
REVIEW

Journal of Reliable Intelligent Environments (2024) 10:215–244
https://doi.org/10.1007/s40860-024-00229-9

underscore the overwhelming potential impact of this
technology. In fact, the rise of IoT has revolutionized our
interaction with the surrounding world. From smart home
devices to connected urban infrastructures, IoT promises to
transform various sectors, including transportation, health-
care, agriculture, and energy, to name a few [8–15].

This positive impact of IoT extends beyond the social
realm to the economic sphere. Thus, research from the
McKinsey Global Institute [16] estimates that IoT could
have a global economic impact ranging from $5.5 trillion to
$12.6 trillion by 2030.

These figures highlight the immense socioeconomic
impact and the current and future significance of IoT-based
systems. However, developing this type of systems pres-
ents unique challenges requiring specialized methodologi-
cal approaches. Consequently, emphasis must be placed on
providing suitable development methodologies and tools for
these systems, ensuring their quality and reliability.

Historically, software development methodologies have
evolved to address the industry’s changing needs and adapt
to new technological paradigms. From the Waterfall meth-
odology [17] to agile approaches [18, 19], the development
community has consistently sought more efficient and effec-
tive ways to carry out projects, considering even team size
and application domain [20].

1 Introduction

The Internet of Things (IoT) aims to connect everyday
objects (things) to the Internet, leveraging a suite of tech-
nologies that enable these objects to form a network and
autonomously interact with one another to achieve common
goals and intelligently respond to changes in the environ-
ment where they are deployed [1–5]. Therefore, an IoT
system comprises numerous heterogeneous devices, which
generate vast amounts of data and events. Consequently, the
IoT paradigm must integrate, process, and respond to this
massive influx of events in real-time [6].

According to Cisco [7], an estimated 500 billion devices
will be connected to the Internet by 2030. These projections

 Miguel J. Hornos
mhornos@ugr.es

Mario Quinde
mario.quinde@udep.edu.pe

1 Software Engineering Department, Research Centre for
Information and Communication Technologies (CITIC-
UGR), University of Granada, Granada, Spain

2 Department of Industrial and Systems Engineering,
Universidad de Piura, Piura, Peru

Abstract
The spread of IoT-based systems presents several potential benefits to society but still has crucial challenges in different
research areas. From the software development point of view, an established methodology for IoT-based systems develop-
ment is still yet to be found despite the considerable research efforts that are being made in the area. This article presents
a literature review of the existing methodologies for IoT-based systems development, highlighting their benefits and limi-
tations. The article also describes and analyses the existing critical challenges in finding a methodology addressing the
complex nature of IoT-based systems. This analysis leads to present the open research directions in developing IoT-based
systems, which are pathways to drive the research efforts towards addressing the key issues in the area with the aim of
finding a methodology that is simple for developers but that ensures high-quality IoT-based systems.

Keywords Internet of Things (IoT) · Development methodologies · Software engineering process · System life cycle
stages · Methodological approaches · Support tools

Received: 5 November 2023 / Accepted: 8 July 2024 / Published online: 9 August 2024
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Development methodologies for IoT-based systems: challenges and
research directions

Miguel J. Hornos1 · Mario Quinde2

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-024-00229-9&domain=pdf&date_stamp=2024-8-8

Journal of Reliable Intelligent Environments (2024) 10:215–244

Unlike traditional information system development,
which focuses solely on software, IoT system development
must account for the configuration and implementation of
all hardware devices that should be deployed in the environ-
ment to be controlled. The autonomous intercommunication
between these devices and decision-making without human
intervention are fundamental requirements in these systems,
which also differentiates them from traditional information
systems. The interaction between things and people through
well-defined interfaces should also be considered [2, 21,
22]. In addition, their ubiquitous, wirelessly connected, and
heterogeneous nature introduces additional concerns related
to security, privacy, and interoperability. In some sense, all
these quality properties are entangled [23]. Thus, develop-
ment methodologies must address these specifics to ensure
the delivery of robust and reliable IoT solutions. Conse-
quently, it seems logical to assume that methodologies and
tools for traditional system development may not be best
suited for IoT system development [24, 25] and may need
adaptation, in the best of cases, for use in this new paradigm.

Developing IoT systems is complex, as it entails manag-
ing interactions among multiple devices and communica-
tion systems, in addition to connections to Cloud, Fog, and/
or Edge Computing systems, as well as the limited compu-
tational capabilities of many of the hardware devices that
make up these systems. Moreover, these devices are het-
erogeneous in several respects. In fact, they vary in their
nature, with different types of devices (sensors, actuators,
processors, etc.) integrated into everyday objects. They
also differ in how they interact, using various communica-
tion protocols and programming languages to dictate their
behaviour. Furthermore, they serve different purposes, such
as monitoring, communicating, controlling, and performing
tasks, among others. Regarding software, many IoT sys-
tems are developed with intelligent agents [26–28]. These
agents are programs capable of identifying environmental
changes through the analysis of data captured by sensors
and responding appropriately by acting on their environ-
ment through actuators. Typically, their ability to act pro-
actively and “intelligently” stems from advanced Artificial
Intelligence (AI) algorithms running on Cloud/Fog/Edge
Computing systems. These systems not only host the agents
but also process the information captured by the sensors.
This vast diversity implies that the development of substan-
tial IoT systems must be tackled by interdisciplinary teams
[29, 30].

The rising adoption of IoT across various industries
[31–33] and the consequent demand for more sophisticated
and tailored solutions is clear. In this context, and given the
nature and challenges of IoT systems, this article pretends
to lay a solid foundation on current development method-
ologies and their applications in the IoT context, with the

aim to assist researchers and professionals in selecting and
adapting the most suitable methodologies for their specific
projects. The presented challenges and open research direc-
tions in the area aid researchers and professionals in being
more ready to address the issues they may face in their proj-
ects. It also directs research efforts towards problems whose
solutions may positively impact the spread of IoT-based
systems and their benefits to society.

The remainder of this article is organised as follows:
Sect. 2 provides a comprehensive overview of the current
methodologies used in developing IoT-based systems, pin-
pointing their strengths, limitations, and the scenarios in
which it is convenient to use them. The analysis of these
methodologies leads to highlighting the current challenges
in IoT-based systems development, which are explained and
criticised in Sect. 3, considering the complex and multifac-
eted nature of IoT-based systems. Section 4 proposes open
research avenues in developing IoT-based systems based on
the previous analysis of the current methodologies and chal-
lenges in the area. Finally, Sect. 5 presents the main conclu-
sions of this article.

2 Methodologies for IoT-based system
development

2.1 Overview of existing methodologies

2.1.1 Development methodologies for traditional
information systems

Among the methodologies designed for the development
of more traditional software systems, we can mention the
Waterfall methodology [17]. Recognized as the earliest
known software development methodology, the Waterfall
approach addresses the development of large-scale informa-
tion systems (ISs) holistically. It mandates that development
teams follow a sequential set of steps, refraining from mov-
ing forward until the preceding phase is fully completed.
This methodology offers limited flexibility for unforeseen
changes, a significant drawback given that end-users often
are uncertain about their requirements at the start of the
development process.

Unlike the Waterfall methodology, the Spiral method-
ology [34] views software development phases as iterative
tasks rather than a linear sequence. This approach, with its
spiral repetition of tasks, enables early detection of unfea-
sible system developments, allowing teams to halt projects
before investing significant resources [35].

As previously mentioned, during the analysis phase of
a software system, end-users or clients typically lack a
clear understanding of all the functionalities and quality

1 3

216

Journal of Reliable Intelligent Environments (2024) 10:215–244

properties the system should possess. The Prototyping
methodology [36] emerged to formalize the presentation of
iterative product versions to end-users for evaluation. Given
its proven utility, prototyping has been integrated into other
methodologies, especially agile ones.

Among the most popular development methodologies
are agile methodologies and those following a model-
based approach. Given their importance, we will delve into
them separately in the upcoming subsections: 2.1.2 for agile
methodologies and 2.1.3 for model-based approaches.

While methodologies designed for the development of
conventional ISs have been used to develop IoT systems
[24], their application to these systems presents notable lim-
itations. Specifically, these methodologies do not address
specific aspects of IoT systems, such as the design and
deployment of hardware devices (such as sensors, actuators,
processors, etc.) in the target environment or the heteroge-
neity of the components and technologies used in them.
They also overlook other crucial aspects, like the incorpora-
tion of AI techniques to empower the system with decision-
making capabilities and context-awareness, enabling it to
react appropriately to any event happening on the environ-
ment controlled by the IoT system [37].

Nevertheless, several of these methodologies have under-
gone adaptations to cater to IoT system development, as will
be elaborated upon in Sect. 2.3.

2.1.2 Agile methodologies

Agile methodologies have revolutionized the software
development world. They emerged in response to chal-
lenges associated with the development of large systems,
where factors such as budgetary, technological, and resource
constraints threatened the successful completion of projects
[38, 39]. These methodologies have proven effective in
enhancing project success rates and in reducing the budget-
ary consumption of those that are abandoned [40].

At the heart of agile methodologies is their modular
approach. Instead of tackling a system as a whole, it is
divided into deliverables or modules. These modules allow
the client to verify and utilize parts of the system before it is
fully completed. This approach is grounded in the 4 values
and 12 principles of the Agile Manifesto [41–43]. The goal
is to deploy fully functional products within a short time-
frame, typically 4 to 6 weeks.

However, like any methodology, there are advantages
and challenges. Distinctive features of agile methodologies
include small teams, deliverables negotiated with the client,
and the flexibility to introduce changes at any time [42, 43].
Yet, these very features can pose challenges and difficul-
ties in certain contexts, such as in the development of large
enterprise software projects where time is of the essence

[44]. The client’s dependency in determining the priority of
deliverables can also be a hindrance to the productivity of
the development team [45].

Despite these challenges, agile methodologies have
found applications beyond traditional software develop-
ment. They have been used in the development of IoT sys-
tems, combining techniques from different methodologies,
such as Scrum with eXtreme Programming (XP) [46] and
Scrum with Rapid Prototyping (RP) [47, 48].

A key feature of agile methodologies is their adaptability.
Unlike traditional methodologies like Waterfall or Spiral,
agile methodologies allow for changes at any stage of devel-
opment. This flexibility is crucial, as all requirements are
seldom known at the onset of a project [49]. Tools like user
stories, defined in the international standard ISO/IEC/IEEE
26515 [50], help capture requirements in a manner under-
standable to both developers and clients. However, develop-
ers’ interpretation of these stories can be challenging [51].

Proper requirement gathering is vital for the success of
any project. In the context of IoT systems, Non-Functional
Requirements (NFRs) are of paramount importance. While
agile methodologies are powerful, they may face chal-
lenges when dealing with NFRs, especially if solely relying
on tools like user stories [52]. Therefore, it is essential for
developers and users to collaborate to ensure the final sys-
tem meets user expectations and needs [53].

In summary, agile methodologies offer a flexible and
modular approach to software development. Although they
pose challenges, their adaptability and emphasis on collabo-
ration between developers and clients make them ideal for
a wide range of projects, and they could even be applied to
the development of IoT systems.

2.1.3 Model-based approaches

IoT-based systems pose unique challenges for developers
due to the heterogeneity of their components and the tech-
nologies involved. This heterogeneity is evident in the vari-
ety of implementations and operational features provided
by different manufacturers, often resulting in a diverse
software and communication platform. Moreover, the need
to deploy shared functionalities across multiple distinct
devices amplifies the complexity of development.

In this context, development methodologies following
model-based approaches emerge as a promising solution to
address these challenges. Indeed, these methodologies were
introduced with the intent of focusing on the functional
design of a system, primarily operating at an abstraction
level that is independent of any specific platform. Their core
goal is to achieve comprehensive system implementations
while minimizing the amount of platform-dependent code
that developers must write.

1 3

217

Journal of Reliable Intelligent Environments (2024) 10:215–244

Fig. 1. As can be seen, MDA is the most specific concept
and can be considered a subset of MDD, which in turn is a
subset of MDE, with MBE being the superset that encom-
passes all of them. Therefore, all model-driven processes
are model-based, but not vice versa.

2.2 Life cycle stages of software systems

A methodology can be defined as a systematic way of doing
things in a particular discipline [58]. Software Engineering
is the discipline responsible for providing an appropriate
methodology for the development of all types of computer
systems [59]. Determining the steps that a methodology
should specify for computer system development is chal-
lenging without considering the specific type of system to
be developed or the approach to be used by the methodology
to achieve it. In our study, we will focus on the development
of IoT systems, although we will consider methodologies
that follow any approach.

To unify the different nomenclatures found in the litera-
ture, we will consider that methodologies for IoT system
development are organized into different phases or stages,
which are subdivided into various activities or tasks. For-
tino et al. [37], who also addressed the analysis of existing
methodologies for IoT system development, to harmonize
the terminology encountered during their review process,
referred to the standard ISO/IEC/IEEE 24765 [60], the Sys-
tem Engineering Body of Knowledge (SEBoK) [61], and
the Project Management Body of Knowledge (PMBoK)
[62, 63]. In addition to these documents, we have consulted
the work written by Farncombe [64], as well as the software
engineering activities outlined by Pressman and Maxim [65]
and Bourque and Fairley [59]. All these sources have aided
in clarifying the names of the IoT system life cycle phases
or stages that form the foundation for this work, along with
their associated activities or tasks.

Furthermore, the following international standards have
been consulted: ISO/IEC/IEEE 12207 [66], which addresses
software life cycle processes; ISO/IEC/IEEE 15288 [67],
which tackles system life cycle processes; ISO/IEC/IEEE
24748-1 [68], which provides unified guidance on the life
cycle management of systems and software; ISO/IEC/IEEE
24748-2 [69], which offers specific guidelines on the man-
agement of system life cycle processes; and ISO/IEC/IEEE
24748-3 [70], which does the same for software life cycle
process management. Methodologies are free to specify how
to execute the stages and technical processes proposed in
the ISO/IEC/IEEE standards, their order of execution, and
even select which processes will be considered and which
will not. The application of methodologies based on these
international standards to the development of IoT systems

Below, we present the primary model-based approaches
and describe their essential features:

 ● Model-based engineering (MBE): In MBE, which is
the most general approach, models play a significant
role in the development process, but they are not neces-
sarily the key artifacts. These models capture everything
programmers need to understand to write code in a tar-
get programming language. Automatic code generation
is not a central aspect of MBE, allowing greater flexibil-
ity in how models are used in the development process.
An example of an environment using MBE is the Open
Model Based Engineering Environment [54].

 ● Model-driven engineering (MDE): Unlike MBE, mod-
els are fundamental in the MDE development process.
From the defined models, it is expected that at least part
of the code or even other models will be automatically
generated [55]. These transformations can be model-to-
text (M2T) or model-to-model (M2M). Furthermore,
in MDE, models and transformations can be defined in
any modelling language and address different levels of
abstraction.

 ● Model-driven development (MDD): This approach,
which can be considered a specialization or restriction
of the previous one, focuses exclusively on the develop-
ment process. Models are the primary artifact, allowing
the use of any modelling language. Most of the imple-
mentation is automatically generated from the models,
facilitating the management of heterogeneity in IoT sys-
tem development [56].

 ● Model-driven architecture (MDA): This is a more
specific and standardized vision of MDD, proposed
by the Object Management Group [57]. Unlike MDD,
MDA specifies that UML (Unified Modelling Lan-
guage) should be the primary modelling language and
that any transformation should be specified using the
QVT (Query/View/Transform) language. Additionally,
MDA establishes a specific order for transformations,
from Computation Independent Models (CIMs) to Plat-
form Specific Models (PSMs), passing through Platform
Independent Models (PIMs). The main goal of MDA is
to focus on modelling software solutions, setting aside
the technical specifics of implementations.

In conclusion, modelling has established itself as an essen-
tial tool in the development of IoT systems, providing a
means to manage the inherent complexity and heterogene-
ity of these systems. From MBE to MDA, these approaches
offer different levels of abstraction and automation, allow-
ing developers to choose the one that best fits their needs
and the specific context of their project. The relationship
between these four approaches is graphically represented in

1 3

218

Journal of Reliable Intelligent Environments (2024) 10:215–244

We have considered methodologies that explicitly
address one or more stages or phases of IoT system develop-
ment, though they may not provide all the activities for each
phase. For instance, if a methodology proposes require-
ments analysis but does not provide evidence of require-
ments elicitation, we have deemed that it does not fully
comply with the Conception stage. Similarly, the first stage
of the methodology presented by Rashid et al. [72] is func-
tional modelling (i.e., design), which implicitly assumes
prior activities such as planning, requirements elicitation,
and analysis. Even though these activities are not explicitly
mentioned, it is understood that they must have been con-
ducted beforehand. Furthermore, only activities associated
with system design are proposed by Coronato and De Pietro
[76] and McGrath et al. [77], without addressing the neces-
sary preliminary analysis. Therefore, we consider that these
methodologies do not fully cover the Modelling stage.

Although some development methodologies [21, 73, 78,
79] clearly establish the phases and/or activities defined
within them, others present these phases and/or activities
in a very abstract manner. For instance, we identified five
proposals [80–84] that only present a single activity in the
Construction phase, termed Development. In contrast, most
of the works we reviewed distinguish multiple activities
within that “phase.” As indicated above, we believe that

contributes to the delivery of a quality product on time and
within the established budget [71].

After reviewing the aforementioned references, as well
as many others, we observed that there are various clas-
sifications regarding the phases and activities involved in
developing such systems, depending on the source. Con-
sequently, we have decided to adopt the classification that
delineates the following four major stages or phases, along
with their corresponding activities (indicated in parenthe-
ses), for our study: Conception (planning and requirements
elicitation), Modelling (analysis, design, model verification,
and simulation), Construction (coding or implementation,
integration, testing, and deployment), and Post-Construc-
tion (management or operation, maintenance, and system
dismantling or decommissioning). These stages and their
activities are illustrated in Fig. 2. The core stages of Model-
ling and Construction are considered to represent the actual
development of the system.

Pressman and Maxim [65] recognize the need to consider
maintenance as soon as the development model is chosen.
However, this aspect is not clearly defined in any of the
analysed methodologies. Moreover, certain studies propose
activities that may be necessary depending on the goals of
the specific methodology, such as model verification and
refinement, as well as simulation [72–75].

