interaction is
more repulsive for exponent n = 3 than for n = 2. For ϕ → 1, both interactions diverge,
so the microgel becomes an impenetrable particle.

Figure 1

Figure 1. Microgel-ion steric potential as a function of microgel volume packing
fraction. Blue dashed curve corresponds to n = 2 (Ogston model), while the green
dotted to n = 3, in eq 8. To calculate βVmister(r), we have used the same values
considered in simulations and theoretical calculations, that is, σion = 0.7 nm, σmon =
0.65 nm, and σf = (2/3)1/2 σmon.

Finally, the bare microgel–microgel interaction should also be known in order to
obtain correct theoretical predictions for suspensions at finite microgel
concentration. This interaction is in principle really difficult to determine, specially
when microgels are in overlapping configurations, in which elastic forces arise in
addition to the electrostatic ones. However, in this work we are only interested in the
study of the ionic density profiles around a single microgel in the limit of infinite
dilution of particles. Hence, there is no need to include this interaction in the
theoretical background.



Ornstein–Zernike Integral Equations

The equilibrium radial distribution functions of counterions and coions around and
inside the microgel particle, gmi(r), can be obtained by solving the Ornstein–Zernike
(OZ) integral equations for the microgel (m), counterion (+) and coion (−) mixture.
For a three-component mixture, the OZ equations are written in the Fourier space as
a set of six algebraic equations,

(9)

where ĥμν(k) and ĉμν(r) are the Fourier transforms of the total and direct correlation
functions, respectively, and ρ0λ stands for the number density of component λ in the
bulk. In the limit of very dilute microgel suspension (ρ0m → 0) the six equations are
decoupled into three groups which can be solved in three different steps. In the first
step, the ion–ion correlations are calculated. Then, they are used in the second step
to determine the microgel–counterion and microgel–coion correlations by solving
the following set of two equations. Finally, there is still remaining a last integral
equation which provides the microgel–microgel correlation. This last equation allows
the calculation of the effective interaction between microgels particles induced by
the presence of electrolyte. However, in this work we are not interested in this
property, so we omit this part and focus on the microgel–ion correlations. As this
procedure has been already used in previous works, (13, 36, 37) we encourage the
reader to dip into them for further details.

In order to solve these equations, it is strictly necessary to complete them with
additional closure relations connecting ĥμν(r) and ĉμν(r) with the interparticle
interaction potentials Vμν(r) (defined in eqs 1 and 3). In this work, the Hypernetted-
chain approximation (HNC) (49) is used, due to the fact that it has demonstrated to
be a quite precise approximation for the kind of interactions involved in mixtures of
ionic microgel suspensions with electrolyte. (13, 36, 37) It is given by the following
equation:

(10)

To solve OZ-HNC equations, we make use of the Picard method of successive
approximation. (50) Once calculated hμν(r) and cμν(r), radial distribution functions
can be obtained straightforwardly

(11)

Picard method starts with an approximated initial guess for the direct correlation
functions, cμν(0), and after an iteration, a new value cμν(1) is calculated. The procedure
is repeated until convergence of the two last steps of the method is achieved.



However, for highly charged microgels, as the one object of this study, Picard method
does not converge in just one realization. It is necessary to develop an adaptive
method to increase gradually the microgel charge Z, which enhances the numerical
convergence: the last value of cμν(i) calculated is used in the next realization of
Picard method, in which the microgel charge is increased until the actual charge is
achieved.

Simulations

In the simulation procedure the microgel particle is modeled as a network of cross-
linked polymer chains. Monte Carlo simulations are carried out within a coarse-
grained model for polyelectrolytes known as the bead–spring model. In this
framework, monomer units of the polymer chain and ions are considered spheres,
whereas the solvent is treated as a dielectric continuum. (24, 30) Each chain of the
microgel consists of a sequence of 8 spherical monomer units (beads) connected by
tetrafunctional cross-linkers of the same species than monomers. This number of
monomers per chain can be considered typical for highly cross-linked networks. (35)
The microgel simulated here is made of 206 chains connected by 133 cross-linkers.
The charge of the microgel is conferred by adding beads of each chain with the
negative elementary charge, e, as a result of having ionizable groups. In this work, we
explore particles with 1 ionized group per chain. The simulation cell also contains
ionic species, both cations and anions, as well as an excess of cations required to
ensure an electroneutral system. The ions are also modeled as spheres, whose
diameters are σion = 0.7 nm including the corresponding hydration shell. This
hydrated ion size is in agreement with the values experimentally estimated for some
monovalent cations and anions by Israelachvili, (51) who compiled data from
different techniques. However, for highly concentrated microgel suspensions, the
effect of excluded volume interactions could be overestimated using this ion size,
since the solvation shell of the ions becomes less relevant in those cases. For that
reason, we have also performed simulations considering σion = 0.4 nm, in order to
discern whether steric repulsion still plays an important role. In addition, the former
diameter used here could be representative for some drugs, such as theophylline or
caffeine, (52) and may give an approximation of the excluded volume interactions in
microgel–drug systems.



Interactions between all particles in the simulation cell are briefly summarized as
follows (more details may be found in a previous work (53)). The short-range
repulsion between any pair of particles (monomeric units or ions) due to excluded
volume effects is modeled by means of the purely repulsive Weeks–Chandler–
Andersen (WCA) potential: (27, 28, 54, 55)

(12)

where r is the center to center distance between a given pair of particles, ϵWCA = 4.11
× 10–21 J, and σ = (σi + σj) /2, where σi is the particle diameter of component i. The
interaction connecting monomer units and cross-linkers with their neighbors is
modeled by harmonic bonds,

(13)

where kbond = 0.4 N/m is the elastic constant and r0 = 0.65 nm is the equilibrium
bond length. All the charged species interact through the Coulomb potential

(14)

where zi is the valence of species i.

The thermoresponsive character of microgels comes from hydrophobic forces.
When nonpolar macromolecules are inserted into an aqueous medium, water
molecules rearrange their hydrogen bonds and form a structure like a cage,
generating a high degree of local order. When temperature increases, the total
number of water molecules structured around the hydrophobic solute decreases. To
minimize the loss of entropy, the number of nonpolar molecules exposed to the
solvent is reduced aggregating them: the microgel shrinks. In this work, the
hydrophobic force is modeled through an interaction potential that consists in a
smooth approximation of the square-well potential (previously used by other authors
(56, 57)) whose depth increases with temperature, given by the following equation:

(15)

where εh(T) < 0 is the depth of the potential, rh is its range, and kh is fixed so that Vhyd

(0.9 rh) = 0.9εh. The potential depth obeys an increasing sigmoid function to
reproduce the behavior of thermo-shrinking gels, (59)

(16)



εmax is the maximum depth of the hydrophobic potential and kε/2 is proportional to
the slope of the function at the point where εh(Tε/2) = −εmax/2. The dependence of
the interaction parameter εh with temperature is shown in the inset of Figure 2. The
behavior of the potential is inspired in physical grounds from the model of
hydrophobic interaction developed by Kolomeisky and Widom. (58) However, a
previous work showed that this potential leads to unphysical volume fractions at
high temperatures. (59) For that reason, a phenomenological potential with a limited
depth has been preferred. The values of its parameters were obtained
simultaneously matching several experimental data sets on six different microgels
with different fraction of charged monomers and temperatures ranging from 10 to 60
°C. (35) In a subsequent work, (60) it was also checked that these parameters also
justified the behavior of a poly(NIPAM)-based gel with a very different cross-linker
density. It should be also mentioned that poly(NIPAM) is considered a model of
thermoresponsive polymer, and other polymers with potential applications as drug
carriers exhibit similar lower critical solution temperatures. (61, 62) Thus, realistic
simulation results are expected (at least to some extent) if this potential is used. In
any case, it should be kept in mind that this hydrophobic potential is operative only
for uncharged monomers, since charged groups are considered hydrophilic rather
than hydrophobic beads. Nevertheless, the choice of hydrophobic potential
employed in the simulations and, in particular, the dependence of εh with T will
depend on the specific nature of the polymer fibers of the microgel and the solvent
conditions. Therefore, the results predicted in this work may experience some
variations when applied to other kind of microgel particles. In spite of this, the
predictions deduced in this work represent a good qualitative representation that
illustrates the thermal response of real ionic solutions of microgels.

Simulations are performed using the canonical ensemble, in which volume,
temperature and number of particles are kept constant. All the simulations are
carried out in a cubic box with a length L and periodic boundary conditions. The
simulation box is large enough to contain a single microgel particle and a
significantly developed electric double layer around it. More specifically, L is
calculated as L ≈ 2(R0 + 4 lD), where R0 is an estimate of the radius of the microgel in
the absence of additional electrolyte and lD is the Debye screening length. For
instance, for 1 and 100 mM, the L-values employed are 100 and 34 nm, respectively,
much larger than the Debye lengths (9.67 and 0.967 nm at 288 K, respectively). Thus,
the microgel does not feel significantly the electrostatic repulsion of periodic
images. The initial configuration of the microgel and their counterions used in the
runs in the presence of salt were obtained from previous simulations in the absence
of salt. After this preliminary equilibration, ions coming from the salt were added at
random positions and the genuine run in the presence of salt started. Two types of
MC moves were employed: (i) the usual single-particle displacements; (ii) rescaling
of the positions of all the particles multiplying by a factor to reduce the
thermalization time (see ref 33 for further details about this size rescaling). In this



way, small changes in the size of the microgel (maximum 1%) were explored. In the
single-particle moves, the maximum displacements of monomers and ions were
individually adjusted to achieve acceptance ratios of 30–70%. In both equilibration
runs, at least 108 MC moves were employed. To check that the equilibration had been
reached, the evolution of some properties, such as the radius of gyration, was
monitored averaging on batches of 5 × 104 steps. At least, 2 × 108 MC moves were
employed for averaging. The electrostatic energy was computed through a classical
implementation of Ewald sums, following some practical guidelines given by Linse.
(63) The cutoff distance employed in the real space was L/2. The calculation of the
reciprocal contribution to energy was estimated using sets of integers (nx, ny, nz) that
verified (nx2 + ny2 + nz2)2 ≤ 4 (reciprocal cutoff). The parameter characterizing the
width of Gaussian charge distributions was α = 5/L (see review by Linse for notation
and further details). The maximum relative error admitted in the real-space
contribution to energy was 10–3. Additional information about methods to compute
long-range interactions can be found in the work by Arnold and Holm. (64)

Results and Discussion

Monte Carlo simulations were performed at two different concentrations of
monovalent salt, 1 mM and 100 mM. We consider this salt to be NaCl, and assume
ion sizes given by the corresponding effective hydrated diameters in conditions of
high dilution. Their values are shown in Table 1, together with other properties of the
microgel particle, namely the number of charged monomers in the microgel, the size
of the composing monomers, and the temperature interval in which our study is
performed.