Fig. 1 Relationship between the model-based approaches

1 3

219

Journal of Reliable Intelligent Environments (2024) 10:215–244

Fahmideh et al. [88] present comprehensive software
engineering guidelines for IoT system development, which
may be beneficial for researchers formulating a develop-
ment methodology for such systems. In their approach, they
present 27 tasks that span from the system ideation to its
installation. These tasks are categorized into three phases:
analysis, design, and implementation. However, they over-
look the Post-Construction phase, including crucial activi-
ties like system management and maintenance, which we
believe are fundamental to the system life cycle.

2.3 Analysing key methodologies for IoT system
development

In this section, we explore various methodologies that
have been proposed to address the inherent challenges in
the development of IoT systems. These methodologies
can be grouped according to their approach and distinctive

development could encompass all activities included in both
the Modelling and Construction stages (refer to Fig. 2).

In the methodologies identified during our literature
review, design emerged as the most frequently mentioned
activity across the articles analysed. This is followed by
activities related to software coding or implementation,
as well as analysis tasks. Notably less mentioned are the
activities corresponding to the Post-Construction stage,
i.e., system management, maintenance, and dismantling or
decommissioning after its useful life has ended. It is particu-
larly noteworthy that system dismantling or decommission-
ing is addressed by only one methodology [85], and system
management is mentioned in just a couple of works [86,
87]. Additionally, certain activities are unique to specific
methodologies. For instance, the methodology presented by
Guerrero-Ulloa et al. [21] uniquely recommends conducting
an operational feasibility study to assess whether the system
can continue functioning after installation.

Fig. 2 Classification of stages and activities considered in our study

1 3

220

Journal of Reliable Intelligent Environments (2024) 10:215–244

IDeA [96] is a methodology for the development of IoT
systems that is based on Model-Based Systems Engineer-
ing (MBSE) and provides high-level abstractions using
metamodeling to address heterogeneity in IoT. Although
it aligns with the ISO/IEC/IEEE 15288 standard [67], it
does not detail all its phases nor provides specific guide-
lines for its application. Meanwhile, the Smart Environment
Metamodel (SEM) framework [97], which also relies on
metamodels, focuses on the functions and data of the IoT
system to be developed, concentrating on requirements
analysis, design, and implementation.

For the Construction stage, many of the methodologies
analysed incorporate technologies capable of automatically
generating code in various languages. Some of them [89–
91, 98] generate code in C, C++, or some variant of this
language, as they are the most popular languages in com-
puter boards (controllers) used in the development of IoT
systems. Other methodologies [90–92, 99] generate code
in Java, and we have even found a methodology [100] that
generates code for the Node.js environment.

To facilitate a better comparison of the different meth-
odological approaches presented in this subsection, Table 1
shows the main characteristics of each of the proposals.

2.3.2 Service-oriented methodologies

AMG (Abstract, Model and Generate) [22] is a methodol-
ogy based on SOA for the development of IoT software that
follows a bottom-up approach, starting with concrete mod-
els to derive abstract services. It is structured in three fun-
damental phases: definition of abstractions, modelling, and
code generation. The process begins with service descrip-
tions to obtain graphical representations and subsequently,
the source code.

As indicated in the previous section, the methodological
proposal by Lekidis et al. [89] is not only based on MDE
but also on SOA, meaning that this approach supports not
only modelling but also the implementation and deployment
of IoT systems. It uses the Behaviour, Interaction, Priority
(BIP) component framework for designing web service
applications, supporting the modular design and reuse of
model artifacts. In addition, it applies the principles of sepa-
ration of concerns in a component-based design process,
facilitating the clear delineation of different aspects of the
system for better manageability. The methodology proposed
by Sosa-Reyna et al. [56, 93, 94] also appears in both sec-
tions. It combines MDD and MDE, using an SOA approach
in the third stage to obtain a more refined model (PSM)
from the PIM generated in the first two stages. Finally, in
the fourth stage, the PSM is transformed into code.

SERVUS [49] is a methodology for developing Industrial
IoT (IIoT) systems that focuses on solving interoperability

features, allowing for a more structured comparison and a
better understanding of their applications and limitations.

2.3.1 Methodologies based on (meta)modelling

Within these methodologies, there is a strong emphasis on
the modelling and construction stages of IoT systems, as it
should be. A common approach is the use of model trans-
formations, which allows moving from high-level specifica-
tions to concrete implementations.

Lekidis et al. [89] propose a design flow that integrates
MDE and Service-Oriented Architecture (SOA), focused
on the Contiki platform. This approach is notable for its
support in the verification and validation of requirements,
ensuring compliance with Functional Requirements (FRs)
and NFRs. On the other hand, MDE4IoT [90] focuses exclu-
sively on modelling and generating the final product, with-
out addressing activities such as planning or maintenance. It
uses Domain-Specific Modelling Languages (DSMLs) for
the transformation of models into executable artifacts. Har-
bouche et al. [91] present an MDE methodology that follows
a top-down paradigm, with a strong emphasis on automation
to derive system designs from global requirements, using
specific metamodels for each level of abstraction.

The ROOD (Resource-Oriented and Ontology-driven
Development) methodology [92] combines MDA with
MDE-based tools, offering a dual approach that consid-
ers both the behaviour of resources (sensors and actuators)
and the intelligent object. It is distinguished by its structure
in three main stages, where the first constructs the MDA’s
CIM, the second the PIM, and the last, the PSM, and its
emphasis on verifying the consistency of the model gener-
ated at each stage.

The methodology proposed by Sosa-Reyna et al. [56, 93,
94] is based on MDD/MDE and covers a complete develop-
ment process, from requirements analysis to the generation
of technological solutions, using UML and Business Pro-
cess Model and Notation (BPMN). However, it does not
address the development of user interfaces.

Brambilla et al. [95] present an MDD-based approach
specifically designed to develop mobile applications for IoT
systems. It is based on Interaction Flow Modelling Language
(IFML), an extension of UML that allows for visually mod-
elling user interactions with the system and representing the
system’s behaviour in response to such interaction, among
other things. The authors have developed IoT-focused
design patterns for the most common use cases, covering
user interaction and data synchronization. Although the
methodology is innovative in its modelling approach, based
on design patterns, its applicability is restricted to certain
areas and types of IoT systems.

1 3

221

Journal of Reliable Intelligent Environments (2024) 10:215–244

2.3.3 Agent-oriented methodologies

In this section, we identify several proposals that share the
common characteristic of modelling IoT systems as sets of
autonomous agents interacting with each other.

ELDAMeth [99] is an iterative simulation-based meth-
odology for Distributed Agent Systems (DASs), which uses
the ELDA (Event-driven Lightweight Distilled statecharts-
based Agents) agent model and facilitates rapid prototyping
through visual programming and automatic code genera-
tion for DASs within the JADE (Java Agent DEvelopment)
framework. It encompasses low-level design, simulation-
based validation, and implementation.

The methodology proposed by Pico-Valencia et al. [101]
is based on the principles of both the Agile Manifesto

issues through an SOA architecture aligned with the Indus-
trial Internet Reference Architecture (IIRA) [33]. It covers
the elicitation and analysis of requirements, as well as anal-
ysis and design activities, using user stories and use cases.
However, it does not provide details on how to address the
Post-Construction stage.

Table 2 summarizes the main characteristics of each of
the service-oriented methodological proposals discussed
in this subsection, facilitating a better comparison among
them.

Proposal name
/ Authors [Ref.]

Main characteristics of the proposal

Lekidis et al.
[89]

• Proposes a component-based design flow.
• Integrates MDE and SOA.
• Supports verification and validation of FRs and NFRs.
• Generates code automatically.

MDE4IoT /
Ciccozzi &
Spalazzese [90]

• Based on MDE.
• Uses DSMLs to transform models into executable artifacts.
• Enables runtime self-adaptation.
• Reuses design artifacts.

Harbouche et
al. [91]

• Follows a top-down paradigm based on MDE.
• Transforms models into Promela programs for system analysis and formal verification.
• Uses specific metamodels for each level of abstraction.

ROOD / Corre-
dor et al. [92]

• Combines MDA with MDE-based tools.
• Structured in 3 stages, with CIM, PIM, and PSM constructed respectively.
• Semantically verifies the consistency of the models.
• Supported by open tools within the Eclipse project.

Sosa-Reyna et
al. [56, 93, 94]

• Based on MDD/MDE.
• Uses UML and BPMN to define and model business processes and services.
• Automatically transforms conceptual models (CIM, PIM, PSM) into executable code.
• Formally verifies consistency among models and their correctness regarding FRs and
NFRs.

Brambilla et al.
[95]

• MDD-based approach to create user interfaces for IoT systems.
• Uses reusable design patterns for user interaction and data synchronization.
• Visually models user-system interactions using IFML, an extension of UML.
• Automatically generates user interfaces from IFML models.
• Only applicable to specific areas and certain types of IoT systems.

IDeA / Costa et
al. [96]

• Based on MBSE and focused on the design phase.
• Uses the SysML4IoT profile to model, SysML2NuSMV to translate from model to
text, and the NuSMV model checker.
• Provides a methodology to verify Quality of Service (QoS) properties.

SEM / Cicirelli
et al. [97]

• Relies on metamodels focusing on two perspectives: functional and data.
• The functional perspective focuses on the services provided by the IoT system.
• The data perspective describes and analyses data from sensors and actuators.
• Uses semantic technologies to verify the consistency of the models.

Ataide et al.
[98]

• Uses Input-Output Place-Transition (IOPT) Petri nets modeling tools to automatically
generate executable code for Arduino boards.
• Involves creating Petri net models, splitting them into sub-models for each time
domain, and generating C code files for deployment on Arduino boards.

Chauhan et al.
[100]

• Proposes a specific development framework for Cyber-Physical Systems (CPSs).
• Based on microservices architecture, autonomic computing, and MDD paradigms.
• Addresses the necessary security and protective measures for CPSs.
• Uses cloud computing and provides self-configuring services and resources.

Table 1 Main characteristics of
the methodological approaches
based on (meta)modelling

1 3

222

Journal of Reliable Intelligent Environments (2024) 10:215–244

Table 3 provides a summary of the main characteristics
of the agent-oriented methodologies discussed in this sub-
section, allowing for an enhanced comparison among them.

2.3.4 Methodologies based on other approaches

This section will focus on presenting an overview of devel-
opment methodologies for IoT-based systems grounded in
various approaches, highlighting their main characteristics.

TDDM4IoTS (Test-Driven Development Methodology
for IoT-based Systems) [21] is an iterative methodology
that integrates concepts from MDE and TDD (Test-Driven
Development) [104], as it focuses on the creation and
exploitation of models from which system code snippets are
generated, as well as the tests that the generated code must
pass. It also adheres to the values and principles of the Agile
Manifesto [41–43]. TDDM4IoTS aims to address both the
business logic of the system to be developed and the user-
system interaction, as well as the configuration and deploy-
ment of hardware (sensors, actuators, processors, etc.) and
the programming of single-board computers (SBCs) such
as Arduino and Raspberry Pi. It consists of 11 stages or
activities, detailing resources and tools for each, and closely
aligns with ISO/IEC/IEEE standards [50, 66–70]. To facili-
tate the use of this methodology, its authors have developed
a supporting tool called TDDT4IoTS (Test-Driven Devel-
opment Tool for IoT-based Systems) [105]. The methodol-
ogy-tool tandem has been validated through its application
to case studies in various domains, in which IoT systems

[41–43], promoting iterative development and continu-
ous feedback, and the Linked Open Data (LOD) approach,
focusing on ensuring interoperability and data integration
across different systems. It models IoT systems as a network
of autonomous agents, referred to as Linked Open Agents
(LOAs), which communicate and cooperate to achieve
the desired functionalities. It employs MDD techniques to
automatically generate code and system models, facilitat-
ing rapid prototyping and deployment of IoT applications.
Implementation and integration are addressed at a macro-
scopic level, where LOAs are coordinated within a network.
The authors of this methodology also mention tools for the
analysis and design stages but omit details on how to carry
out certain activities, such as planning, requirements elicita-
tion, coding, and deployment, for example.

Fortino et al. [102] also propose an agent-oriented
approach based on metamodels for the development of
Smart Objects (SOs). The analysis stage involves model-
ling the SOs using a specific metamodel, while the design
focuses on modelling functional components and their inter-
actions. The implementation uses a specialized metamodel
for the JADE platform, known as JACOSO [103].

Table 2 Main characteristics of the service-oriented methodologies
reviewed
Proposal name /
Authors [Ref.]

Main characteristics of the proposal

AMG / Sulistyo
[22]

• Follows a bottom-up approach based on SOA.
• Structured in three phases: definition of
abstractions, modeling, and code generation.
• Starts with service descriptions to obtain
graphical representations and source code.
• Automates the development process to reduce
cost and development time.

Lekidis et al. [89] • Based on MDE and SOA.
• Applies separation of concerns in a compo-
nent-based design process.
• Uses the BIP framework and tools for state-
space exploration to verify properties.
• Ensures deployed code is consistent with the
validated model.

Sosa-Reyna et al.
[56, 93, 94]

• Combines MDD/MDE with SOA, ensuring
seamless component interaction.
• Transforms conceptual models (CIM, PIM,
PSM) into executable code.
• Uses formal verification to ensure model con-
sistency and correctness for FRs and NFRs.
• Includes tools for model transformation and
code generation.

SERVUS / Uslän-
der & Batz [49]

• Analysis and design methodology for IIoT
systems that bridges the gap between require-
ments analysis and system design.
• Solves interoperability issues with an SOA
architecture aligned with IIRA.
• Maps FRs and NFRs to the capabilities and
interaction patterns of IIoT service platforms.
• Introduces a web-based system to support the
methodology.

Table 3 Main characteristics of the agent-oriented methodologies ana-
lysed
Proposal
name /
Authors [Ref.]

Main characteristics of the proposal

ELDAMeth
/ Fortino &
Russo [99]

• Iterative simulation-based methodology for DASs.
• Facilitates rapid prototyping and automatic code
generation.
• Uses the ELDA agent model and the JADE
framework.
• Includes dynamic validation methods during the
design phase.

Pico-Valencia
et al. [101]

• Based on both Agile and LOD principles.
• Models an IoT systems as a network of LOAs.
• Involves the collection of global requirements and
detailed design associated with each LOA.
• Uses MDD techniques to automatically generate
code and system models.

Fortino et al.
[102]

• Agent-oriented approach based on metamodels
for SOs.
• Follows an iterative development process that
enhances flexibility and adaptability to changing
requirements.
• Supports the design of functional components and
their interactions.
• Uses JACOSO, a specialized metamodel for the
JADE platform.

1 3

223

Journal of Reliable Intelligent Environments (2024) 10:215–244

modelling activity in which all stakeholders participate,
where the requirements and functionalities that the system
must have are collected. This methodology also does not
address the Construction or Post-Construction stages.

User-centric methodologies to develop IoT-based systems
under the umbrella term of IEs have been studied. Augusto
et al. [117] define IEs as “environments in which the actions
of numerous networked controllers are orchestrated by
self-programming pre-emptive processes in such a way as
to create an interactive holistic functionality that enhances
occupants’ experiences”. IEs are built based on three main
concepts that are different but also related to each other.
These concepts are pervasive/ubiquitous computing, which
studies the distribution of computational services emphasis-
ing the devices (including their networking and processing)
and the human-computer interaction components; smart
environments, which are environments equipped with sens-
ing devices; and ambient intelligence, which refers to the
intelligent software installed in the environments.

The concept of System-of-Systems (SoS) can be used
to explain the complexity that influences the technical and
management aspects of IEs [118]. This complexity has made
researchers aware of the need to develop new methodolo-
gies aiming to guide the creation of IEs. The User-Centred
Intelligent Environments Development Process (U-CIEDP)
[119] is an example of a research work aiming to address
this gap.

Research on providing tools supporting more specific
activities within the development process of IEs has also
been made. An ethical FRamework for Intelligent ENviron-
ment Development (eFRIEND) [120] proposes methodolo-
gies guiding requirements elicitation for IEs. The Smart
Environments Architecture (SEArch) [121] and the Context-
Aware Systems Architecture (CASA) [122] aim to guide the
architectural design of IEs. Other works explore verification
in IEs [74, 113, 123]. Finally, the Context-Aware Test Suit
(CATS) Design [124] and the COntext-Aware systems Test-
ing and Validation (COATI) [125] are examples of method-
ologies for IEs testing and validation.

The U-CIEDP methodology [119] puts users at the centre
of the IE development process to ensure that the services to
be delivered closely match users’ expectations. The meth-
odology considers the software, hardware, networks and
interfaces building up an IE as components that have to be
designed and put together, acknowledging the human factor
as the most influential one in the creation of this technol-
ogy. The foundation of the U-CIEDP recipe for success is
the idea that IE technology is deployed in the real world
where it influences people’s daily activities, committing to
some actions that users may like or not but that, in some
cases, cannot be reverted. This foundation has made the
U-CIEDP to be recognised as a tool allowing the creation

have been developed for: indoor air quality control [106],
assisting visually impaired people with outdoor movements
[107], and caring for indoor ornamental plants [108], among
others.

INTER-Meth [109] is an iterative adaptation of the
waterfall methodology that divides the problem into man-
ageable subproblems to facilitate development and ensure
its success. It defines six sequential development stages and
allows iterations to improve adaptability to new require-
ments. It lacks specific guidelines and activities for hard-
ware deployment, which is an essential part of IoT systems.

RASPSS (Rehabilitation Assistive Smart Product-Ser-
vice System) [110] is another iterative methodology, aimed
at the design and implementation of smart health services
for special groups, such as individuals with disabilities or
those requiring rehabilitation, focusing on the construction
of intelligent IoT devices applying AI techniques. It also
emphasizes the importance of user interaction.

The methodology proposed by Patel and Cassou [111]
focuses on the roles played by the development team to
address technological heterogeneity in IoT. It covers analy-
sis, design, construction, and testing, so that experts in each
of these activities carry them out.

The approach by Gogineni et al. [112] follows the
V-Model XT, emphasizing the verification and validation
of requirements and functionalities. It considers require-
ment elicitation and design, as well as integration and test-
ing, but does not address Post-Construction stage activities.
MEDISTAM-RT [113] is another methodology that uses
the V model, following a verification approach based on
timed traces semantics and UML-RT models to ensure the
fulfilment of non-functional requirements (NFRs) such as
timeliness and safety in the context of emergency treat-
ment services, which are critical and time-constrained. This
methodology emphasizes the need for formal approaches in
the specification and verification of systems to ensure com-
pliance with NFRs and proposes the combination of semi-
formal and formal notations for system design and analysis,
which are the development activities it focuses on. It does
not address the Construction or Post-Construction stages.

MIRIE (Methodology for Improving the Reliability of
Intelligent Environments) [74] aims to guide developers
in modelling reliable Intelligent Environments (IEs) using
existing software engineering tools and techniques [114] and
capturing the essential behaviour of IE components through
a series of models that are successively refined, starting with
very basic ones to which details are progressively added.
Creating reliable IEs is essential to increase user trust in
such environments [115]. This methodology proposes using
the Spin model checker [116] as a support tool, with simula-
tion and formal verification capabilities, specifically focus-
ing on the Modelling stage, although it includes an informal

1 3

224

Journal of Reliable Intelligent Environments (2024) 10:215–244

compliance”, ~ “Incomplete or inadequate compliance”,
and × “Not addressed or mentioned”.

Planning is an activity often overlooked in IoT devel-
opment methodologies. Only TDDM4IoTS [21] explicitly
includes it, while the methodologies proposed by Gogineni
et al. [112] and Fortino et al. [133] only show indications
of considering it. The inclusion of planning can be a key
differentiator in the success of IoT development method-
ologies. It should address aspects such as the analysis of
existing technology to develop the project, the analysis of
the environment where the system will be deployed, and the
project’s (technical, economical and operational) feasibility
analysis.

Requirements elicitation and analysis are fundamen-
tal in the development of IoT systems. While authors like
Gogineni et al. [112], Wang et al. [110], and Fortino et al.
[102] integrate requirements analysis within the system
analysis, other researchers, such as Guerrero-Ulloa et al.
[21], Usländer and Batz [49], and Sosa-Reyna et al. [56, 93,
94], clearly distinguish these activities and emphasize the
importance of precise requirements collection from the start
of the project. This clarity in defining requirements is essen-
tial to avoid delays in IoT development. Nevertheless, there
are authors, like Brambilla et al. [95] and Fortino and Russo
[99], who assume that these activities are already resolved
and, therefore, omit to mention applicable analysis methods
or tools. Moreover, some methodologies do not refer to the
necessary requirements at all, as is the case with MDE4IoT
[90].

Regarding design, methodologies are primarily based on
different types of models and metamodels. Indeed, meth-
odologies that follow model-based approaches, and funda-
mentally those based on MDE, MDD, and MDA, are among
the most used for the development of IoT systems [24]. The
success of these methodologies could be due to their help in
solving the problem of the great technological heterogeneity
and hardware components existing in the development of
these systems.

As for the generation of software code, methodologies
such as AMG [22] and SEM [97] focus on modelling and
generating software for IoT devices but often overlook the
development of applications for user-system interaction.
Although some authors, like Fortino et al. [102], Pico-
Valencia et al. [101], and Wang et al. [110], recognize the
importance of user-centred design, they seem to focus
exclusively on obtaining the hardware component of the
IoT system and the software for its configuration, with no
evidence that they address the construction of applications
for the end-user. Therefore, these types of methodologies
have an opportunity to improve usability and user experi-
ence when developing quality IoT systems if they included
this last aspect.

of technology in a morally and ethically responsible way
[126].

The U-CIEDP has been used to guide the co-creation of
IE-related technology for people with special needs. In fact,
it has been employed in the PersOnalised Smart Environ-
ments to increase Inclusion of people with DOwn’s syN-
drome (POSEIDON) project [119], the development of the
Ambient Assisted Empowered Living (AnAbEL) system
[127], which aims at enhancing autonomy and coaching for
people with dementia or cognitive decline, and the creation
and validation of the Approach to Develop context-Aware
solutions for Personalised asthma managemenT (ADAPT)
[128].

Research works on important issues strongly associated
with IEs have also been motivated by the use U-CIEDP in
the development of IEs. Some studies explore the use of
argumentation to manage users’ preferences in Ambient
Intelligence [129, 130]. Ali et al. [131] investigate improv-
ing the adaptation process of a new smart home user.
Although these research works do not follow the U-CIEDP
as explicitly as those ones explained above, they have been
motivated by the lessons learnt from applying the U-CIEDP.

The U-CIEDP has also inspired research on requirements
elicitation [120], architecture design [121, 122], and testing
and validation [125, 132] in IEs. These research works are
responses aiming to address the key challenges that have
been identified within the three main loops of the U-CIEDP
when it was used to guide the development of IEs. These
loops are the IEs’ initial scoping, IEs’ main development,
and IEs’ installation.

Table 4 highlights and summarizes the key features of the
various methodological approaches presented in this sub-
section, facilitating a comprehensive comparison.

2.4 Conclusions from the methodology review
conducted

The development process for such systems should cover
each of the stages and activities of the system/software
lifecycle outlined in the ISO/IEC/IEEE standards [50, 66–
70], from planning and requirements elicitation to system
decommissioning. However, most of the methodologies
analysed focus on about half of these stages and activities
(graphically represented in Fig. 2), with almost all of them
concentrating on the modelling and construction stages of
IoT systems, as is logical. In fact, very few of the meth-
odologies examined in the previous section appropriately
address either the planning or maintenance activities,
for example, and none address the system dismantling or
decommissioning activity, as shown in Table 5, where these
symbols are used with the following meanings: ✓ “Proper

1 3

225

Journal of Reliable Intelligent Environments (2024) 10:215–244

Guerrero-Ulloa et al. [21] are an exception, as they pres-
ent maintenance as an integral part of their methodology.
The Post-Construction phase is critical, as it ensures that the
software remains relevant and effective over time, adapting

The Post-Construction stage, which includes system
management and maintenance activities (see Fig. 2), is
essential, although it is often underestimated in the literature
on IoT system development methodologies. Authors like

Table 4 Main characteristics of the methodologies based on different approaches studied
Proposal name /
Authors [Ref.]

Main characteristics of the proposal

TDDM4IoTS /
Guerrero-Ulloa
et al. [21]

• Integrates MDE and TDD principles, focusing on generating system code and tests from models.
• Adheres to Agile values for flexibility and iterative development.
• Addresses business logic, user-system interaction, hardware configuration and deployment, and SBC programming.
• Supported by the TDDT4IoTS tool.

INTER-Meth
/ Fortino et al.
[109]

• Iterative adaptation of the waterfall methodology for flexibility and adaptability, allowing iterations for new requirements
and refinements.
• Divides the problem into subproblems for easier development.
• Uses a layered approach to manage the integration of heterogeneous IoT systems, focusing on interoperability across layers.
• Designed to ensure seamless interaction and communication among different IoT platforms.

RASPSS /
Wang et al.
[110]

• Focuses on the design and implementation of smart health services using AI techniques.
• Emphasizes user interaction and personalized services for rehabilitation assistive devices.
• Incorporates iterative development for continuous improvement and adaptation.
• Integrates manufacturing and service systems for special groups.

Patel & Cassou
[111]

• Role-based methodology addressing technological heterogeneity in IoT, ensuring expertise in each phase by assigning
specific roles to team members.
• Simplifies development by separating concerns and integrating code generation techniques.
• Utilizes task-mapping and linking techniques for deployment.
• Produces device-specific programming frameworks to manage scale and heterogeneity complexity.

Gogineni et al.
[112]

• Proposes a systematic product development methodology for customizable IoT devices, following the V-Model XT.
• Integrates design and manufacturing processes to streamline product development.
• Emphasizes user-centric approach and customization according to user needs.
• Includes validation and testing phases for ensuring functionality, reliability and performance.

MEDISTAM-
RT / Benghazi
et al. [113]

• Uses the V model, focusing on verification based on timed traces semantics and UML-RT models.
• Combines semi-formal and formal notations for system design and analysis.
• Ensures the fulfillment of certain NFRs, such as timeliness and safety.
• Provides a formal representation of time-dependent behaviors.

MIRIE /
Augusto &
Hornos [74]

• Guides developers in modeling reliable IEs using software engineering tools.
• Uses the Spin model checker for simulation and formal verification.
• Focuses on the Modelling stage, with stakeholder participation in informal modeling activities.
• Captures essential IE component behavior through progressively refined models.

U-CIEDP /
Augusto et al.
[119]

• User-centered methodology ensuring services match users’ expectations.
• Involves co-creation with users and other relevant stakeholders, emphasizing ethical and responsible technology
development.
• Follows an iterative development process for continuous feedback and refinement.

eFRIEND /
Jones et al.
[120]

• Proposes a comprehensive ethical framework for developing IEs.
• Integrates ethical considerations practically into the development process.
• Focuses on providing context-sensitive services in living and working environments.
• Aims to create ethically sound systems that enhance user experience and protect rights and privacy.

SEArch /
Augusto et al.
[121]

• Developed in a bottom-up fashion driven by practical needs.
• Provides a versatile infrastructure adaptable to various scenarios and use cases, applicable to a wide range of smart environ-
ment projects.
• Integrates multiple methods and tools for development and implementation.
• Offers a robust and adaptable architecture for smart environments, tailored to specific project needs.

CASA /
Augusto et al.
[122]

• Focuses on real-time data collection and modelling for context-aware systems.
• Provides methodologies for identifying valuable contexts and activating services.
• Emphasizes integration of diverse data sources for enhanced context-awareness.

CATS Design /
Rodrigues et al.
[124]

• Focuses on testing context-aware software systems.
• Proposes a specific approach for designing functional test cases.
• Includes empirical evaluation through proof of concept and observational study.

COATI /
Augusto et al.
[125]

• Emphasizes the importance of ‘context’ in developing and validating IEs.
• Proposes modern testing techniques tailored for context-aware systems.
• Aims to provide practical methods for testing in real-world application.
• Seeks to enhance system reliability through rigorous testing and validation.

1 3

226

Journal of Reliable Intelligent Environments (2024) 10:215–244

C
on

ce
pt

io
n

M
od

el
lin

g
C

on
st

ru
ct

io
n

Po
st

-C
on

st
ru

ct
io

n
Pr

op
os

al

na
m

e
/

A
ut

ho
rs

[R

ef
.]

Pl
an

ni
ng

R
eq

ui
re

-
m

en
ts

el

ic
ita

tio
n

A
na

ly
si

s
D

es
ig

n
M

od
el

ve

rifi
ca

tio
n

Si
m

ul
at

io
n

C
od

in
g

or

im
pl

em
en

ta
tio

n
In

te
gr

at
io

n
Te

st
in

g
D

ep
lo

ym
en

t
M

an
ag

e-
m

en
t o

r
op

er
at

io
n

M
ai

nt
en

an
ce

Sy
st

em
 d

is
-

m
an

tli
ng

 o
r

de
co

m
m

is
-

si
on

in
g

Le
ki

di
s e

t
al

. [
89

]
×

~
✓

✓
✓

~
✓

✓
~

~
×

×
×

M
D

E4
Io

T
/ C

ic
co

zz
i

&
 S

pa
la

zz
-

es
e

[9
0]

×
×

✓
✓

~
×

✓
×

×
~

×
×

×

H
ar

bo
uc

he

et
 a

l.
[9

1]
×

~
✓

✓
✓

✓
✓

✓
✓

~
×

×
×

R
O

O
D

 /
C

or
re

do
r e

t
al

. [
92

]

×
~

✓
✓

✓
×

✓
✓

×
✓

×
×

×

So
sa

-
R

ey
na

 e
t

al
. [

56
, 9

3,

94
]

×
✓

✓
✓

✓
×

✓
~

×
✓

×
×

×

B
ra

m
bi

lla

et
 a

l.
[9

5]
×

×
×

✓
×

×
✓

×
×

✓
×

×
×

ID
eA

 /
C

os
ta

 e
t a

l.
[9

6]

×
~

✓
✓

✓
×

×
×

×
~

×
×

×

SE
M

 /
C

ic
ire

lli
 e

t
al

. [
97

]

×
~

✓
✓

✓
×

✓
×

×
~

×
×

×

A
M

G
 /

Su
lis

ty
o

[2
2]

×
×

~
✓

×
×

✓
×

×
×

×
×

×

SE
RV

U
S

/ U
sl

än
de

r
&

 B
at

z
[4

9]

~
✓

✓
✓

×
×

✓
×

✓
×

×
×

×

EL
D

A
-

M
et

h
/

Fo
rti

no
 &

R

us
so

 [9
9]

×
×

×
✓

~
✓

✓
✓

✓
~

~
×

×

Pi
co

-
Va

le
nc

ia
 e

t
al

. [
10

1]

~
~

~
✓

~
×

~
✓

~
~

×
×

×

Fo
rti

no
 e

t
al

. [
10

2]
×

×
~

✓
×

~
✓

×
×

×
×

×
×

Ta
bl

e
5

C
om

pl
ia

nc
e

of
 th

e
m

ai
n

m
et

ho
do

lo
gi

ca
l a

pp
ro

ac
he

s a
na

ly
se

d
w

ith
 th

e
sy

st
em

/s
of

tw
ar

e
lif

ec
yc

le
 st

ag
es

 a
nd

 a
ct

iv
iti

es
 o

ut
lin

ed
 in

 IS
O

/IE
C

/IE
EE

 st
an

da
rd

s

1 3

227

Journal of Reliable Intelligent Environments (2024) 10:215–244

C
on

ce
pt

io
n

M
od

el
lin

g
C

on
st

ru
ct

io
n

Po
st

-C
on

st
ru

ct
io

n
Pr

op
os

al

na
m

e
/

A
ut

ho
rs

[R

ef
.]

Pl
an

ni
ng

R
eq

ui
re

-
m

en
ts

el

ic
ita

tio
n

A
na

ly
si

s
D

es
ig

n
M

od
el

ve

rifi
ca

tio
n

Si
m

ul
at

io
n

C
od

in
g

or

im
pl

em
en

ta
tio

n
In

te
gr

at
io

n
Te

st
in

g
D

ep
lo

ym
en

t
M

an
ag

e-
m

en
t o

r
op

er
at

io
n

M
ai

nt
en

an
ce

Sy
st

em
 d

is
-

m
an

tli
ng

 o
r

de
co

m
m

is
-

si
on

in
g

TD
D

-
M

4I
oT

S
/

G
ue

rr
er

o-
U

llo
a

et
 a

l.
[2

1]

✓
✓

✓
✓

×
×

✓
✓

✓
✓

~
✓

×

IN
TE

R
-

M
et

h
/

Fo
rti

no
 e

t
al

. [
10

9]

~
~

✓
✓

~
✓

✓
✓

✓
✓

~
✓

×

R
A

SP
SS

 /
W

an
g

et
 a

l.
[1

10
]

×
~

~
✓

×
×

~
×

×
~

~
~

×

Pa
te

l &

C
as

so
u

[1
11

]

×
~

~
~

×
~

✓
~

×
✓

✓
✓

×

G
og

in
en

i
et

 a
l.

[1
12

]
~

✓
✓

✓
✓

×
~

✓
✓

×
~

×
×

M
ED

IS
-

TA
M

-R
T

/
B

en
gh

az
i

et
 a

l.
[1

13
]

×
✓

✓
✓

✓
×

×
×

×
×

× × × × × ×

×
×

M
IR

IE
 /

A
ug

us
to

&

 H
or

no
s

[7
4]

x
✓

✓
✓

✓
✓

×
×

×
×

×
×

×

U
-C

IE
D

P
/

A
ug

us
to

 e
t

al
. [

11
9]

~
✓

✓
✓

✓
×

✓
×

✓
✓

×
×

×

E-
FR

IE
N

D

/ J
on

es
 e

t
al

. [
12

0]

✓
✓

✓
✓

×
×

×
×

×
×

×
×

×

SE
A

rc
h

/
A

ug
us

to
 e

t
al

. [
12

1]

~
✓

✓
✓

~
×

✓
✓

×
×

×
×

×

C
A

SA
 /

A
ug

us
to

 e
t

al
. [

12
2]

~
✓

✓
✓

~
×

✓
✓

✓
×

×
×

×

Ta
bl

e
5

(c
on

tin
ue

d)

1 3

228

Journal of Reliable Intelligent Environments (2024) 10:215–244

to changing needs and the constantly evolving technological
environment.

In summary, a methodology with a balanced approach
that not only encompasses the design and implementation
of the system to be developed but also includes planning,
requirements elicitation, user-centred development, and a
robust Post-Construction phase is vital for the successful
development of IoT systems. This comprehensive approach
ensures that systems are not only delivered on time and meet
initial expectations but can also evolve and remain effective
in the future, having a long lifespan.

Another aspect that most of the methodologies reviewed
do not address or do not explicitly mention is the activi-
ties related to the collection, specification and fulfilment
of NFRs [134, 135]. Remember that for the developed sys-
tem to be of quality, it must not only satisfy the functional
requirements but also the non-functional ones, so this is
another important aspect to consider in an IoT system devel-
opment methodology.

On the other hand, the uncertain nature of requirements
in the early stages of IoT system development demands a
flexible and adaptive approach from developers. The cre-
ation of early prototypes becomes an essential tool for
clarifying expectations and refining requirements, taking
advantage of methodologies that allow rapid iteration and
development. In this sense, approaches such as Rapid Pro-
totyping (RP) [81, 136] and agile methodologies, such as
Scrum and XP, promote short feedback cycles and close col-
laboration with end-users. These agile practices, rooted in
the four values and twelve principles of the Agile Manifesto
[41–43], emphasize the importance of adaptability, continu-
ous delivery, and the ability to respond to changes in cus-
tomer requirements.

In this context, model-driven approaches, such as MDE,
MDD, and MDA, complement the previous approaches and
stand out for their ability to accelerate software generation
and thus have early versions of solutions. Therefore, it is
imperative that researchers in the field of software engi-
neering focus on integrating the strengths of model-driven
approaches and agile methodologies to formulate a holistic
methodology for IoT system development. Such a method-
ology should incorporate rapid prototyping and the flexibil-
ity to adapt to emerging requirements, not only functional
but also non-functional, ensuring that the developed IoT
systems are not only functional but are aligned with the end-
user needs at all times.