Table 1. Input Parameters of Monte Carlo Simulations Used to Generate Microgel
Particles in the Presence of Electrolyte

parameter symbol value

monomer diameter σmon 0.65 nm

ion diameter σion 0.70 nm

microgel charge Z 206 e

temperature T 20–60 °C

Before comparing the simulation results with the theoretical predictions we show
some results regarding the thermal response of the simulated microgel particles.

Thermal Response



Because of the fact that attractive hydrophobic interactions between monomers of
the microgel are temperature dependent, the microgel becomes a thermoresponsive
particle. This means that its internal morphology and the degree of swelling changes
with temperature. The equilibrium conformation is a balance between many
contributions, namely the hydrophobic, elastic and electrostatic forces. Therefore,
the final equilibrium state not only depends on temperature but also on the
electrolyte concentration. In order to determine the thermal response of the
microgels we performed a total amount of 9 simulation runs with temperatures
ranging from 20 to 60 °C for each salt concentration.

Figure 2 shows the microgel effective average radius Rm as a function of
temperature. It is defined as Rm = (5/3)1/2Rg, where Rg is the radius of gyration of the
microgel particle. For a spherical microgel with a homogeneous distribution of mass,
Rm represents the external radius of the microgel. As observed, the temperature
range considered in this work provides different swelling ratios of the microgel
particle. For low temperature, microgel particle is swollen, but when temperature is
increased it undergoes a volume transition to shrunken states. The transition
temperature is about 34 °C, which is consistent with the experimental response of
many types of microgel particles.

Figure 2

Figure 2. Average effective radius of the simulated microgel as a function of
temperature for two salt concentrations, 1 mM and 100 mM. Error bars are not
shown because they are smaller than the size of the symbols. In the inset, the depth
of the potential εh used in the simulations is plotted against the temperature.

With regard to the response with the electrolyte concentration, the shrinking behavior
as a function of temperature does not change significantly with the salt
concentration. However, at the same temperature, for 100 mM the microgel radius is



smaller than for 1 mM. This is a well-known reasonable result, caused by the
screening of the microgel charge. In fact, for large electrolyte concentration,
repulsive Coulombic interactions between monomers (which enhance the particle
swelling) are more efficiently screened by the counterions. Consequently, the
equilibrium swelling state shifts to more shrunken configurations. (1) In addition, the
penetration of counterions exerts an osmotic pressure that induces the particle
swelling. This pressure difference inside and outside the microgel is roughly
inversely proportional to the salt concentration, (65) and this is why the swelling
observed for 100 mM is less important than for 1 mM. Nevertheless, when microgel
is collapsed at high temperature, the swelling state is dominated by monomer–
monomer hydrophobic forces, so counterion effects become not very significant,
leading to very similar values of Rm for both salt concentrations.

The volume change with the temperature is clearly appreciated in Figure 3, where the
local concentration of polymers and charged monomers are plotted, as well as the
snapshots of the microgel, at four different temperatures. As temperature increases,
a progressive shrinking in the microgel structure becomes noticeable. In the swollen
state, the internal morphology of the particle is consistent of large pores through
which ions can penetrate, but as particle shrinks, the size of the pores decreases,
even disappearing for high temperature. However, the decrease of the particle size
with the temperature is not the only effect that arises. The internal structure is also
affected, as shrunken microgels tend to arrange in a nonhomegeneous form in the
inner region of the particle. This effect has been previously observed in small-sized
microgels of few tens of nanometers similar to the ones employed in this work,
where the typical length of the interconnected chains is of the same order of
magnitude of the size of the particle. As mentioned above, charged monomers are
considered hydrophilic (rather than hydrophobic) beads, thus they are not attracted
by the uncharged ones. What is more, when uncharged beads collapse due to
attractive hydrophobic forces, they would tend to segregate the hydrophilic
monomers to minimize the free energy. Consequently, many of the charged beads
would be displaced toward the outer and inner surfaces of the monomer clusters, as
shown in the figure for high temperature. In some cases, a few interconnected voids
can also be formed in this segregation process instead of a unique hollow. (33)

Figure 3



Figure 3. Polymer (formed by neutral monomers, charged monomers, and cross-
linkers) and charged monomer concentration as a function of the distance to
microgel center, for different temperatures and hence distinct deph of hydrophobic
potential and degree of swelling. For each temperature, a slice of the central part of
the simulation box is shown, where cross sections of the microgel particles can be
visualized. Swollen microgels show a more homogeneous structure than the
shrunken ones, in which an inner hole is formed. Green spheres represent
counterions, while orange ones represent coions.

Simulation results not only provide the mass and charge distribution of the microgel
network, but also the density profiles of counterions and coions inside and around
the particle. In the following sections we discuss these properties. We first analyze
the results in terms of a global property such as the effective microgel charge, and
then we discuss in more detail the local properties by studying the radial distribution
function of counterions. Simulation data are compared to the theoretical predictions
applying the two models for the steric interaction described in eq 8. For this purpose,
we make use of the local polymer volume fraction, ϕ(r), and the local distribution of
charged monomers, ρc(r) as input parameters to determine the microgel-ion
electrostatic and steric interactions (see eqs 4, 5, and 8). Then, these interactions are
employed in the Ornstein–Zernike integral equation method to finally obtain the ionic
radial distribution functions, gm+(r) and gm–(r). They can be compared to the
simulated ones to check whether the theory is able to properly account for the effect
of the steric interaction in conditions of charge and mass heterogeneity.

Effective Charge

A very useful way to quantify the global efficiency of the ionic permeation inside a
microgel is to study the effective charge of the microgel particle, Zeff. It is



straightforwardly calculated from ionic density profiles inside the microgel particle
as

(17)

where Z is the number of charged monomers of the microgel. The ionic density
profiles ρm+(r) and ρm–(r) have been calculated from their radial distribution
functions through eq 11.

The effective charge is very helpful to characterize the permeation as a function of
the swelling ratio because it is very sensitive to swelling and shrinking of microgel
particle. For this reason, it has been previously employed to study the steric
interaction. (36) If counterions penetrate inside the microgel, Zeff is expected to
decrease owing to screening of the bare charge. On the contrary, if counterions
cannot permeate, they accumulate in a external shell around the microgel, leading to
a weaker charge screening, and so to a higher value of the effective charge.

In principle, one would expect an increase of the effective charge with temperature.
First, because an increase of the temperature leads to a weakening of the
electrostatic attraction of counterions to the microgel particle (compared to the
thermal energy, kBT), so counterions are less likely to diffuse inside, enhancing the
effective charge. Second, because the reduction of the microgel size with
temperature implies that it is necessary to concentrate the internal counterions in a
much smaller volume. Hence, the electrostatic repulsion between pairs of
counterions pushes some of them out of the particle, leading to an increase of Zeff

too. Finally, the particle shrinking at high temperatures causes an increase of the
polymer volume fraction, which enhances the steric repulsion between counterions
and the polymer network. As a consequence of this, counterions are expelled from
the interior of the particle in shrunken configurations, which makes charge screening
lower than if they did not interact sterically.

Figure 4 displays the average values of Zeff obtained in the simulations as a function
of temperature (symbols) for the two studied electrolyte concentrations, assuming σi

= 0.7 nm for the ion diameter (numerical errors below 5% in all cases). The
monotonic increase of the effective charge with temperature may be clearly
observed for a salt concentration of 100 mM (see top graph of Figure 4). However,
for 1 mM (bottom graph) this increase is weaker and some fluctuations arise. This
effect can be attributed to the existence of inhomogeneities in the distribution of the
microgel bare charge. As shown above, the charge and mass distribution of the
small-sized microgel develop an internal region with low polymer concentration
surrounded by a corona of high density. This heterogeneous morphology provides
plenty of space in the center of the particle, so counterions are able to better
accommodate inside, avoiding counterion-counterion repulsion. The charge
heterogeneity induces a decrease of |Zeff| and competes with the effect of the



counterion obstruction explained above. The reason why this effect becomes less
important at high salt concentration relies simply on the screening of the
electrostatic forces.

Figure 4

Figure 4. Microgel effective charge as a function of temperature. Black dots stand for
Zeff measured in simulations, while the curves are theoretical predictions calculated
by solving Ornstein–Zernike (OZ) equations for three different cases: taking into
account n = 2 and n = 3 in eq 8 for steric interaction, and ignoring the steric repulsion,
Vmister(r) = 0. The top graph has been obtained considering 100 mM of electrolyte
concentration, while the bottom one corresponds to 1 mM. Error bars are not shown
because they are smaller than the size of the symbols. The top x axis shows the
deph of the hydrophobic potential for each temperature considered, but note that the
values are not scaled.

Figure 4 also shows the theoretical results obtained under three different
approximations. In the first one we neglect the steric repulsion and assume that
microgel and ions interact exclusively through electrostatic interactions (dashed
line). In the other two situations the steric effect is included using two different



exponents in eq 8: n = 2 and n = 3 (dotted and solid lines, respectively).

One of the most remarkable results that we may extract from the comparison
between simulations and theory is that the microgel-ion steric repulsion should be
considered in the model to account for the counterion permeation in shrunken
microgels, at least for ionic sizes comparable to or larger than σi = 0.7 nm, the ones
studied here. As can be seen, the curve obtained by solving Ornstein–Zernike
equations neglecting volume exclusion effects overestimates the charge screening
effect for both salt concentrations at high temperatures (high polymer volume
fractions). In other words, in the absence of steric repulsion, the electrostatic
interaction alone can sometimes lead to values of Zeff smaller than the ones
observed in simulations. However, this Figure also shows that the effect of the steric
repulsion is not so important for swollen microgels (low temperatures in our case).
In fact, Claudio et al. (31) succeeded in reproducing the ionic distribution of a
microgel in a good solvent using a Poisson–Boltzmann model (that does not
account for excluded volume effects).