Our article presents a comprehensive perspective of
development methodologies for IoT systems. It summarises
the advancements in the research area and describes the
main existing challenges, providing an explanation of each
challenge from different points of view. The article also
proposes open research avenues to guide research efforts

C
on

ce
pt

io
n

M
od

el
lin

g
C

on
st

ru
ct

io
n

Po
st

-C
on

st
ru

ct
io

n
Pr

op
os

al

na
m

e
/

A
ut

ho
rs

[R

ef
.]

Pl
an

ni
ng

R
eq

ui
re

-
m

en
ts

el

ic
ita

tio
n

A
na

ly
si

s
D

es
ig

n
M

od
el

ve

rifi
ca

tio
n

Si
m

ul
at

io
n

C
od

in
g

or

im
pl

em
en

ta
tio

n
In

te
gr

at
io

n
Te

st
in

g
D

ep
lo

ym
en

t
M

an
ag

e-
m

en
t o

r
op

er
at

io
n

M
ai

nt
en

an
ce

Sy
st

em
 d

is
-

m
an

tli
ng

 o
r

de
co

m
m

is
-

si
on

in
g

C
AT

S
D

es
ig

n
/

R
od

rig
ue

s
et

 a
l.

[1
24

]

~
✓

✓
✓

~
×

✓
×

✓
×

×
×

×

C
O

AT
I /

A

ug
us

to
 e

t
al

. [
12

5]

~
✓

✓
✓

~
×

✓
✓

✓
×

×
×

×

Ta
bl

e
5

(c
on

tin
ue

d)

1 3

229

Journal of Reliable Intelligent Environments (2024) 10:215–244

is expected to address in the forthcoming years. Figure 3
illustrates these challenges in the development of IoT-based
systems.

3.1 Heterogeneity and interoperability

In IoT systems, the heterogeneity of components and sys-
tems poses a significant challenge regarding interoper-
ability, demanding standards and protocols that allow for
smooth communication between disparate devices and plat-
forms [133, 141].

The concept of systems of systems [118] is often used
to characterise IoT-based systems. This characterisation
illustrates IoT-based systems’ complexity, making their
design, implementation, and maintenance more challeng-
ing. As in other types of systems, their different components
must work together to ensure the appropriate delivery of the
expected services. However, this integration is more chal-
lenging for IoT-based systems because they comprise more
complex subsystems using heterogeneous technologies that
must work together [117].

In this section, we are going to analyse the heterogeneity
and interoperability challenges from two perspectives: the
hardware and the software integration issues. The first one
considers the heterogeneity of the devices used to build the
equipment for IoT-based systems. The second issue relates

towards the creation of development methodologies for IoT
systems. Other articles reporting literature reviews on the
subject are more specific and focused, for instance, on an
explicit type of development [137, 138], agile methodolo-
gies [24], requirements engineering [139], interoperability
[37], and a specific case study [140]. We do not claim our
work is better than these, but we provide an extensive per-
spective that will give a broader picture of the subject.

Finally, after examining the findings from previous
state-of-the-art review works on IoT system development
methodologies [37, 138, 140] and conducting an in-depth
literature review, we can confidently state that, currently,
there is not a universally adopted methodology for IoT sys-
tem development. As a result, there appears to be a pressing
need for continued research in this area, aiming to provide
developers of these systems with a methodology that sim-
plifies their tasks and ensures the quality of the developed
system.

3 Challenges in IoT-based system
development

In the various subsections of this section, we explore sev-
eral key challenges encountered by developers of IoT-based
systems. These are challenges that the research community

Fig. 3 Main challenges in IoT-based system development

1 3

230

Journal of Reliable Intelligent Environments (2024) 10:215–244

data preparation stage that must also be done in real-time,
which is difficult considering the volume of data to process,
its variety, and the velocity at which the data is generated.
Pre-processing techniques for systems that can be catego-
rised as big data are still challenging to implement when
real-time data preparation is required. Technologies imple-
menting the concept of a data lake are envisioned to contrib-
ute to addressing this challenge.

The processing requirements of several AI techniques
are another issue to consider in IoT systems development.
AI already benefits society through predictive and prescrip-
tive analytics [144]. Implementing these techniques can
be demanding regarding the processing capabilities of the
devices in which they operate. This gap between the pro-
cessing demand of AI algorithms and the devices’ process-
ing capabilities is closing, but it is still a strong restriction
to consider in developing IoT systems that implement archi-
tectures distributing the processing tasks among the differ-
ent nodes, e.g., using fog and edge computing [145].

AI also brings the issue of integrating algorithms
obtained from techniques that follow black-box approaches
for training (e.g., neural networks). Although the use and
integration of these algorithms through functions is possible
and relatively simple, the issue highlighted in this research
work refers to integrating the different logic behind the
algorithms, which can be difficult (or even impossible) to
explain. Knowing why the algorithms predict or prescribe
the results is vital in the logic integration that is sometimes
required to develop IoT systems complying with explain-
ability requirements brought by ethical and legal contexts
[146]. Integrating diverse algorithms is critical to achieving
the system of systems concept illustrating an IoT system. If
one of these algorithms lacks explainability, the IoT system
will also lack this property.

The challenges of integrating diverse algorithms appear
due to using systems from different providers that are
required to develop the expected IoT system. The algo-
rithms developed and used by these providers are usually
an important component of their competitive advantage,
not allowing them to open and share their logic with their
users to protect their businesses. So, the question of how to
know if the services of other providers are explainable or
not arises. Organisations accrediting that the logic behind
these services complies with the explainability requirements
are a feasible option. However, different standards to com-
ply with exist (e.g., country-specific regulations). This fact
makes it more challenging to develop systems that may be
collecting a wide variety of data and running diverse pro-
cessing tasks.

A middleware is critical software to achieve the required
integration of the different IoT system components. They
are needed to connect applications that were not designed

to the different technologies used to develop the software
for managing the hardware in IoT-based systems.

3.1.1 Hardware integration issues

IoT devices can be sensors, actuators, gadgets, appliances,
or machines that are programmed to deliver services and
transmit data [142]. These devices originate from various
manufacturers, each with their own set of priorities for con-
structing their products. Consequently, IoT devices exhibit
heterogeneity, stemming from the unique designs of man-
ufacturers aimed at fulfilling specific use cases they have
predetermined. For instance, this heterogeneity is evidenced
in the existing all-in-one or separate devices that can mea-
sure similar indicators. Another example illustrating this
heterogeneity is the devices’ existing different processing
capabilities, which allow them to provide from raw data to
high-level contexts.

The hardware heterogeneity also considers the need to
automate the configuration of the expected billions of IoT
devices connected to the Internet, which cannot be done
manually [143]. The success of IoT-based systems strongly
depends on the orchestrated performance of the IoT devices
capturing and delivering data that will be processed to pro-
vide the expected services. Hence, IoT devices must be
configured and reconfigured quickly to deliver low-latency
services when it is required (e.g., IoT systems for healthcare
or self-driving cars).

The appropriate selection of reliable IoT devices is
another critical process for building IoT-based systems. The
lower cost of the materials used to build IoT devices and
the open knowledge approach used in the area have permit-
ted the democratisation of IoT technology, bringing more
suppliers to the market. As explained above, this variety
of manufacturers provides IoT devices with different char-
acteristics that impact their performance and reliability.
Choosing the most suitable IoT devices in the market or the
appropriate sensing-as-a-services model to build IoT-based
systems is critical to delivering highly precise services
when required.

3.1.2 Software integration issues

Data analytics is also crucial to delivering the IoT systems’
expected services, and it requires adequate preparation of
the data sources collected by the different nodes that make
up the systems. The variety of hardware and its higher pro-
cessing capabilities permit the generation of data at higher
rates and in different formats (structured, semi-structured,
and unstructured), which makes the data heterogeneity issue
another important challenge to tackle in the development of
IoT systems. The delivery of services in real-time implies a

1 3

231

Journal of Reliable Intelligent Environments (2024) 10:215–244

improved efficiencies. However, the integration of these
new technologies into existing IoT systems is not without
its complexities.

The potential evolution of technology, as well as the soft-
ware it supports, underscores a critical gap in current meth-
odologies and tools designed for IoT development. While
various methodological proposals, frameworks, platforms,
and tools exist to support the development of IoT systems
[24, 37], they often fall short in addressing the long-term
evolution of software and the system’s consequent adapta-
tion over time. Therefore, one of the principal challenges
in the development of IoT systems lies in achieving a high
degree of reusability, adaptability, and, most importantly,
extensibility of an existing IoT system to adapt to new
emerging needs.

To confront the inherent heterogeneity and evolution
within IoT environments, developers must focus on creat-
ing systems that are not only interoperable and scalable but
also capable of evolving alongside emerging technologies.
This necessitates development methodologies with a long-
term vision in IoT system design, which anticipate potential
future developments and incorporate flexibility at their core,
while also paying attention to the necessary maintenance of
the system once developed. By doing so, IoT systems can
remain relevant and functional, providing sustained value in
a rapidly changing technological landscape.

3.3 Security and privacy

Technology development is a cornerstone in human history
due to the impact, sometimes disruptive, on society. This
impact can be in the form of benefits and can also nega-
tively affect people’s lives if misused with a lack of eth-
ics. Security and privacy are global issues for developing
solutions based on TICs. In the case of IoT-based systems,
these issues are more challenging due to, again, the nature
of these systems, which are expected to be deployed and
seamlessly integrated with humans in diverse scenarios of
their lives. Hence, humans may not even be aware of their
interaction with IoT-based systems.

User-centric software development methodologies are
needed to comply with users’ preferences regarding their
IoT-based systems’ security and privacy settings, besides
the legal context ruling the scenarios and places in which
these systems are expected to operate. Privacy and security
can also be addressed as part of the preferences manage-
ment capabilities of IoT systems, which are critical for their
adequate development [129]. Security and privacy prefer-
ences are dynamic and strongly influence the context-aware
reasoning components of IoT-based systems, as well as the
features they can deliver.

to connect among themselves. Given that many devices and
software from different providers exist and work intercon-
nected in an IoT reality, the probability of them not being
designed to work interconnectedly is very high. In this
context, the middleware is considered the glue putting the
different applications together to provide the IoT systems’
expected services. However, although there are highly
reliable middlewares, most have been designed for com-
plex contexts (e.g., industrial middlewares), making them
expensive to acquire, install, and maintain. This type of
middleware may be too excessive for simpler contexts (e.g.,
smart homes) in which less complex scenarios occur, such
as the one proposed by Palade et al. [147]. There is a gap
in designing and bringing to the market middlewares fitting
simpler integration needs and at a reasonable cost for what
can be considered as lighter scenarios.

IoT systems use architectures associated with the con-
cepts of fog and edge computing in which the processing
tasks are less centralised and distributed among the differ-
ent nodes that make up the network (fog computing) and
even pushed towards the edge device in which the data
sources are obtained (edge computing) [145]. These com-
puting frameworks use the current nodes’ higher processing
capabilities better. However, they still require Internet avail-
ability to allow communication among the nodes ─which
are expected to be many─ and create the contexts needed to
deliver the expected features and services. Higher Internet
availability and speed are required to integrate IoT systems.
5G networks are expected to comply with these require-
ments, but their cost and availability vary among the coun-
tries where it is deployed. This issue is essential to address
for achieving a more democratised dissemination of IoT
systems.

3.2 Scalability, adaptability and integration with
emerging technologies

In the realm of IoT, scalability emerges as a pivotal aspect,
not merely in terms of handling an increasing influx of
devices but also in adapting to evolving needs. The expo-
nential growth in the number of connected devices and the
sheer volume of data generated present both opportunities
and challenges. As the IoT ecosystem expands, it must
seamlessly accommodate the addition of new devices, man-
age the vast data streams they produce, and ensure consis-
tent performance across the board [135].

The inevitable wear and tear of hardware components,
coupled with the rapid pace of technological advancements,
necessitates the periodic replacement of outdated or mal-
functioning parts. This cycle of obsolescence and renewal is
accelerated by the emergence of more powerful and capable
technologies, which promise enhanced functionalities and

1 3

232

Journal of Reliable Intelligent Environments (2024) 10:215–244

on less obvious factors defined by subjective perceptions of
users (e.g., their mood), which also change over time. The
users’ dynamic and context-specific requirements demand
adaptable IoT systems balancing their proactive and reac-
tive features based on customisation that gives control to
the users over the system. Some users may prefer an IoT
system that is more intrusive in their job tasks but less intru-
sive at home. Other ones would like to avoid proactive (and
even reactive) features altering their established and regular
routines. Preferences management is still an open research
theme to address that should strongly influence IoT devel-
opment processes [129]. Identifying the next personalised
Point-of-Interest (POI) [159] is a typical problem where the
dynamic nature of users’ needs and evolving preferences
require a strong user-centric approach to deliver appropriate
services.

Cognitive overload is another essential issue to avoid
when developing IoT systems. The high availability of
context-related data due to environments enriched with IoT
devices would lead to delivering more information to users
than they require. Cognitive overload refers to overloading
users with data they are not interested in, which has a nega-
tive impact on the system’s usability. This issue must be
avoided, considering users’ preferences to aid IoT systems
in differentiating what information is relevant and not. The
use of information supply chain approaches is key to bal-
ancing information supply and demand [160].

Environments enriched with IoT devices present sev-
eral potential benefits to support peoples’ daily activities.
However, the idea of interacting in a Cyber-Physical Space
brings challenges regarding human-computer interaction
(HCI). IoT systems should be designed to support users’
tasks, guaranteeing a natural integration with users. HCI
grand challenges [161] must be tackled to permit IoT sys-
tems to deliver their expected benefits to society. Meaning-
ful research to provide users with IoT systems that are easy
to install in their daily environments, customise, and inter-
act with is key to expanding the reach of these systems.

The user-centric challenges outlined previously are con-
sidered from the perspective of the end-users of IoT sys-
tems. However, user-centric challenges can also be studied
from the IoT systems developers’ point of view, who need
support to address the different challenges explained in this
section. Developers need automated tools that allow them to
track IoT systems’ designs, as well as their services imple-
mentation, testing, validation, and maintenance, to comply
with the complex requirements of IoT systems [132]. Auto-
mating these tools is crucial to accelerate the IoT systems
development process and comply with their dynamic and
context-specific requirements adequately. AI can aid in auto-
mating the requirements mapping throughout the process
development stages (conception, modelling, construction,

Some AI techniques require data-intensive processing to
deliver highly accurate predictions. Involving private data as
input in training these algorithms may increase the probabil-
ity of obtaining better results. However, users could not be
willing to share their private data. This issue has brought the
need to investigate training methodologies that can include
private data infringing on users’ privacy. An example of
addressing this issue is Federated Learning [148], which
has already been applied to several use cases like the ones
presented by Ogbuabor et al. [149] and Sánchez et al. [150].
Advanced AI techniques are also being used to protect data,
such as deep learning [151].

The more complex and distributed processing architec-
tures used to implement IoT-based systems (e.g., fog and
edge computing) consider distributed and interconnected
nodes with diverse processing tasks. That is, nodes are vul-
nerable to security threats and must be correctly configured
and integrated to protect the IoT-based system. This issue
becomes more challenging because these nodes can be tech-
nologically heterogeneous and may implement black-box
processing tasks to protect their logical competitive advan-
tage, which makes their security implementation more
complex.

Although there are studies that have addressed these
issues, such as the application of the Privacy-by-Design
(PbD) framework to IoT applications [152], the monitor-
ing of security attacks in real-time for IoT systems through
DevSecOps [153], the implementation of access control
models [154] or the application of blockchain for secure
data handling [155], there are still pending security and pri-
vacy challenges to be resolved for IoT system developers
[156–158], which will need to be addressed by the research
community in this area.

3.4 User-centric approaches

As in any other system, requirements elicitation is critical to
increasing the success probability of an IoT system develop-
ment process. However, the diverse contexts in which IoT
systems are expected to be implemented make the require-
ments definition process more challenging. IoT systems
are expected to support people in their daily activities that
include diverse situations, such as those that usually hap-
pen at home (smart homes), transportation (smart vehicles),
work (smart offices, smart classrooms), healthcare self-
management (mHealth applications and devices), and so on
[117]. This variety of situations in which IoT systems will
be used requires user-centric approaches to guarantee an
adequate design and implementation targeting users’ needs
in different situations [119].

Users’ preferences and needs are dynamic and not only
depend on the situations an IoT system supports but also

1 3

233

Journal of Reliable Intelligent Environments (2024) 10:215–244

the systems, respectively, while reliability gives the prob-
ability of a system performing its required functions under
specified conditions over a certain period. In the healthcare
context, Tang and Xie [168] propose an availability model
for an IoT system, offering performance metrics such as
probabilities of full service, degraded service, and system
unavailability. This not only enhances the understanding of
the operational reliability of IoT systems but also facilitates
the identification of areas for reliability improvement.

Xing [169] provides a comprehensive overview of the
current state and future outlook of reliability within the IoT
domain. Addressing reliability across the layered IoT archi-
tecture, the paper systematically synthesizes and reviews
existing literature on reliability models and solutions across
four layers: perception, communication, support, and
application. It highlights that research on IoT reliability is
still nascent, with much room for exploration in terms of
under-explored behaviours and the evolving complexity and
dynamics of IoT systems.

Consequently, advancements in specific methodolo-
gies and tools, together with the development of quantita-
tive reliability metrics, are paving the way for enhancing
the dependability of IoT systems. Techniques for software
reliability measurement are examples of advancements in
this area. A clear example of such techniques is presented
by Yuen [170], who proposes the Fuzzy Cognitive Network
Process as an alternative for software reliability and quality
measurement. However, continuous research is essential to
close existing gaps and address emerging challenges in this
dynamic field.

4 Open research avenues

From our perspective, the research directions we outline
below represent some of the open issues that remain unre-
solved concerning development methodologies for IoT sys-
tems. Our research community will need to dedicate efforts
in the coming years to provide solutions to these issues,
among others that will arise in this constantly evolving tech-
nological context.

Figure 4 summarizes the open research avenues to be
presented in this section, each of which will be explained
in its corresponding subsection. Strong relationships exist
between the challenges outlined previously and these open
research directions. Detailed explanations of each research
direction will include how they address one or more of the
issues described as challenges in the preceding section of
this article.

and post-construction). For instance, natural language pro-
cessing techniques can support the automatic generation of
software development products (e.g., UML diagrams) based
on the requirements elicitation narrative.

3.5 Reliability or dependability

Reliability or dependability in IoT-based systems is an
increasing concern due to their expanding application in
critical areas such as health, automotive, and urban infra-
structure. Thus, for example, human and animal digital
health platforms [162], which are related to the Internet of
Medical Things, are clear examples of critical applications
with high dependability and safety requirements. The reli-
ability or dependability of IoT systems refers to their ability
to function without failure under expected conditions for a
specified period. In this context, rigorous design, verifica-
tion, and validation become essential to ensure that IoT
systems meet the dependability and safety requirements
demanded by these critical applications. To address these
challenges, specific methodologies and tools have been
developed. For instance, formal modelling and system
specification allow for the verification of critical reliability
and safety properties before implementation. Thus, the use
of certain tools in methodologies specific to these types of
systems, such as UPPAAL [163], Spin [74], or ProB [164],
facilitates the formal verification of IoT systems, enabling
designers to identify and correct potential errors in the early
stages of development.

Furthermore, the current literature suggests a range of
edge computing simulators that support the analysis of qual-
ity characteristics relevant to IoT system design. Ashouri
et al. [165] highlight that while many simulators focus
on qualities such as temporal behaviour and resource uti-
lization, there is a need for further research to adequately
support IoT architects. This indicates a gap in support for
a broader range of qualities, underscoring the importance
of developing more comprehensive tools. In the context of
IoT-based electronic health systems, Prabha and Chatterjee
[166] propose a hybrid consensus mechanism incorporating
algorithms for creation, validation, fork handling, Merkle
tree construction, and reward/punishment modules, demon-
strating a robust approach to ensuring system security and
reliability.

Moreover, to quantify the dependability of IoT systems,
several metrics are utilized [167], including Mean Time To
Failure (MTTF), Mean Time Between Failures (MTBF),
failure rate, availability, and reliability. These metrics offer
a quantitative basis to evaluate the robustness and readi-
ness of IoT systems for deployment in critical applications.
For example, MTTF and MTBF provide insights into the
expected operational lifespan and maintenance needs of

1 3

234

Journal of Reliable Intelligent Environments (2024) 10:215–244

this code must pass to meet specified requirements, thus
ensuring the quality and functionality of the system from
the early stages of development.

Moreover, this methodology could also incorporate prin-
ciples of agile development, such as prioritizing functional
software over comprehensive documentation, the abil-
ity to respond to unforeseen changes, and continuous col-
laboration between clients/users and developers. This agile
approach would facilitate adaptation to emerging needs
and foster effective communication, crucial elements in the
development of IoT systems.

A methodology with these characteristics should address
not only the business logic and user-system interaction but
also the configuration and deployment of the necessary
hardware, such as sensors, actuators, and processors, as well
as the configuration and programming of single-board com-
puters, such as Arduino and Raspberry Pi. The methodology
must be robust enough to handle the complexity inherent
in these components and flexible enough to adapt to their
evolution.

In conclusion, the development of IoT systems requires
a methodology as dynamic and multifaceted as the systems
it aims to create. Only through an integrative and holistic
approach can we overcome current and future challenges,
ensuring that the developed IoT systems are not only

4.1 Need for more integrative and holistic
methodologies

The literature review conducted on the predominant meth-
odologies in IoT system development reveals a diversity of
approaches and variability in the phases and activities con-
sidered by each. Some methodologies specialise in specific
stages of the development lifecycle, such as design and con-
struction, while others attempt to cover a broader spectrum.
However, the absence of a methodology that comprehen-
sively and exhaustively encompasses the entire lifecycle of
IoT system development according to international stan-
dards is evident.

In this context, the need to forge more integrative and
holistic methodologies becomes apparent. These methodol-
ogies must be designed to be inherently flexible and capable
of addressing the specific needs and challenges associated
with IoT system development. They must provide a robust
framework that integrates the best practices from diverse
software development paradigms, forming a versatile meth-
odological structure adaptable to the dynamic and multifac-
eted nature of IoT systems.

An ideal methodology would integrate concepts from
established software development paradigms, such as MDE
and TDD. These approaches focus on the creation and use
of models for generating code fragments and the tests that

Fig. 4 Open research avenues in IoT-based system development

1 3

235

Journal of Reliable Intelligent Environments (2024) 10:215–244

applications, ensuring that the development process is as
innovative and dynamic as the systems intended to be cre-
ated with it.

4.3 Advancing towards widely used standard
methodologies

In the current landscape of IoT system development, there
is a concerning trend: most development methodologies are
exclusively used by their creators. This situation hinders
knowledge transfer and the standardisation of practices in a
field as dynamic and expansive as IoT. Therefore, the emer-
gence of standard methodologies that can be widely adopted
is imperative, thereby facilitating common methods, tools,
and practices among developers.

These methodologies should be designed with an intui-
tive and accessible approach, equipped with support tools
that guide users’ step by step in their practical application.
Simplicity and clarity must be fundamental pillars so that
even novice developers and software engineering students
can confidently apply them during their academic projects
and professional internships [171].

It is essential that these methodologies provide structured
guidance to software engineers, supporting them throughout
the development process. They should include options for
automatic or semi-automatic generation of system compo-
nents, which not only ensures the quality and correctness of
the code from the initial phases but also optimises develop-
ment times, a critical factor in a rapidly evolving market.

For widespread adoption, it is crucial that the methodol-
ogy is properly documented and supported by training and
support materials. This is particularly relevant for develop-
ers interested in applying it, especially for those who are
novices, as it will help to reduce the learning curve of the
methodology and its support tools, allowing them to under-
stand and apply the methodology more effectively in less
time. In addition to the creation of detailed training materi-
als, the inclusion of clear guidelines integrated into the sup-
port tools is fundamental to democratizing the development
of IoT systems and maximizing the efficiency and potential
of these methodologies.

In summary, the IoT community faces an urgent need
to consolidate standard methodologies that are widely
accepted and utilized. Only through a collaborative effort
to make these methodologies better known and applied can
we move towards a future where the development of IoT
systems is a more efficient, coherent, and universally under-
stood process.

functional and efficient but also sustainable and capable of
evolving alongside emerging technologies and user needs.

4.2 Support tools for the effective application of
methodologies

An effective methodology for the development of IoT sys-
tems must not only be robust and flexible but also accessi-
ble and applicable through appropriate support tools. These
tools are essential to facilitate the practical application of
the methodology and must be capable of providing compre-
hensive assistance throughout all phases of development,
from conception to post-construction.

Customization is a key aspect of IoT systems develop-
ment, and an ideal support tool should allow developers to
adjust the various aspects of the system to meet the specific
needs of the project. This is achieved through an intuitive
interface that guides the developer from the initial sys-
tem specification, which could take the form of extended
use case descriptions, user stories, or any other alternative
specification.

Using structured templates, developers could input these
specifications into the tool, which would then automatically
generate a conceptual model of the system to be developed
and the associated tests that the generated software must
pass. This approach aligns with the TDD philosophy, ensur-
ing that each piece of generated code meets the established
requirements from the outset.

The automatically generated conceptual model could
serve as a starting point for developers to refine and pro-
duce a more detailed model, corresponding to the solution
domain. The support tool could use this refined model for
the automatic generation of code, which would then be vali-
dated by the previously established tests, ensuring the qual-
ity and coherence of the system under development.

Thus, the mentioned tool would not only provide a solid
initial software structure but also offer the flexibility for
developers to make adjustments and improvements as nec-
essary, enriching and perfecting the software until the final
product is achieved.

Furthermore, a comprehensive IoT system development
tool should include modules dedicated to hardware design.
These modules would allow developers to design and con-
figure IoT devices in a graphical and intuitive manner, con-
necting electronic components and configuring such devices
efficiently.

In summary, a good support tool for an IoT system devel-
opment methodology is essential and must be a fundamental
pillar to facilitate its application, providing developers with
a robust and versatile platform. This platform should not
only facilitate the design and configuration of IoT devices
but also support the development of front-end and back-end

1 3

236

Journal of Reliable Intelligent Environments (2024) 10:215–244

present challenges for traditional machine learning and deep
learning approaches. Neuro-symbolic approaches [175] can
help overcome these challenges, ensuring the development
of reliable and effective AIoT-based systems.

4.5 Development of more intuitive and user-
centred tools

Users can be studied from the perspectives of IoT-based
systems’ end-users and the IoT-based systems developers.
This subsection includes both types of users. In both cases,
user-centric approaches must be used, considering the vola-
tile requirements to address and all the features and software
development products associated with them.

IoT-based systems’ end-users have different IT back-
grounds that define their preferences regarding their inter-
action with IoT-based systems. Other less objective factors
also influence how they want to integrate themselves with
IoT-based systems. All these affect their system acceptance,
adoption, and appropriation and constrain the success of the
development process.

IoT-based systems may use wearable and ambient devices
to collect data about their end-users and their environment.
The availability of data makes it possible to provide users
with several notifications regarding situations they are not
interested. Achieving an appropriate balance between infor-
mation supply and demand is important to make IoT-based
systems more intuitive. The automation of the system infor-
mation supply chain and the definition of the use cases the
system is expected to support can aid in avoiding informa-
tion overload and improve usability.

From the developers’ perception, the Conception stage
is key to defining the system requirements expected to
address users’ needs and preferences regarding the features
and their interaction with the system. Automated tools for
requirements elicitation must be investigated because they
are important supporting tools for identifying and mapping
end-users’ needs. These requirements define the Modelling,
Construction and Post-Construction stages, which also need
automated tools to map their tasks and software develop-
ment products with the requirements defined in the Concep-
tion stage.

Supporting tools for developers can use more advanced
automation techniques, including AI, to generate software
development products faster. These techniques applied in
the software development areas are being investigated, but
more research effort on it must be made. Automating these
key tasks will ease the software development process and
increase the probability of complying with the functional
and (especially) non-functional requirements to guarantee
the users’ more natural integration with IoT-based systems.

4.4 Enhancing IoT development with AI-driven
tools

The integration of AI techniques in the development of IoT
systems is a burgeoning field that promises to revolution-
ize the way these systems are designed and implemented.
The support tool for a methodology can be significantly
enhanced by infusing it with greater intelligence and new
capabilities, thereby improving both the quantity and qual-
ity of the generated code and the efficiency of the IoT sys-
tem development process.

Advanced AI techniques can be employed to analyse
textual information pertaining to the specification of an IoT
system. Developers typically begin with system descrip-
tions articulated through extended use cases (EUCs), user
stories, or other forms of system specification. An intelli-
gent analysis of these system descriptions, introduced into
the tool via EUCs, for instance, can automatically identify
key elements, such as potential classes, attributes, relation-
ships, etc., which are crucial for the automatic generation
of a conceptual class diagram. This initial diagram can then
be refined to produce a more comprehensive class diagram,
corresponding to the domain of the solution design.

Recent solutions for generating conceptual class dia-
grams from requirements described in natural language
include the works of Nasiri et al. [172], and Omer and
Eltyeb [173], among others. While these solutions can gen-
erate class diagrams with attributes, methods, and relation-
ships, they do not address the generation of software code.
Therefore, they represent a step in the right direction, but
more work is needed in this regard to provide further assis-
tance to developers.

Incorporating AI techniques allows for the extraction
of information from the system specification that can also
help to include design patterns in the design class diagram.
Design patterns [174] are essential for promoting good soft-
ware engineering practices and acquiring quality attributes
in the developed systems.

The incorporation of these new AI-driven features will
endow the tool with greater intelligence and capabilities
that can significantly contribute to improving the applica-
tion of the corresponding methodology. Moreover, it will
enhance the efficiency of the IoT system development pro-
cess, facilitating design and implementation, and reducing
the time required to do so. By automating at least part of the
developers’ workload, the tool can mitigate potential human
errors, ease their workload, and result in higher quality IoT
systems.

Furthermore, with the advent of Artificial Intelligence of
Things (AIoT), the processing and analytical capabilities of
interconnected devices have been significantly enhanced.
However, the complexity and scale of AIoT-based systems

1 3

237

Journal of Reliable Intelligent Environments (2024) 10:215–244

overlap due to some transversal issues developers should
consider throughout the development process they choose
to follow.

The article also presents the open research avenues in
the development of IoT-based systems. They are proposed
as pathways to guide the research efforts in the area. They
aim to ensure that the key gaps in developing these systems
are better understood and systematically closed to allow the
proliferation of high-quality IoT-based systems. The devel-
opment processes of these systems must evolve towards
including tools facilitating developers’ tasks, ensuring high-
quality development standards, and reducing the time spent
on repetitive tasks not adding value to the process. Automa-
tion is vital to achieving this vision, but it must be based on
the previous identification of the critical tasks to automate.
This automation will allow developers to focus on the more
crucial tasks that generate more value for IoT-based sys-
tems’ end-users.

Author contributions M.J.H. conceived the article and outlined its
structure. Each author wrote different parts of the manuscript. Both
authors have reviewed it.

Funding This research was supported by the grant PID2019-
109644RB-I00, funded by MCIN/AEI/10.13039/501100011033, i.e.,
the Spanish Ministry of Science and Innovation (State Research Agen-
cy), and by the grant PID2022-139297OB-I00, funded by MICIU/
AEI/10.13039/501100011033 and by ERDF/EU, i.e., the Ministry of
Science, Innovation and Universities (State Research Agency) and the
European Regional Development Fund (ERDF), a way of making Eu-
rope.

Data availability Not applicable.

Declarations

Ethical approval Not applicable.

Competing interests The authors declare no competing interests.

References

1. Andrade RMC, Aragão BR, Oliveira P, Maia MEF, Viana W,
Nogueira TP (2021) Multifaceted infrastructure for self-adaptive
IoT systems. Inform Softw Technol 132:106505. https://doi.
org/10.1016/j.infsof.2020.106505

2. Ng ICL, Wakenshaw SYL (2017) The Internet-of-Things: review
and research directions. Int J Res Mark 34(1):3–21. https://doi.
org/10.1016/j.ijresmar.2016.11.003

3. Madakam S, Ramaswamy R, Tripathi S (2015) Internet of Things
(IoT): a literature review. J Comput Commun 3(5):164–173.
https://doi.org/10.4236/jcc.2015.35021

4. Stankovic JA (2014) Research directions for the Internet of
Things. IEEE Internet Things J 1(1):3–9. https://doi.org/10.1109/
jiot.2014.2312291

5. Singh D, Tripathi G, Jara AJ (2014) A survey of Internet-of-Things:
Future vision, architecture, challenges and services. Proceedings

Developing usability assessment techniques and tools
to assess IoT-based systems is another open challenge for
developers. IoT-based systems require different validation
tools that can efficiently obtain end-users’ perceptions about
the more complex scenarios in which these systems oper-
ate. Usability is key to achieving IoT-based systems that are
easy to integrate with users, but its assessment is usually
challenging because it needs to gather end-users’ subjective
opinions about the system. This issue is more relevant when
it comes to assess usability in situations that involve diverse
aspects of users’ daily activities and considering that the
outcomes of IoT-based systems usability assessment shall
be automatically associated with the different products of
the software development process.

5 Conclusions

IoT-based systems are already benefiting society across a
broad range of sectors, including home automation, indus-
try, transportation, healthcare, and agriculture, among many
others. Their socioeconomic impact has been growing at an
unstoppable pace for years. They are a hot topic to study
from different perspectives because of their imminent and
growing influence on people’s lives and the envisioned
potential benefits they are expected to deliver.

However, the development of IoT systems is complex, as
it requires consideration of a multitude of aspects: heteroge-
neity, interoperability, and deployment of various physical
devices (sensors, actuators, smartwatches, boards, serv-
ers, etc.) and software components that make up the sys-
tem, communication protocols to be used, where to process
data (at the edge, fog, or cloud), how to configure and pro-
gram the different hardware devices, which programming
languages and software technologies to use, among a long
list of issues. Therefore, there is a need to address the chal-
lenges that all these issues pose to developers when creating
such a system.

The literature review conducted highlights the importance
of searching for a robust and more established methodol-
ogy for IoT-based systems development. This methodology
must address the unique and tangled characteristics of IoT-
based systems and become a simple tool for developers to
ensure the system’s quality.