When including the steric effect, we see that the results obtained using n = 3 in eq 8
provides much better quantitative agreement with simulations than those obtained
with the Ogston model (n = 2). In fact, the Ogston model underestimates the steric
repulsion leading to a smaller values of |Zeff| compared to simulation data. This
means that an assembly of randomly placed spheres provides a more accurate
representation of the internal morphology of the microgel than a network of long
rigid fibers. This is a quite reasonable conclusion, given that polymer fibers are
treated in our simulations as being formed by short interconnected chains with only
8 spherical monomers. However, it should be pointed out that these results do not
imply that the use of n = 3 in eq 8 is always more accurate than the Ogston model for
any polymer network in equilibrium with a permeating solute. For instance, previous
simulation studies of macroscopic gels show that the permeation of large solutes
inside cross-linked polymer networks with very long polymer fibers is better
described by the Ogston model. (45) This is because, under such conditions, the
chain-like geometry dominates, playing the monomer shape a minor role.

As observed from Figure 4 the agreement between theoretical predictions with n = 3
and simulations is excellent for 100 mM. For 1 mM the model still yields quite good
quantitative agreement in the swollen configuration, but overestimates the
counterion permeation about a 10% in the shrunken state. This deviation comes from
the very strong density variations of the ionic density profiles arising inside the
microgel. Indeed, as will be shown below, at high temperatures and low electrolyte
concentration, the internal heterogeneities cause changes of the density of
counterions by a factor larger than 100 that the OZ-HNC integral equation theory is
not able to completely reproduce.



Figure 5

Figure 5. Microgel effective charge as a function of temperature for 100 mM of
electrolyte concentration and two different sizes of ions. Black color is used for σi =
0.7 nm, while green color represents σi = 0.4 nm. Symbols stand for Zeff measured in
simulations, while solid lines are theoretical predictions calculated by solving OZ
equations, using n = 3 in eq 8 for steric interaction. Red dashed line and blue dotted
line are calculated ignoring the steric repulsion for σi = 0.7 nm and σi = 0.4 nm,
respectively.

To confirm whether steric interaction may affect the microgel effective net charge
even when there is no hydration shell around the ions, another set of Monte Carlo
simulations and Ornstein–Zernike calculations were performed at high concentration
(100 mM) using a smaller value for the ion diameter, namely σi = 0.4 nm. These
results are compared in Figure 5 with those obtained for σi = 0.7 nm. It is clearly
shown that both simulations and theoretical results follow the same trend for σi = 0.4
nm and σi = 0.7 nm, although the effective charge absolute values in shrunken states
are smaller for smaller ions. This is an expected result, since a decrease of the ion
size diminishes the steric repulsion between the microgel and the counterions, which
leads to larger counterion permeation for σi = 0.4 nm, and hence to an increase of
microgel charge screening. However, in swollen states there is no significant
difference due to ion diameter, since excluded volume interactions become less
relevant for expanded microgels, as mentioned above. In addition, as in Figure 4, the
curve obtained by solving Ornstein–Zernike equations neglecting volume exclusion
effects strongly overestimates the charge screening effect for both ion sizes at high
packing fractions.



Ionic Density Profiles

Here, we complete the data of effective charge with additional detailed information
about the local density profiles of the ions inside and around the microgel particle.
Figures 6 and 7 show the radial distribution functions of counterions for different
temperatures and hence different swollen states. The plots include the simulation
results (dashed blue line), and the theoretical predictions with and without
considering excluded volume interactions (green and pink solid lines, respectively).
Coion density profiles are not shown since they do not contribute with significant
insights in the physical interpretation. First, we discuss the simulation results. As it
could be observed in both Figures, at low temperature (swollen state), counterions
can easily diffuse through microgel pores, so they are homogeneously distributed in
the internal region. However, as temperature increases and microgel shrinks, two
maxima begin to rise in gm+(r). As mentioned above, the morphology of such small
microgel particle becomes heterogeneous for shrunken states, in which charged
monomers become reallocated so that they tend to form an inner charged spherical
shell and an external one. As a consequence of this, counterions tend to congregate
close to both shells, inside the particle (first maximum) or around the microgel
(second maximum). A schematic explanation of this phenomenon is drawn in Figure
8.

Figure 6

Figure 6. Radial distribution functions of counterions as a function of the distance to
microgel center, for different temperatures and hence distinct deph of hydrophobic
potential and degree of swelling. All curves correspond to a salt concentration 100
mM. Dashed blue line has been obtained directly from simulations, while solid lines
represent gm+(r) calculated by solving Ornstein–Zernike integral equations: taking



into account steric repulsion from eq 8 with n = 3 (green) and considering that there
is no steric interaction (pink).

Figure 7

Figure 7. Radial distribution functions of counterions as a function of the distance to
microgel center, for different temperatures and hence distinct deph of hydrophobic
potential and degree of swelling. All curves correspond to a salt concentration 1 mM.
Dashed blue line has been obtained directly from simulations, while solid lines
represent gm+(r) calculated by solving Ornstein–Zernike integral equations: taking
into account steric repulsion from eq 8 with n = 3 (green) and considering that there
is no steric interaction (pink).

Figure 8



Figure 8. Explanation of the two maxima observed in radial distribution function of
counterions inside and around the shrunken microgel particle. Dashed blue line
represents simulation results, while green solid line stands for theoretical results
ignoring steric exclusion. In the picture, green circles represent counterions and red
circles are the charged monomers allocated in both shells.