Despite the considerable efforts and advancements that
are being made, existing challenges are still many and sig-
nificant in this research area. The article evidences that
more research is needed to address the complex nature of
IoT-based systems that, along with the diverse scenarios
in which they are expected to operate, stress the influence
of IoT-based system development challenges. Hence, the
described challenges are all important, although they may

1 3

238

https://doi.org/10.1016/j.infsof.2020.106505
https://doi.org/10.1016/j.infsof.2020.106505
https://doi.org/10.1016/j.ijresmar.2016.11.003
https://doi.org/10.1016/j.ijresmar.2016.11.003
https://doi.org/10.4236/jcc.2015.35021
https://doi.org/10.1109/jiot.2014.2312291
https://doi.org/10.1109/jiot.2014.2312291

Journal of Reliable Intelligent Environments (2024) 10:215–244

in Computer and Information Science (Vol. 1193, pp. 41–55).
https://doi.org/10.1007/978-3-030-42517-3_4

22. Sulistyo S (2013) Software development methods in the Internet
of Things. In Lecture Notes in Computer Science (Vol. 7804, pp.
50–59). https://doi.org/10.1007/978-3-642-36818-9_6

23. Rodríguez-Domínguez C, Santokhee A, Hornos MJ (2022)
Intelligent environments with entangled quality properties. J
Reliable Intell Environ 8(3):223–226. https://doi.org/10.1007/
s40860-022-00182-5

24. Guerrero-Ulloa G, Rodríguez-Domínguez C, Hornos MJ (2023)
Agile methodologies applied to the development of Internet of
Things (IoT)-based systems: a review. Sensors 23(2):790. https://
doi.org/10.3390/s23020790

25. Nakagawa H, Ogata S, Aoki Y, Kobayashi K (2020) A model
transformation approach to constructing agent-oriented design
models for CPS/IoT systems. Proceedings of the ACM Sympo-
sium on Applied Computing (SAC’20), 815–822. https://doi.
org/10.1145/3341105.3374033

26. Marafie Z, Lin K, Wang D, Lyu H, Liu Y, Meng Y, Ma J (2021)
AutoCoach: an intelligent driver behavior feedback agent with
personality-based driver models. Electronics 10(11):1361. https://
doi.org/10.3390/electronics10111361

27. Yang H, Xie X (2020) An actor-critic deep reinforcement learn-
ing approach for transmission scheduling in cognitive Inter-
net of Things systems. IEEE Syst J 14(1):51–60. https://doi.
org/10.1109/jsyst.2019.2891520

28. Kaminski NJ, Murphy MH, Marchetti N (2016) Agent-based
modeling of an IoT network. 2016 International Symposium on
Systems Engineering (ISSE 2016), 1–7. https://doi.org/10.1109/
syseng.2016.7753151

29. Esteves Maria R, Rodrigues Junior LA, Guarino de Vasconcelos
LE, Pinto M, Tsoucamoto AF, Silva PTA, Lastori HN, da Cunha
A, Vieira Dias A (2015) L. A. Applying Scrum in an interdis-
ciplinary project using Big Data, Internet of Things, and credit
cards. Proceedings of the 12th International Conference on Infor-
mation Technology: New Generations (ITNG 2015), pp. 67–72.
https://doi.org/10.1109/itng.2015.17

30. Morais dos Santos MV, Barbosa da Silva PD, Otero L, Wisnieski
AG, Gonçalves RTS, Maria GE, Vieira Dias R, Marques LA, da
Cunha A (2016) Applying Scrum in an interdisciplinary project for
fraud detection in credit card transactions. Adv Intell Syst Com-
put 448:461–471. https://doi.org/10.1007/978-3-319-32467-8_41

31. Khaleel H, Conzon D, Kasinathan P, Brizzi P, Pastrone C,
Pramudianto F, Eisenhauer M, Cultrona P, Rusiná F, Lukáč G,
Paralič M (2017) Heterogeneous applications, tools, and meth-
odologies in the car manufacturing industry through an IoT
approach. IEEE Syst J 11(3):1412–1423. https://doi.org/10.1109/
jsyst.2015.2469681

32. da Costa CM, Baltus P (2021) Design methodology for industrial
Internet-of-Things wireless systems. IEEE Sens J 21(4):5529–
5542. https://doi.org/10.1109/jsen.2020.3031659

33. Industry IoT Consortium (2023) The Industrial Internet Reference
Architecture. https://www.iiconsortium.org/IIRA/ (Accessed: 15
October 2023)

34. Boehm B (1988) A spiral model of software development
and enhancement. IEEE Comput 21(5):61–72. https://doi.
org/10.1109/2.59

35. Hijazi H, Khdour T, Alarabeyyat A (2012) A review of risk man-
agement in different software development methodologies. Int J
Comput Appl 45(7):8–12

36. Lantz KE (1986) The Prototyping Methodology. Prentice-Hall:
Saddle River, NJ, USA

37. Fortino G, Savaglio C, Spezzano G, Zhou M (2021) Internet of
Things as system of systems: a review of methodologies, frame-
works, platforms, and tools. IEEE Trans Syst Man Cybernetics
51(1):223–236. https://doi.org/10.1109/tsmc.2020.3042898

of the 2014 IEEE World Forum on Internet of Things (WF-IoT
2014), 287–292. https://doi.org/10.1109/wf-iot.2014.6803174

6. Almeida RB, Junes VRC, Machado R, Da Rosa DYL, Donato
LM, Yamin A, Pernas AM (2019) A distributed event-driven
architectural model based on situational awareness applied on
internet of things. Inform Softw Technol 111:144–158. https://
doi.org/10.1016/j.infsof.2019.04.001

7. Cisco (2016) Internet of Things at a glance. https://www.auden-
tia-gestion.fr/cisco/pdf/at-a-glance-c45-731471.pdf (Accessed:
14 October 2023)

8. Mocrii D, Chen Y, Musilek P (2018) IoT-based smart homes:
a review of system architecture, software, communications,
privacy and security. Internet Things 1–2:81–98. https://doi.
org/10.1016/j.iot.2018.08.009

9. Syed A, Sierra-Sosa D, Kumar A, Elmaghraby A (2021) IoT
in smart cities: a survey of technologies, practices and chal-
lenges. Smart Cities 4(2):429–475. https://doi.org/10.3390/
smartcities4020024

10. Baker S, Wang X, Atkinson I (2017) Internet of Things for
smart healthcare: technologies, challenges, and opportuni-
ties. IEEE Access 5:26521–26544. https://doi.org/10.1109/
access.2017.2775180

11. Guerrero-Ulloa G, Rodríguez-Domínguez C, Hornos MJ (2018)
IoT-Based system to help care for dependent elderly. In Com-
munications in Computer and Information Science (Vol. 895, pp.
41–55). https://doi.org/10.1007/978-3-030-05532-5_4

12. Guerrero-Ulloa G, Hornos MJ, Rodríguez-Domínguez C, Fernán-
dez-Coello MM (2020) IoT-Based Smart Medicine Dispenser to
Control and Supervise Medication Intake. In Ambient Intelli-
gence and Smart Environments (AISE) book series (Vol. 28, pp.
39–48). https://doi.org/10.3233/aise200021

13. Quy VK, Nguyen V, Van Anh D, Quý NM, Ban NT, Lanza S,
Randazzo G, Muzirafuti A (2022) IoT-enabled smart agriculture:
architecture, applications, and challenges. Appl Sci 12(7):3396.
https://doi.org/10.3390/app12073396

14. Abir SMAA, Anwar A, Choi J, Kayes ASM (2021) IoT-Enabled
smart energy grid: applications and challenges. IEEE Access
9:50961–50981. https://doi.org/10.1109/access.2021.3067331

15. Ahmad T, Zhang D (2021) Using the internet of things in smart
energy systems and networks. Sustainable Cities Soc 68:102783.
https://doi.org/10.1016/j.scs.2021.102783

16. Chui M, Collins M, Patel M (2021) IoT value set to accelerate
through 2030: Where and how to capture it. McKinsey, Company.
https://www.mckinsey.com/capabilities/mckinsey-digital/our-
insights/iot-value-set-to-accelerate-through-2030-where-and-
how-to-capture-it (Accessed: 14 October 2023)

17. Royce W W. (1987) Managing the development of large software
systems: concepts and techniques. Int Conf Softw Eng 328–338.
https://doi.org/10.5555/41765.41801

18. Abrahamsson P (2017) Agile software development meth-
ods: review and analysis. arXiv org. https://doi.org/10.48550/
arXiv.1709.08439

19. Anwer F, Aftab S, Waheed U, Muhammad S S. (2017) Agile soft-
ware development models TDD, FDD, DSDM, and Crystal meth-
ods: a survey. Int J Multidisciplinary Sci Eng 8(2):1–10. https://
www.ijmse.org/Volume8/Issue2/paper1.pdf (Accessed: 15 Octo-
ber 2023)

20. Keshta N, Morgan Y (2017) Comparison between traditional
plan-based and agile software processes according to team size &
project domain (a systematic literature review). 8th IEEE Annual
Inform Technol Electron Mob Communication Conf (IEMCON
2017) 567–575. https://doi.org/10.1109/IEMCON.2017.8117128

21. Guerrero-Ulloa G, Hornos MJ, Rodríguez-Domínguez C (2020)
TDDM4IoTS: A Test-Driven Development Methodology for
Internet of Things (IoT)-based Systems. In Communications

1 3

239

https://doi.org/10.1007/978-3-030-42517-3_4
https://doi.org/10.1007/978-3-642-36818-9_6
https://doi.org/10.1007/s40860-022-00182-5
https://doi.org/10.1007/s40860-022-00182-5
https://doi.org/10.3390/s23020790
https://doi.org/10.3390/s23020790
https://doi.org/10.1145/3341105.3374033
https://doi.org/10.1145/3341105.3374033
https://doi.org/10.3390/electronics10111361
https://doi.org/10.3390/electronics10111361
https://doi.org/10.1109/jsyst.2019.2891520
https://doi.org/10.1109/jsyst.2019.2891520
https://doi.org/10.1109/syseng.2016.7753151
https://doi.org/10.1109/syseng.2016.7753151
https://doi.org/10.1109/itng.2015.17
https://doi.org/10.1007/978-3-319-32467-8_41
https://doi.org/10.1109/jsyst.2015.2469681
https://doi.org/10.1109/jsyst.2015.2469681
https://doi.org/10.1109/jsen.2020.3031659
https://www.iiconsortium.org/IIRA/
https://doi.org/10.1109/2.59
https://doi.org/10.1109/2.59
https://doi.org/10.1109/tsmc.2020.3042898
https://doi.org/10.1109/wf-iot.2014.6803174
https://doi.org/10.1016/j.infsof.2019.04.001
https://doi.org/10.1016/j.infsof.2019.04.001
https://www.audentia-gestion.fr/cisco/pdf/at-a-glance-c45-731471.pdf
https://www.audentia-gestion.fr/cisco/pdf/at-a-glance-c45-731471.pdf
https://doi.org/10.1016/j.iot.2018.08.009
https://doi.org/10.1016/j.iot.2018.08.009
https://doi.org/10.3390/smartcities4020024
https://doi.org/10.3390/smartcities4020024
https://doi.org/10.1109/access.2017.2775180
https://doi.org/10.1109/access.2017.2775180
https://doi.org/10.1007/978-3-030-05532-5_4
https://doi.org/10.3233/aise200021
https://doi.org/10.3390/app12073396
https://doi.org/10.1109/access.2021.3067331
https://doi.org/10.1016/j.scs.2021.102783
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/iot-value-set-to-accelerate-through-2030-where-and-how-to-capture-it
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/iot-value-set-to-accelerate-through-2030-where-and-how-to-capture-it
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/iot-value-set-to-accelerate-through-2030-where-and-how-to-capture-it
https://doi.org/10.5555/41765.41801
https://doi.org/10.48550/arXiv.1709.08439
https://doi.org/10.48550/arXiv.1709.08439
https://www.ijmse.org/Volume8/Issue2/paper1.pdf
https://www.ijmse.org/Volume8/Issue2/paper1.pdf
https://doi.org/10.1109/IEMCON.2017.8117128

Journal of Reliable Intelligent Environments (2024) 10:215–244

multi-cloud software development. IET Software 13(3):172–181.
https://doi.org/10.1049/iet-sen.2018.5295

54. OpenMBEE (2023) Open Model Based Engineering Environ-
ment. https://www.openmbee.org/ (Accessed: 27 October 2023)

55. Whittle J, Hutchinson J, Rouncefield M (2014) The state of
practice in model-driven engineering. IEEE Softw 31(3):79–85.
https://doi.org/10.1109/ms.2013.65

56. Sosa-Reyna CM, Tello-Leal E, Lara-Alabazares D (2018) Meth-
odology for the model-driven development of service oriented IoT
applications. J Syst Architect 90:15–22. https://doi.org/10.1016/j.
sysarc.2018.08.008

57. OMG (2023) Model Driven Architecture (MDA). https://www.
omg.org/mda/ (Accessed: 27 October 2023)

58. Uzunov AV, Falkner K, Fernández EB (2015) A comprehensive
pattern-oriented approach to engineering security methodologies.
Inform Softw Technol 57:217–247. https://doi.org/10.1016/j.
infsof.2014.09.001

59. Bourque P, Fairley RE (2014) Guide to the Software Engineering
Body of Knowledge (SWeBOK®): Version 3.0. IEEE Computer
Society

60. ISO/IEC/IEEE (2017) 24765 – 2017 - ISO/IEC/IEEE Interna-
tional Standard - Systems and software engineering–Vocabu-
lary. In ISO/IEC/IEEE 24765:2017(E) (pp. 1-541). https://doi.
org/10.1109/ieeestd.2017.8016712

61. Cloutier RJ (2023) Guide to the Systems Engineering Body of
Knowledge (SEBoK). https://sebokwiki.org/wiki/Guide_to_
the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
(Accessed: 30 October 2023)

62. Project Management Institute (2013) Software Extension to the
PMBOK® Guide – Fifth Edition. Project Management Institute

63. Project Management Institute (2021) A Guide to the Project
Management Body of Knowledge (PMBOK® Guide) – Seventh
edition and the Standard for Project Management. Project Man-
agement Institute

64. Farncombe A (2004) Project stories: combining life-cycle process
models. Scenarios, stories, use cases: through the Systems Devel-
opment Life-Cycle. Wiley, pp 299–324

65. Pressman RS, Maxim BR (2019) Software Engineering: a practi-
tioner’s approach - Eighth Edition. McGraw-Hill Education

66. ISO/IEC/IEEE (2017) 12207 – 2017 - ISO/IEC/IEEE Interna-
tional Standard - Systems and software engineering -- Soft-
ware life cycle processes. In ISO/IEC/IEEE 12207:2017(E)
First edition 2017-11 (pp. 1-157). https://doi.org/10.1109/
ieeestd.2017.8100771

67. ISO/IEC/IEEE (2023) 15288 – 2023 - ISO/IEC/IEEE Interna-
tional Standard - Systems and software engineering–System life
cycle processes. In ISO/IEC/IEEE 15288:2023(E) (pp. 1-128).
https://doi.org/10.1109/ieeestd.2023.10123367

68. ISO/IEC/IEEE (2018) 24748-1-2018 - ISO/IEC/IEEE Inter-
national Standard - Systems and software engineering - Life
cycle management - Part 1: Guidelines for life cycle manage-
ment. In ISO/IEC/IEEE 24748-1:2018(E) (pp. 1–82). https://doi.
org/10.1109/ieeestd.2018.8526560

69. ISO/IEC/IEEE (2018) 24748-2-2018 - ISO/IEC/IEEE Inter-
national Standard - Systems and Software Engineering– Life
Cycle Management– Part 2: Guidelines for the Application of
ISO/IEC/IEEE 15288 (System Life Cycle Processes). In ISO/
IEC/IEEE 24748-2:2018(E) (pp. 1–90). https://doi.org/10.1109/
ieeestd.2018.8764712

70. ISO/IEC/IEEE (2020) 24748-3-2020 - ISO/IEC/IEEE Interna-
tional Standard - Systems and software engineering–Life cycle
management–Part 3: Guidelines for the application of ISO/
IEC/IEEE 12207 (software life cycle processes). In ISO/IEC/
IEEE 24748-3:2020(E) (pp. 1–76). https://doi.org/10.1109/
ieeestd.2020.9238526

38. de Oliveira RP, Massoni T, de Araújo NM, Sarmento CF, dos San-
tos FS (2021) Ants doing legwork: Investigating motivators for
software development career abandonment. In Proceedings of the
XXXV Brazilian Symposium on Software Engineering (SBES’21)
(pp. 353–362). https://doi.org/10.1145/3474624.3474644

39. Matsubara PGF, Steinmacher I, Gadelha B, Conte T (2021) Buy-
ing time in software development: how estimates become com-
mitments? In Proceedings of the IEEE/ACM 13th International
Workshop on Cooperative and Human Aspects of Software Engi-
neering (CHASE 2021) (pp. 61–70). https://doi.org/10.1109/
chase52884.2021.00015

40. Ravaglia CC, Méxas MP, Dias AC, Silveira Batista D, Da Silva
Nunes HMC, K (2021) Management of software development
projects in Brazil using agile methods. Indep J Manage Prod
12(5):1357–1374. https://doi.org/10.14807/ijmp.v12i5.1353

41. Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham
W, Fowler M, Grenning J, Highsmith J, Hunt A, Jeffries R et al
(2001) Manifesto for Agile Software Development. http://agile-
manifesto.org/ (Accessed: 28 October 2023)

42. Fowler M, Highsmith J (2001) The Agile Manifesto. Softw Dev
9(8):28–35

43. Hazzan O, Dubinsky Y (2014) The Agile Manifesto. In
SpringerBriefs in Computer Science (pp. 9–14). https://doi.
org/10.1007/978-3-319-10157-6_3

44. Thesing T, Feldmann C, Burchardt M (2021) Agile versus Water-
fall project management: decision model for selecting the appro-
priate approach to a project. Procedia Comput Sci 181:746–756.
https://doi.org/10.1016/j.procs.2021.01.227

45. Younus AM, Younis H (2021) Conceptual framework of agile
project management, affecting project performance, key: require-
ments and challenges. Int J Innovative Res Eng Manage 8(4):10–
14. https://doi.org/10.21276/ijirem.2021.8.4.3

46. Nugra H, Abad A, Fuertes W, Galárraga F, Aules H, Villacís C,
Toulkeridis T (2016) A low-cost IoT application for the urban
traffic of vehicles, based on wireless sensors using GSM tech-
nology. In Proceedings of the IEEE International Symposium
on Distributed Simulation and Real-Time Applications (DS-RT
2016) (pp. 161–169). https://doi.org/10.1109/ds-rt.2016.24

47. Peterson B, Vogel B (2018) Prototyping the Internet of Things
with Web technologies: is it easy? In Proceedings of the 2018
IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops 2018) (pp.
518–522). https://doi.org/10.1109/percomw.2018.8480268

48. Terán PG, Plua RK (2018) Home automation application for the
monitoring and control of an electric water heater using AWS
technology. In Proceedings of the IEEE 38th Central America and
Panama Convention (CONCAPAN 2018) (pp. 1–6). https://doi.
org/10.1109/concapan.2018.8596474

49. Usländer T, Batz T (2018) Agile service engineering in the Indus-
trial Internet of Things. Future Internet 10(10):100. https://doi.
org/10.3390/fi10100100

50. ISO/IEC/IEEE (2018) 26515 – 2018 - ISO/IEC/IEEE Interna-
tional Standard - Systems and software engineering — Devel-
oping information for users in an agile environment. In ISO/
IEC/IEEE 26515:2018(E) (pp. 1–32). https://doi.org/10.1109/
ieeestd.2018.8584455

51. Dalpiaz F, van der Schalk I, Brinkkemper S, Aydemir FB, Lucas-
sen G (2019) Detecting terminological ambiguity in user stories:
Tool and experimentation. Inform Softw Technol 110:3–16.
https://doi.org/10.1016/j.infsof.2018.12.007

52. Pecchia C, Trincardi M, Di Bello P (2016) Expressing, manag-
ing, and validating user stories: Experiences from the market. In
Advances in Intelligent Systems and Computing (Vol. 422, pp.
103–111). https://doi.org/10.1007/978-3-319-27896-4_9

53. Muntés-Mulero V, Ripollés O, Gupta S, Dominiak J, Willeke
ER, Matthews P, Somosköi B (2019) Agile risk management for