Theoretical predictions are also able to reproduce the appearance of these two
maxima in the counterion concentration as microgel collapses. In fact, both peaks
are observed even in the limit of vanishing steric interactions (see pink solid line),
which indicates that this phenomenon is mainly induced by the electrostatic
attraction between counterions and the heterogeneous distribution of bare charges
inside the microgel. There is, however, a subtle distinction: these maxima are
situated closer to the charged shells because counterions are not affected by volume
exclusion. As soon as the steric contribution is taken into account (using eq 8 with n
= 3), the internal maximum shifts to smaller r, whereas the external one moves to
larger values of r, due to the counterion exclusion exerted by the polymer fibers in the
spherical shell.

The comparison between theory and simulations clearly points out that neglecting
the microgel–ion steric interaction may lead to acceptable predictions for the



counterion density profiles at 1 mM if microgels are swollen enough, but wrong
predictions for shrunken states or high electrolyte concentration. However, when the
steric interaction is included in the model, qualitative and even quantitative
agreement are achieved for the whole set of swelling states. The agreement is
specially good for swollen states, and worsens in the shrunken states for 1 mM,
where the model overestimates the concentration of counterions in the internal layer.
We attribute these discrepancies to the accuracy of the HNC approximation. This
closure works in general very well for the kind of potentials used in this work, but it
should be reminded that HNC ignores the so-called bridge function in the potential of
mean force, which takes into account strong correlations at short distances. (66) In
particular, previous calculations performed in charged colloidal suspensions show
that the colloid-ion bridge function contributes with an additional attraction. (67, 68)
Therefore, it is also expected that our theory predicts an overestimation of the
counterion adsorption at low electrolyte concentration in the shrunken states, since
in this case the density charge of the microgel is larger and weakly screened by the
counterion cloud. In spite of this, HNC still provide a qualitative agreement in this
situation, and has the additional advantage of being very simple to numerically
implement, in contrast with other more sophisticated closure relations.

Therefore, we can confirm that the steric microgel–ion interaction plays an important
role on the ionic distribution inside the microgel particle, specially close to the
collapsed state. Moreover, the model proposed in eq 8 has shown to be accurate
enough to correctly described the simulated ionic density profiles, even in the case of
nonhomogeneous distribution of internal mass and charge of the microgel particle.

Conclusions

In this work, we study the effect of the steric excluded-volume repulsion exerted by
the fibrous polymer network of the microgel on the ionic permeation, for different
swelling states and concentrations of monovalent salt. In particular, we focus on the
effective charge of the microgel and the local ionic density profiles around and inside
the microgel. For this purpose, Monte Carlo simulations are compared to the
theoretical predictions assuming that the suspension is a ternary mixture of
microgels, counterions and coions, and solving the corresponding OZ integral
equations within the HNC approximation.

The results show that splitting the microgel–ion interaction into electrostatic and
steric terms is a good approximation. Moreover, the comparison with simulation data
also indicates that the internal structure of the microgel cross-linked fibrous
structure is better represented by a collection of randomly placed spherical
monomers. An advantage of this model is that the effective steric microgel–ion
repulsive interaction can be calculated analytically. This approach for the internal
morphology of the microgel works well for the kind of system we are dealing, namely,
small highly cross-linked microgel with few monomers per chain permeated by ions



with size of the order of the monomer unit. However, it should be emphasized that,
for larger microgels, particles with longer polymer chains between cross-linker nodes
may be better represented by a random assembly of cylinders rather than spheres.
(45)

In conclusion, our work reveals that the steric interaction should be included to
correctly account for the ion distributions if the polymer volume fraction of the
microgel and ionic sizes are large enough. Under such circumstances, ignoring this
contribution could lead to an artificial enhancement of the counterion permeation
and, so, to a significant decrease of the microgel effective charge. Once this effect is
included, the theoretical model is able to correctly describe the response of the
effective charge to swelling and shrinking of the microgel particle, and provides a
quantitative account for the ionic density profiles, even in situations of
heterogeneous charge and mass distributions inside the particle. Moreover, our
predictions could be also interesting to understand the ionic permeation inside
nonhomogeneous hollow thermoresponsive microgels, like the ones studied by
Dubbert et al. (69)

Future investigations will focus on the effect of ion specificity on the swelling
behavior of the microgel. As shown in previous work, (37) hydrophobic ions tend to
accumulate in specific locations of the polymer network, leading to new effects that
go far beyond charge screening, such as charge inversion and overcharging
phenomena. Therefore, it would be interesting to compare simulation and theoretical
data also in this situation, given the importance of microgels as carriers of
hydrophobic solutes and biomolecules. (9, 70)

Author Information

Corresponding Author

Arturo Moncho-Jordá - Departamento de Física Aplicada, Facultad de Ciencias,
Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain; 
Email: moncho@ugr.es

Authors

Irene Adroher-Benítez - Departamento de Física Aplicada, Facultad de Ciencias,
Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain

Silvia Ahualli - Departamento de Física, Escuela Politécnica Superior de Linares,
Universidad de Jaén, 23700 Linares, Jaén, Spain

Alberto Martín-Molina - Departamento de Física Aplicada, Facultad de Ciencias,
Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain



Manuel Quesada-Pérez - Departamento de Física, Escuela Politécnica Superior
de Linares, Universidad de Jaén, 23700 Linares, Jaén, Spain

Acknowledgment

The authors thank the Spanish “Ministerio de Econimı́a y Competitividad (MINECO),
Plan Nacional de Investigación, Desarrollo e Innovación Tecnológica (I+D+i)”
(Projects MAT2012-36270-C02 and -04), the European Regional Development Fund
(ERDF), and “Consejerı́a de Innovación, Ciencia y Empresa de la Junta de Andalucı́a”
(Project P09-FQM-4698) for financial support.