1 3

240

https://doi.org/10.1049/iet-sen.2018.5295
https://www.openmbee.org/
https://doi.org/10.1109/ms.2013.65
https://doi.org/10.1016/j.sysarc.2018.08.008
https://doi.org/10.1016/j.sysarc.2018.08.008
https://www.omg.org/mda/
https://www.omg.org/mda/
https://doi.org/10.1016/j.infsof.2014.09.001
https://doi.org/10.1016/j.infsof.2014.09.001
https://doi.org/10.1109/ieeestd.2017.8016712
https://doi.org/10.1109/ieeestd.2017.8016712
https://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK
https://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK
https://doi.org/10.1109/ieeestd.2017.8100771
https://doi.org/10.1109/ieeestd.2017.8100771
https://doi.org/10.1109/ieeestd.2023.10123367
https://doi.org/10.1109/ieeestd.2018.8526560
https://doi.org/10.1109/ieeestd.2018.8526560
https://doi.org/10.1109/ieeestd.2018.8764712
https://doi.org/10.1109/ieeestd.2018.8764712
https://doi.org/10.1109/ieeestd.2020.9238526
https://doi.org/10.1109/ieeestd.2020.9238526
https://doi.org/10.1145/3474624.3474644
https://doi.org/10.1109/chase52884.2021.00015
https://doi.org/10.1109/chase52884.2021.00015
https://doi.org/10.14807/ijmp.v12i5.1353
http://agilemanifesto.org/
http://agilemanifesto.org/
https://doi.org/10.1007/978-3-319-10157-6_3
https://doi.org/10.1007/978-3-319-10157-6_3
https://doi.org/10.1016/j.procs.2021.01.227
https://doi.org/10.21276/ijirem.2021.8.4.3
https://doi.org/10.1109/ds-rt.2016.24
https://doi.org/10.1109/percomw.2018.8480268
https://doi.org/10.1109/concapan.2018.8596474
https://doi.org/10.1109/concapan.2018.8596474
https://doi.org/10.3390/fi10100100
https://doi.org/10.3390/fi10100100
https://doi.org/10.1109/ieeestd.2018.8584455
https://doi.org/10.1109/ieeestd.2018.8584455
https://doi.org/10.1016/j.infsof.2018.12.007
https://doi.org/10.1007/978-3-319-27896-4_9

Journal of Reliable Intelligent Environments (2024) 10:215–244

85. Lutze R (2020) Digital Twin Based Software Design in eHealth - A
New Development Approach for Health/Medical Software Prod-
ucts. In Proceedings of the 2020 IEEE International Conference on
Engineering, Technology and Innovation (ICE/ITMC 2020) (pp.
1–9). https://doi.org/10.1109/ICE/ITMC49519.2020.9198546

86. Pal A, Mukherjee A, Balamuralidhar P (2015) Model-Driven
Development for Internet of Things: towards easing the con-
cerns of application developers. In Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommu-
nications Engineering (Vol. 150, pp. 339–346). https://doi.
org/10.1007/978-3-319-19656-5_46

87. Meshkova E, Riihijärvi J, Oldewurtel F, Jardak C, Mähönen P
(2008) Service-oriented design methodology for wireless sensor
networks: a view through case studies. In 2008 IEEE International
Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing (SUTC 2008) (pp. 146–153). https://doi.org/10.1109/
sutc.2008.43

88. Fahmideh M, Abbasi AA, Behnaz A, Grundy J, Susilo W (2022)
Software Engineering for Internet of Things: the practitioners’
perspective. IEEE Trans Software Eng 48(8):2857–2878. https://
doi.org/10.1109/tse.2021.3070692

89. Lekidis A, Stachtiari E, Katsaros P, Bozga M, Georgiadis CK
(2018) Model-based design of IoT systems with the BIP com-
ponent framework. Software: Pract Experience 48(6):1167–1194.
https://doi.org/10.1002/spe.2568

90. Ciccozzi F, Spalazzese R (2016) MDE4IoT: Supporting the
Internet of Things with Model-Driven Engineering. In Studies
in Computational Intelligence (Vol. 678, pp. 67–76). https://doi.
org/10.1007/978-3-319-48829-5_7

91. Harbouche A, Djedi N, Erradi M, Ben-Othman J, Kobbane A
(2017) Model driven flexible design of a wireless body sensor
network for health monitoring. Comput Netw 129:548–571.
https://doi.org/10.1016/j.comnet.2017.06.014

92. Corredor I, Bernardos AM, Iglesias J, Casar JR (2012) Model-
driven methodology for rapid deployment of smart spaces based
on resource-oriented architectures. Sensors 12(7):9286–9335.
https://doi.org/10.3390/s120709286

93. Sosa-Reyna CM, Tello-Leal E, Lara-Alabazares D (2018) An
approach based on Model-Driven Development for IoT appli-
cations. In Proceedings of the IEEE International Congress on
Internet of Things (ICIOT 2018) (pp. 134–139). https://doi.
org/10.1109/iciot.2018.00026

94. Sosa-Reyna CM, Tello-Leal E, Lara-Alabazares D, Mata-Torres
JA, Lopez-Garza E (2018) A methodology based on Model-
Driven Engineering for IoT application development. In Twelfth
International Conference on Digital Society and eGovernments
(ICDS 2018) (pp. 36–41)

95. Brambilla M, Umuhoza E, Acerbis R (2017) Model-driven devel-
opment of user interfaces for IoT systems via domain-specific
components and patterns. J Internet Serv Appl 8:14. https://doi.
org/10.1186/s13174-017-0064-1

96. Costa B, Pires PF, Delicato FC (2016) Modeling IoT Applications
with SysML4IoT. In Proceedings of the 42nd Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA
2016) (pp. 157–164). https://doi.org/10.1109/seaa.2016.19

97. Cicirelli F, Fortino G, Guerrieri A, Spezzano G, Vinci A (2017)
Metamodeling of smart environments: from design to implemen-
tation. Adv Eng Inform 33:274–284. https://doi.org/10.1016/j.
aei.2016.11.005

98. Ataide A, Barros JP, Brito IS, Gomes L (2017) Towards auto-
matic code generation for distributed cyber-physical systems: A
first prototype for Arduino boards. In Proceedings of the IEEE
International Conference on Emerging Technologies and Fac-
tory Automation (ETFA 2017) (pp. 1–4). https://doi.org/10.1109/
etfa.2017.8247737

71. Laporte CY, Vargas EP (2014) The development of international
standards to facilitate process improvements for very small enti-
ties. In Software Design and Development: Concepts, Method-
ologies, Tools, and Applications (pp. 1335–1361). IGI Global.
https://doi.org/10.4018/978-1-4666-4301-7.ch065

72. Rashid N, Quirós G, Faruque MAA (2019) A survivability-aware
cyber-physical systems design methodology. In 2019 IEEE 15th
IEEE International Conference on Automation Science and Engi-
neering (CASE 2019) (pp. 848–853). https://doi.org/10.1109/
coase.2019.8843113

73. Henke C, Michael J, Lankeit C, Trächtler A (2017) A Holistic
Approach for Virtual Commissioning of Intelligent Systems:
Model-Based Systems Engineering for the Development of a
Turn-Milling Center. In 2017 Annual IEEE International Sys-
tems Conference (SysCon) (pp. 1–6), https://doi.org/10.1109/
SYSCON.2017.7934735

74. Augusto JC, Hornos MJ (2013) Software simulation and
verification to increase the reliability of Intelligent Environ-
ments. Adv Eng Softw 58:18–34. https://doi.org/10.1016/j.
advengsoft.2012.12.004

75. Orfanus D, Heimfarth T, Janácik P (2009) An approach for sys-
tematic design of emergent self-organization in wireless sensor
networks. In Computation World: Future Computing, Service
Computation, Adaptive, Content, Cognitive, Patterns (Com-
putationWorld 2009) (pp. 92–98). https://doi.org/10.1109/
computationworld.2009.87

76. Coronato A, De Pietro G (2010) Formal design of ambient intel-
ligence applications. IEEE Comput 43(12):60–68. https://doi.
org/10.1109/mc.2010.335

77. McGrath W, Etemadi M, Roy S, Hartmann B (2015) Fab-
ryq: Using phones as gateways to prototype Internet of Things
applications using Web scripting. In Proceedings of the 2015
ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems (EICS 2015) (pp. 164–173). https://doi.
org/10.1145/2774225.2774835

78. Broenink JF, Vos PJD, Lu Z, Bezemer MM (2016) A co-design
approach for embedded control software of Cyber-Physical Sys-
tems. In 11th Systems of Systems Engineering Conference, (SoSE
2016) (pp. 1–5). https://doi.org/10.1109/SYSOSE.2016.7542927

79. Jensen JC, Chang DH, Lee EA (2011) A model-based design
methodology for Cyber-Physical Systems. In 7th International
Wireless Communications and Mobile Computing Confer-
ence (IWCMC 2011) (pp. 1666–1671). https://doi.org/10.1109/
IWCMC.2011.5982785

80. Desjardins A, Viny JE, Key C, Johnston N (2019) Alterna-
tive avenues for IoT: designing with non-stereotypical homes.
In Proceedings of the 2019 CHI Conference on Human Fac-
tors in Computing Systems (CHI’19) (pp. 1–13). https://doi.
org/10.1145/3290605.3300581

81. Gianni F, Mora S, Divitini M (2019) RAPIoT toolkit: Rapid pro-
totyping of collaborative Internet of Things applications. Future
Generation Comput Syst 95:867–879. https://doi.org/10.1016/j.
future.2018.02.030

82. Wiberg M (2018) Addressing IoT: Towards material-centered inter-
action design. In Lecture Notes in Computer Science (Vol. 10901,
pp. 198–207). https://doi.org/10.1007/978-3-319-91238-7_17

83. Mezghani E, Expósito E, Drira K (2017) A model-driven meth-
odology for the design of autonomic and cognitive IoT-based sys-
tems: application to healthcare. IEEE Trans Emerg Top Comput
Intell 1(3):224–234. https://doi.org/10.1109/tetci.2017.2699218

84. Berkenbrock GR, Medeiros Berkenbrock D, Alves C (2015) O.
C. The need of software development process for wireless sen-
sor networks with cooperative nodes. In 2015 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM
2015) (pp. 930–933). https://doi.org/10.1109/inm.2015.7140412

1 3

241

https://doi.org/10.1109/ICE/ITMC49519.2020.9198546
https://doi.org/10.1007/978-3-319-19656-5_46
https://doi.org/10.1007/978-3-319-19656-5_46
https://doi.org/10.1109/sutc.2008.43
https://doi.org/10.1109/sutc.2008.43
https://doi.org/10.1109/tse.2021.3070692
https://doi.org/10.1109/tse.2021.3070692
https://doi.org/10.1002/spe.2568
https://doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1016/j.comnet.2017.06.014
https://doi.org/10.3390/s120709286
https://doi.org/10.1109/iciot.2018.00026
https://doi.org/10.1109/iciot.2018.00026
https://doi.org/10.1186/s13174-017-0064-1
https://doi.org/10.1186/s13174-017-0064-1
https://doi.org/10.1109/seaa.2016.19
https://doi.org/10.1016/j.aei.2016.11.005
https://doi.org/10.1016/j.aei.2016.11.005
https://doi.org/10.1109/etfa.2017.8247737
https://doi.org/10.1109/etfa.2017.8247737
https://doi.org/10.4018/978-1-4666-4301-7.ch065
https://doi.org/10.1109/coase.2019.8843113
https://doi.org/10.1109/coase.2019.8843113
https://doi.org/10.1109/SYSCON.2017.7934735
https://doi.org/10.1109/SYSCON.2017.7934735
https://doi.org/10.1016/j.advengsoft.2012.12.004
https://doi.org/10.1016/j.advengsoft.2012.12.004
https://doi.org/10.1109/computationworld.2009.87
https://doi.org/10.1109/computationworld.2009.87
https://doi.org/10.1109/mc.2010.335
https://doi.org/10.1109/mc.2010.335
https://doi.org/10.1145/2774225.2774835
https://doi.org/10.1145/2774225.2774835
https://doi.org/10.1109/SYSOSE.2016.7542927
https://doi.org/10.1109/IWCMC.2011.5982785
https://doi.org/10.1109/IWCMC.2011.5982785
https://doi.org/10.1145/3290605.3300581
https://doi.org/10.1145/3290605.3300581
https://doi.org/10.1016/j.future.2018.02.030
https://doi.org/10.1016/j.future.2018.02.030
https://doi.org/10.1007/978-3-319-91238-7_17
https://doi.org/10.1109/tetci.2017.2699218
https://doi.org/10.1109/inm.2015.7140412

Journal of Reliable Intelligent Environments (2024) 10:215–244

J Reliable Intell Environ 3(1):1–3. https://doi.org/10.1007/
s40860-017-0043-0

115. Hornos MJ, Rodríguez-Domínguez C (2018) Increasing user
confidence in intelligent environments. J Reliable Intell Environ
4(2):71–73. https://doi.org/10.1007/s40860-018-0063-4

116. Holzmann GJ (2003) The Spin model checker: primer and refer-
ence manual. Addison-Wesley Professional

117. Augusto JC, Callaghan V, Cook DJ, Kameas A, Satoh I (2013)
Intelligent Environments: a manifesto. Human-centric Comput
Inform Sci 3(1):12. https://doi.org/10.1186/2192-1962-3-12

118. Nielsen CB, Larsen PG, Fitzgerald J, Woodcock J, Peleška J
(2015) Systems of systems engineering. ACM-CSUR 48(2):1–
41. https://doi.org/10.1145/2794381

119. Augusto JC, Kramer D, Alegre U, Covaci A, Santokhee A (2017)
The user-centred intelligent environments development pro-
cess as a guide to co-create smart technology for people with
special needs. Univ Access Inf Soc 17(1):115–130. https://doi.
org/10.1007/s10209-016-0514-8

120. Jones SP, Hara S, Augusto JC (2014) eFRIEND: an ethical frame-
work for intelligent environments development. Ethics Inf Tech-
nol 17(1):11–25. https://doi.org/10.1007/s10676-014-9358-1

121. Augusto JC, Gimenez-Manuel JG, Quinde M, Oguego CL, Ali
SM, James-Reynolds C (2020) A Smart Environments Architec-
ture (SEArch). Appl Artif Intell 34(2):155–186. https://doi.org/10
.1080/08839514.2020.1712778

122. Augusto JC, Quinde M, Oguego CL, Manuel JGG (2021) Con-
text-Aware Systems Architecture (CASA). Cybernetics and Sys-
tems, 1–27. https://doi.org/10.1080/01969722.2021.1985226

123. Augusto JC, Quinde M, Kahn N (2019) Using Formal Methods
to Guide the Development of an Asthma Management System.
In 2019 10th International Conference on Dependable Systems,
Services and Technologies (DESSERT) (pp. 57–62). https://doi.
org/10.1109/dessert.2019.8770017

124. Rodrigues FF, Matalonga S, Travassos GH (2016) CATS
Design. Proceedings of the 1st Brazilian Symposium on
Systematic and Automated Software Testing. https://doi.
org/10.1145/2993288.2993293

125. Augusto JC, Quinde M, Oguego CL (2019) Context-aware Sys-
tems Testing and Validation. In 2019 10th International Conference
on Dependable Systems, Services and Technologies (DESSERT)
(pp. 7–12). https://doi.org/10.1109/dessert.2019.8770048

126. Chin J, Callaghan V, Allouch SB (2019) The Internet-of-Things:
reflections on the past, present and future from a user-centered
and smart environment perspective. J Ambient Intell Smart Envi-
ron 11(1):45–69. https://doi.org/10.3233/ais-180506

127. Manuel JGG, Augusto JC, Stewart J (2020) ANABEL: towards
empowering people living with dementia in ambient assisted liv-
ing. Univ Access Inf Soc 21(2):457–476. https://doi.org/10.1007/
s10209-020-00760-5

128. Quinde M, Augusto JC, Khan N, Van Wyk A (2020) ADAPT:
Approach to Develop context-Aware solutions for Personalised
asthma ManagemenT. J Biomed Inform 111:103586. https://doi.
org/10.1016/j.jbi.2020.103586

129. Augusto JC, Muñoz A (2019) User preferences in Intelligent
Environments. Appl Artif Intell 33(12):1069–1091. https://doi.
org/10.1080/08839514.2019.1661596

130. Oguego CL, Augusto JC, Springett M, Quinde M, Reynolds CJ
(2019) An Interface for Managing users’ Preferences in AmI. In
2019 15th International Conference on Intelligent Environments
(IE) (pp. 56–59). https://doi.org/10.1109/ie.2019.00009

131. Ali SM, Augusto JC, Windridge D, Ward EV (2022) A user-
guided personalization methodology to facilitate new smart home
occupancy. Univ Access Inf Soc 22(3):869–891. https://doi.
org/10.1007/s10209-022-00883-x

132. Sakanga N, Augusto JC, Brodie L, Marzano L (2022) Qual-
ity Traceability for User-centric Context-aware Systems in

99. Fortino G, Russo W (2012) ELDAMeth: an agent-oriented meth-
odology for simulation-based prototyping of distributed agent
systems. Inform Softw Technol 54(6):608–624. https://doi.
org/10.1016/j.infsof.2011.08.006

100. Chauhan S, Patel P, Delicato FC, Chaudhary S (2016) A devel-
opment framework for programming cyber-physical systems.
In Proceedings of the 2nd International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS 2016)
(pp. 47–53). https://doi.org/10.1145/2897035.2897039

101. Pico-Valencia, P., Holgado-Terriza, JA., & Paderewski, P. (2019)
A systematic method for building Internet of Agents applica-
tions based on the Linked Open Data approach. Future Genera-
tion Computer Systems 94:250-271, https://doi.org/10.1016/j.
future.2018.11.042.

102. Fortino G, Guerrieri A, Russo W, Savaglio C (2015) Towards a
development methodology for smart object-oriented IoT systems:
a metamodel approach. In Proceedings of the 2015 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC
2015) (pp. 1297–1302). https://doi.org/10.1109/smc.2015.231

103. Fortino G (2016) Agents meet the IoT: toward ecosystems of
networked smart objects. IEEE Syst Man Cybernetics Magazine
2(2):43–47. https://doi.org/10.1109/msmc.2016.2557483

104. Astels D (2003) Test-driven development: a practical guide. Pren-
tice Hall

105. Guerrero-Ulloa G, Carvajal-Suarez D, Pachay-Espinoza A,
Brito-Casanova G, Hornos MJ, Rodríguez-Domínguez C (2023)
TDDT4IoTS: Test-Driven Development Tool for IoT-based Sys-
tems. https://aplicaciones.uteq.edu.ec/tddt4iots/ (Accessed: 16
February 2024)

106. Guerrero-Ulloa G, Andrango-Catota A, Abad-Alay M, Hornos
MJ, Rodríguez-Domínguez C (2023) Development and assess-
ment of an indoor air quality control IoT-based system. Electron-
ics 12(3):608. https://doi.org/10.3390/electronics12030608

107. Guerrero-Ulloa G, Fernández-Loor A, Moreira F, Nováis P, Rodrí-
guez-Domínguez C, Hornos MJ (2023) Validation of a develop-
ment methodology and tool for IoT-based systems through a case
study for visually impaired people. Internet Things 23:100900.
https://doi.org/10.1016/j.iot.2023.100900

108. Guerrero-Ulloa G, Méndez-García A, Torres-Lindao V, Zamora-
Mecías V, Rodríguez-Domínguez C, Hornos MJ (2023) Internet
of Things (IoT)-based indoor plant care system. J Ambient Intell
Smart Environ 15(1):47–62. https://doi.org/10.3233/ais-220483

109. Fortino G, Gravina R, Russo W, Savaglio C, Wasielewska K,
Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Tkaczyk R
(2021) INTER-Meth: a methodological approach for the integra-
tion of heterogeneous IoT systems. In Interoperability of Het-
erogeneous IoT Platforms: A Layered Approach (pp. 195–230).
Springer. https://doi.org/10.1007/978-3-030-82446-4_7

110. Wang Z, Cui L, Guo W, Zhao L, Yuan X, Gu X, Tang W, Bu
L, Huang W (2022) A design method for an intelligent manu-
facturing and service system for rehabilitation assistive devices
and special groups. Adv Eng Inform 51:101504. https://doi.
org/10.1016/j.aei.2021.101504

111. Patel P, Cassou D (2015) Enabling high-level application devel-
opment for the Internet of Things. J Syst Softw 103:62–84.
https://doi.org/10.1016/j.jss.2015.01.027

112. Gogineni S, Riedelsheimer T, Stark R (2019) Systematic product
development methodology for customizable IoT devices. Procedia
CIRP 84:393–399. https://doi.org/10.1016/j.procir.2019.04.287

113. Benghazi K, Hurtado MV, Hornos MJ, Rodríguez ML, Rodrí-
guez-Domínguez C, Pelegrina AB, Rodríguez-Fórtiz MJ
(2012) Enabling correct design and formal analysis of Ambient
Assisted Living systems. J Syst Softw 85(3):498–510. https://doi.
org/10.1016/j.jss.2011.05.022

114. Hornos MJ (2017) Application of Software Engineering tech-
niques to improve the reliability of Intelligent Environments.

1 3

242

https://doi.org/10.1007/s40860-017-0043-0
https://doi.org/10.1007/s40860-017-0043-0
https://doi.org/10.1007/s40860-018-0063-4
https://doi.org/10.1186/2192-1962-3-12
https://doi.org/10.1145/2794381
https://doi.org/10.1007/s10209-016-0514-8
https://doi.org/10.1007/s10209-016-0514-8
https://doi.org/10.1007/s10676-014-9358-1
https://doi.org/10.1080/08839514.2020.1712778
https://doi.org/10.1080/08839514.2020.1712778
https://doi.org/10.1080/01969722.2021.1985226
https://doi.org/10.1109/dessert.2019.8770017
https://doi.org/10.1109/dessert.2019.8770017
https://doi.org/10.1145/2993288.2993293
https://doi.org/10.1145/2993288.2993293
https://doi.org/10.1109/dessert.2019.8770048
https://doi.org/10.3233/ais-180506
https://doi.org/10.1007/s10209-020-00760-5
https://doi.org/10.1007/s10209-020-00760-5
https://doi.org/10.1016/j.jbi.2020.103586
https://doi.org/10.1016/j.jbi.2020.103586
https://doi.org/10.1080/08839514.2019.1661596
https://doi.org/10.1080/08839514.2019.1661596
https://doi.org/10.1109/ie.2019.00009
https://doi.org/10.1007/s10209-022-00883-x
https://doi.org/10.1007/s10209-022-00883-x
https://doi.org/10.1016/j.infsof.2011.08.006
https://doi.org/10.1016/j.infsof.2011.08.006
https://doi.org/10.1145/2897035.2897039
https://doi.org/10.1016/j.future.2018.11.042
https://doi.org/10.1016/j.future.2018.11.042
https://doi.org/10.1109/smc.2015.231
https://doi.org/10.1109/msmc.2016.2557483
https://aplicaciones.uteq.edu.ec/tddt4iots/
https://doi.org/10.3390/electronics12030608
https://doi.org/10.1016/j.iot.2023.100900
https://doi.org/10.3233/ais-220483
https://doi.org/10.1007/978-3-030-82446-4_7
https://doi.org/10.1016/j.aei.2021.101504
https://doi.org/10.1016/j.aei.2021.101504
https://doi.org/10.1016/j.jss.2015.01.027
https://doi.org/10.1016/j.procir.2019.04.287
https://doi.org/10.1016/j.jss.2011.05.022
https://doi.org/10.1016/j.jss.2011.05.022

Journal of Reliable Intelligent Environments (2024) 10:215–244

148. Bonawitz K, Kairouz P, McMahan B, Ramage D (2022) Feder-
ated learning and privacy. Commun ACM 65(4):90–97. https://
doi.org/10.1145/3500240

149. Ogbuabor G, Augusto JC, Moseley R, Van Wyk A (2021)
Context-aware support for cardiac health monitoring using
federated machine learning. In Lecture Notes in Com-
puter Science (Vol. 13101, pp. 267–281). https://doi.
org/10.1007/978-3-030-91100-3_22

150. Sánchez S, Machacuay J, Quinde M (2023) Federated Learn-
ing for Human Activity Recognition on the MHealth Dataset. In
Lecture Notes in Computer Science (Vol. 14125, pp. 215–225).
https://doi.org/10.1007/978-3-031-42505-9_19

151. Hosseini S, Sardo SR (2022) Network intrusion detection based on
deep learning method in internet of thing. J Reliable Intell Envi-
ron 9(2):147–159. https://doi.org/10.1007/s40860-021-00169-8

152. Perera C, Barhamgi M, Bandara AK, Ajmal M, Price B, Nuseibeh
B (2020) Designing privacy-aware internet of things applications.
Inf Sci 512:238–257. https://doi.org/10.1016/j.ins.2019.09.061

153. Bahaa A, Abdelaziz A, Sayed A, El-Fangary LM, Fahmy H
(2021) Monitoring real time security attacks for IoT systems
using DevSecOps: a systematic literature review. Information
12(4):154. https://doi.org/10.3390/info12040154

154. Zambare P, Liu Y (2023) Understanding security challenges and
defending access control models for Cloud-based Internet of
Things network. In Internet of Things. Advances in Information and
Communication Technology (IFIPIoT 2023) (Vol. 684, pp. 179–
197). Springer. https://doi.org/10.1007/978-3-031-45882-8_13

155. Mohan D, Alwin L, Neeraja P, Lawrence KD, Pathari V (2021)
A private Ethereum blockchain implementation for secure data
handling in Internet of Medical Things. J Reliable Intell Environ
8(4):379–396. https://doi.org/10.1007/s40860-021-00153-2

156. Shaheen Y, Hornos MJ, Rodríguez-Domínguez C (2023) IoT
security and privacy challenges from the developer perspective.
In Lecture Notes in Networks and Systems (Vol. 770, pp. 13–21).
https://doi.org/10.1007/978-3-031-43461-7_2

157. Amraoui N, Zouari B (2021) Securing the operation of Smart
Home Systems: a literature review. J Reliable Intell Environ
8(1):67–74. https://doi.org/10.1007/s40860-021-00160-3

158. Bertino E (2016) Data privacy for IoT systems: Concepts,
approaches, and research directions. In IEEE International Con-
ference on Big Data (pp. 3645–3647). https://doi.org/10.1109/
BigData.2016.7841030

159. Yu J, Guo L, Zhang J, Wang G (2024) A survey on graph neural
network-based next POI recommendation for smart cities. Appear
Anniversary Issue J Reliable Intell Environ 10(3)

160. Sun S, Yen J (2005) Information Supply Chain: A Unified Frame-
work for Information-Sharing. In Lecture Notes in Computer Sci-
ence (pp. 422–428). https://doi.org/10.1007/11427995_38

161. Stephanidis C, Salvendy G, Antona M, Chen JYC, Dong J, Duffy
VG, Fang X, Fidopiastis CM, Fragomeni G, Fu LP, Guo Y, Harris
D, Ioannou A, Jeong K, Konomi S, Krömker H, Kurosu M, Lewis
JR, Marcus A, Zhou J (2019) Seven HCI grand challenges. Int J
Hum Comput Interact 35(14):1229–1269. https://doi.org/10.1080
/10447318.2019.1619259

162. Bök P-B, Micucci D (2024) The future of human and animal digi-
tal health platforms. Appear Anniversary Issue J Reliable Intell
Environ 10(3)

163. Le Guilly T, Nielsen MK, Pedersen TG, Skou A, Kjeldskov J,
Skov MB (2016) User constraints for reliable user-defined smart
home scenarios. J Reliable Intell Environ 2(2):75–91. https://doi.
org/10.1007/s40860-016-0020-z

164. Saidi A, Kacem MH, Tounsi I, Kacem AH (2023) A formal
approach to specify and verify Internet of Things architec-
ture. Internet Things 24:100972. https://doi.org/10.1016/j.
iot.2023.100972

Intelligent Environment. In 2022 IEEE 8th World Forum on
Internet of Things (WF-IoT) (pp. 13–20). https://doi.org/10.1109/
wf-iot54382.2022.10152209

133. Fortino G, Savaglio C, Palau CE, De Puga JS, Ganzha M,
Paprzycki M, Montesinos M, Liotta A, Llop M (2017) Towards
multi-layer interoperability of heterogeneous IoT platforms:
The INTER-IoT approach. In Integration, Interconnection, and
Interoperability of IoT Systems (pp. 199–232). Springer. https://
doi.org/10.1007/978-3-319-61300-0_10

134. Ameller D (2009) Considering Non-Functional Requirements
in Model-Driven Engineering [Master’s Thesis]. Universitat
Politècnica de Catalunya, Barcelona, Spain

135. Sachdeva V, Chung L (2017) Handling non-functional require-
ments for big data and IoT projects in Scrum. In Proceedings
of the 7th International Conference Confluence 2017 on Cloud
Computing, Data Science and Engineering (pp. 216–221). https://
doi.org/10.1109/confluence.2017.7943152

136. Jones TS, Richey RC (2000) Rapid prototyping methodology
in action: a developmental study. Education Tech Research Dev
48(2):63–80. https://doi.org/10.1007/bf02313401

137. Nast B, Sandkuhl K (2023) Methods for Model-Driven Develop-
ment of IoT Applications: Requirements from Industrial Practice.
In Proceedings of the 18th International Conference on Evalu-
ation of Novel Approaches to Software Engineering (ENASE
2023) (pp. 170–181). https://doi.org/10.5220/0011973500003464

138. Ahmad E (2023) Model-based system engineering of the Inter-
net of Things: a bibliometric literature analysis. IEEE Access
11:50642–50658. https://doi.org/10.1109/access.2023.3277429

139. Ghannem A, Salah Hamdi M, Ammar H, Soui M (2017) A sys-
tematic classification of requirements engineering approaches
for adaptive systems. In Proceedings of the Second International
Conference on Internet of things, Data and Cloud Computing
(ICC 2017) (pp. 1–9). https://doi.org/10.1145/3018896.3018939

140. Bouanaka C, Benlahrache N, Benhamaid S, Bouhamed E (2020) A
review of IoT systems engineering: application to the smart traffic
lights system. In Proceedings of the 4th International Conference
on Advanced Aspects of Software Engineering (ICAASE 2020)
(pp. 1–8). https://doi.org/10.1109/icaase51408.2020.9380114

141. Varga P, Blomstedt F, Ferreira LL, Eliasson J, Johansson M,
Delsing J, De Soria IM (2017) Making system of systems
interoperable – the core components of the Arrowhead frame-
work. J Netw Comput Appl 81:85–95. https://doi.org/10.1016/j.
jnca.2016.08.028

142. Arm (2023) What are IoT devices. Arm | The Architecture for the
Digital World. https://www.arm.com/glossary/iot-devices

143. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014)
Context Aware Computing for the Internet of Things: a sur-
vey. IEEE Commun Surv Tutorials 16(1):414–454. https://doi.
org/10.1109/surv.2013.042313.00197

144. Omar YM, Minoufekr M, Plapper P (2019) Business analyt-
ics in manufacturing: current trends, challenges and pathway
to market leadership. Oper Res Perspect 6:100127. https://doi.
org/10.1016/j.orp.2019.100127

145. Maciel P, Dantas J, Melo C, Pereira P, Oliveira F, Araújo J,
Matos R (2021) A survey on reliability and availability modeling
of edge, FOG, and cloud computing. J Reliable Intell Environ
8(3):227–245. https://doi.org/10.1007/s40860-021-00154-1

146. Miller T, Hoffman RR, Amir O, Holzinger A (2022) Special
issue on Explainable Artificial Intelligence (XAI). Artif Intell
307:103705. https://doi.org/10.1016/j.artint.2022.103705

147. Palade A, Cabrera C, Li F, White G, Razzaque MA, Clarke S
(2018) Middleware for Internet of Things: an evaluation in a
small-scale IoT environment. J Reliable Intell Environ 4(1):3–23.
https://doi.org/10.1007/s40860-018-0055-4

1 3

243

https://doi.org/10.1145/3500240
https://doi.org/10.1145/3500240
https://doi.org/10.1007/978-3-030-91100-3_22
https://doi.org/10.1007/978-3-030-91100-3_22
https://doi.org/10.1007/978-3-031-42505-9_19
https://doi.org/10.1007/s40860-021-00169-8
https://doi.org/10.1016/j.ins.2019.09.061
https://doi.org/10.3390/info12040154
https://doi.org/10.1007/978-3-031-45882-8_13
https://doi.org/10.1007/s40860-021-00153-2
https://doi.org/10.1007/978-3-031-43461-7_2
https://doi.org/10.1007/s40860-021-00160-3
https://doi.org/10.1109/BigData.2016.7841030
https://doi.org/10.1109/BigData.2016.7841030
https://doi.org/10.1007/11427995_38
https://doi.org/10.1080/10447318.2019.1619259
https://doi.org/10.1080/10447318.2019.1619259
https://doi.org/10.1007/s40860-016-0020-z
https://doi.org/10.1007/s40860-016-0020-z
https://doi.org/10.1016/j.iot.2023.100972
https://doi.org/10.1016/j.iot.2023.100972
https://doi.org/10.1109/wf-iot54382.2022.10152209
https://doi.org/10.1109/wf-iot54382.2022.10152209
https://doi.org/10.1007/978-3-319-61300-0_10
https://doi.org/10.1007/978-3-319-61300-0_10
https://doi.org/10.1109/confluence.2017.7943152
https://doi.org/10.1109/confluence.2017.7943152
https://doi.org/10.1007/bf02313401
https://doi.org/10.5220/0011973500003464
https://doi.org/10.1109/access.2023.3277429
https://doi.org/10.1145/3018896.3018939
https://doi.org/10.1109/icaase51408.2020.9380114
https://doi.org/10.1016/j.jnca.2016.08.028
https://doi.org/10.1016/j.jnca.2016.08.028
https://www.arm.com/glossary/iot-devices
https://doi.org/10.1109/surv.2013.042313.00197
https://doi.org/10.1109/surv.2013.042313.00197
https://doi.org/10.1016/j.orp.2019.100127
https://doi.org/10.1016/j.orp.2019.100127
https://doi.org/10.1007/s40860-021-00154-1
https://doi.org/10.1016/j.artint.2022.103705
https://doi.org/10.1007/s40860-018-0055-4

Journal of Reliable Intelligent Environments (2024) 10:215–244

172. Nasiri S, Adadi A, Lahmer M (2023) Automatic generation of
business process models from user stories. Int J Electr Com-
put Eng 13(1):809–822. https://doi.org/10.11591/ijece.v13i1.
pp809-822

173. Omer OSD, Eltyeb S (2022) Towards an automatic generation of
UML class diagrams from textual requirements using case-based
reasoning approach. In 4th International Conference on Applied
Automation and Industrial Diagnostics (ICAAID 2022) (pp. 1–5).
https://doi.org/10.1109/icaaid51067.2022.9799502

174. Refactoring.Guru (2023) Design patterns. https://refactoring.
guru/design-patterns (Accessed: 3 November 2023)

175. Lu Z, Afridi I, Kang HJ, Ruchkin I, Zheng X (2024) Surveying
neuro-symbolic approaches for reliable Artificial Intelligence of
Things. Appear Anniversary Issue J Reliable Intell Environ 10(3)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

165. Ashouri M, Lorig F, Davidsson P, Spalazzese R (2019) Edge com-
puting simulators for IoT system design: an analysis of qualities
and metrics. Future Internet 11(11):235. https://doi.org/10.3390/
fi11110235

166. Prabha P, Chatterjee K (2022) Design and implementation of
hybrid consensus mechanism for IoT based healthcare sys-
tem security. Int J Inform Technol 14:2081–2093. https://doi.
org/10.1007/s41870-022-00880-6

167. Birolini A (2017) Reliability Engineering: Theory and Practice
(8th Edition). Springer, Berlin

168. Tang S, Xie Y (2021) Availability modeling and performance
improving of a healthcare Internet of Things (IoT) system. IoT
2(2):16. https://doi.org/10.3390/IOT2020016

169. Xing L (2020) Reliability in Internet of Things: current status
and future perspectives. IEEE Internet Things J 7(8):6704–6721.
https://doi.org/10.1109/jiot.2020.2993216

170. Yuen KKF (2024) Fuzzy Cognitive Network Process for software
reliability and quality measurement: comparisons with