References
1. Sierra-Martín, B.; Lietor-Santos, J. J.; Fernández-Barbero, A.; Nguyen, T. T.; Fernández-Nieves,

A. In Microgel Suspensions: Fundamentals and Applications; Fernández-Nieves, A.; Wyss, H.;

Mattsson, J.; Weitz, D., Eds.; 2011; Wiley-VCH: Weinheim, Germany, p 461.

2. Murray, M. J.; Snowden, M. J. Adv. Colloid Interface Sci. 1995, 54, 73– 91

3. Saunders, B. R.; Vincent, B. Adv. Colloid Interface Sci. 1999, 80, 1– 25

4. Saunders, B. R.; Laajam, N.; Daly, E.; Teow, S.; Hu, X.; Stepto, R. Adv. Colloid Interface Sci. 2009,

147–148, 251– 262

5. Lee, S. M.; Nguyen, S. T. Macromolecules 2013, 46, 9169– 9180

6. Lee, S. M.; Bae, Y. C. Macromolecules 2014, 47, 8394– 8403

7. Du, A. W.; Stenzel, M. H. Biomacromolecules 2014, 15, 1097– 1114

8. Vinogradov, S. V. Nanomedicine 2010, 5, 165– 168

9. Hoare, T.; Pelton, R. Langmuir 2008, 24, 1005– 1012

10. Malmsten, M.; Bysell, H.; Hansson, P. Curr. Opin. Colloid Interface Sci. 2010, 15, 435– 444



11. Ramos, J.; Peláez-Fernández, M.; Forcada, J.; Moncho-Jordá, A. In Soft Nanoparticles for

Biomedical Applications; Callejas-Fernández, J.; Estelrich, J.; Quesada-Pérez, M.; Forcada, J.,

Eds.; The Royal Society of Chemistry: Cambridge, U.K., 2014; pp 133– 156.

12. Shin, J.; Cherstvy, A. G.; Metzler, R. Phys. Rev. X 2014, 4, 21002

13. Moncho-Jordá, A.; Anta, J. A.; Callejas-Fernández, J. J. Chem. Phys. 2013, 138, 134902– 13

14. Denton, A. R. Phys. Rev. E 2003, 67, 011804– 011810

15. Gottwald, D.; Likos, C. N.; Kahl, G.; Löwen, H. Phys. Rev. Lett. 2004, 92, 068301– 4

16. Colla, T.; Likos, C. N.; Levin, Y. J. Chem. Phys. 2014, 141, 234902– 11

17. Johnson, E. M.; Deen, W. M. J. Colloid Interface Sci. 1996, 178, 749– 756

18. Quesada-Pérez, M.; Adroher-Benítez, I.; Maroto-Centeno, J. A. J. Chem. Phys. 2014, 140,

204910– 7

19. Ulrich, S.; Laguecir, A.; Stoll, S. Macromolecules 2005, 38, 8939– 49

20. Reddy, G.; Yethiraj, A. Macromolecules 2006, 39, 8536– 42

21. Chang, R.; Yethiraj, A. Macromolecules 2006, 39, 821– 828

22. Jiang, T.; Wu, J. J. Phys. Chem. B 2008, 112, 7713– 7720

23. Dias, R. S.; Pais, A. Adv. Colloid Interface Sci. 2010, 158, 48– 62

24. Stoll, S. In Soft Nanoparticles for Biomedical Applications; Callejas-Fernández, J.; Estelrich,

J.; Quesada-Pérez, M.; Forcada, J., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 2014,



pp 342– 371.

25. Cherstvy, A. G. J. Phys. Chem. B 2010, 114, 5241– 5249

26. Ghosh, S. K.; Cherstvy, A. G.; Metzler, R. J. Chem. Phys. 2014, 141, 074903

27. Mann, B. A.; Holm, C.; Kremer, K. J. Chem. Phys. 2005, 122, 154903– 14

28. Yin, D.-W.; Olvera de la Cruz, M.; de Pablo, J. J. J. Chem. Phys. 2009, 131, 194907

29. Yan, Q.; de Pablo, J. J. Phys. Rev. Lett. 2003, 91, 018301

30. Košovan, P.; Richter, T.; Holm, C. Prog. Colloid Polym. Sci. 2013, 140, 205– 221

31. Claudio, G. C.; Kremer, K.; Holm, C. J. Chem. Phys. 2009, 131, 094903– 9

32. Jha, P. K.; Zwanikken, J. W.; Detcheverry, F. A.; de Pablo, J. J.; Olvera de la Cruz, M. Soft

Matter 2011, 7, 5965– 5975

33. Quesada-Pérez, M.; Martín-Molina, A. Soft Matter 2013, 9, 7086– 7094

34. Kobayashi, H.; Winkler, R. Polymers 2014, 6, 1602– 1617

35. Quesada-Pérez, M.; Ramos, J.; Forcada, J.; Martín-Molina, A. J. Chem. Phys. 2012, 136,

244903– 9

36. Moncho-Jordá, A. J. Chem. Phys. 2013, 139, 064906– 12

37. Moncho-Jordá, A.; Adroher-Benítez, I. Soft Matter 2014, 10, 5810– 5823



38. Guerrero-García, G. I.; González-Tovar, E.; Lozada-Cassou, M.; de J Guevara-Rodríguez, F. J.

Chem. Phys. 2005, 123, 34703– 20

39. Fernández-Nieves, A.; Fernández-Barbero, A.; Vincent, B.; de las Nieves, F. J. Macromolecules

2000, 33, 2114– 2118

40. Belloni, L. J. Phys.: Condens. Matter 2000, 12, R549– R587

41. Sing, C.; Zwanikken, J.; Olivera de la Cruz, M. Macromolecules 2013, 46, 5053– 5065

42. Polotsky, A. A.; Plamper, F. A.; Borisov, O. V. Macromolecules 2013, 46, 8702– 8709

43. Arndt, M. C.; Sadowski, G. J. Phys. Chem. B 2014, 118, 10534– 10542

44. CRC Handbook of Chemistry and Physics, 69th ed., Weast, R. C., Ed.; CRC Press Inc.: Boca

Raton, FL, 1988; p 2400.

45. Ahualli, S.; Martín-Molina, A.; Quesada-Pérez, M. Phys. Chem. Chem. Phys. 2014, 16, 25483–

25491

46. Lazzara, M. J.; Blankschtein, D.; Deen, W. M. J. Colloid Interface Sci. 2000, 226, 112– 122

47. Ogston, A. G. Trans. Faraday Soc. 1958, 54, 1754– 1757

48. Bosma, J. C.; Wesselingh, J. A. J. Chromatogr. B. Biomed. Sci. Appl. 2000, 743, 169– 180

49. Hansen, J. P.; McDonald, I. R. Theory of simple liquids, 3rd ed.;Academic Press: Amsterdam,

2006; Vol. 104, p 416.

50. Shah, N. H. Numerical Methods with C++ Programming; PHI Learning Pvt. Ltd.: New Delhi,

2009; p 325.



51. Israelachvili, J. N. Intermolecular and Surface Forces, 3rd. ed.; Academic Press: San Diego,

CA, 2011; p 674.

52. Dursch, T. J.; Taylor, N. O.; Liu, D. E.; Wu, R. Y.; Prausnitz, J. M.; Radke, C. J. Biomaterials 2014,

35, 620– 629

53. Quesada-Pérez, M.; Ahualli, S.; Martín-Molina, A. J. Chem. Phys. 2014, 141, 124903– 11

54. Mann, B. A.; Everaers, R.; Holm, C.; Kremer, K. Europhys. Lett. 2004, 67, 786– 792

55. Yin, D.-W.; Yan, Q.; de Pablo, J. J. J. Chem. Phys. 2005, 123, 174909

56. Escobedo, F. A.; de Pablo, J. J. J. Chem. Phys. 1996, 104, 4788– 4801

57. Khan, M. O.; Mel’nikov, S. M.; Jönsson, B. Macromolecules 1999, 32, 8836– 8840

58. Kolomeisky, A. B.; Widom, B. Faraday Discuss. 1999, 112, 81– 89

59. Quesada-Pérez, M.; Ibarra-Armenta, J. G.; Martín-Molina, A. J. Chem. Phys. 2011, 135,

094109– 10

60. Quesada-Pérez, M.; Maroto-Centeno, J. A.; Martín-Molina, A. Macromolecules 2012, 45,

8872– 8879

61. Pelton, R. Adv. Colloid Interface Sci. 2000, 85, 1– 33

62. Ramos, J.; Imaz, A.; Callejas-Fernández, J.; Barbosa-Barros, L.; Esterrich, J.; Quesada-Pérez,

M.; Forcada, J. Soft Matter 2011, 7, 5067– 5082

63. Linse, P. Adv. Polym. Sci. 2005, 185, 111– 162



64. Arnold, A.; Holm, C. Adv. Polym. Sci. 2005, 185, 59– 109

65. Barrat, J.-L.; Joanny, J.-F.; Pincus, P. J. Phys. II 1992, 2, 1531– 1544

66. Iyetomi, H.; Ogata, S.; Ichimaru, S. Phys. Rev. A 1992, 46, 1051– 1058

67. Anta, J. A.; Bresme, F.; Lago, S. J. Phys.: Condens. Matter 2003, 15, S3491– S3507

68. Quesada-Pérez, M.; Martín-Molina, A.; Hidalgo-Álvarez, R. J. Chem. Phys. 2004, 121, 8618–

8626

69. Dubbert, J.; Honold, T.; Pedersen, J. S.; Radulescu, A.; Drechsler, M.; Karg, M.; Richtering, W.

Macromolecules 2014, 47, 8700– 8708

70. López-León, T.; Elaïssari, A.; Ortega-Vinuesa, J. L.; Bastos-González, D. ChemPhysChem

2007, 8, 148– 156


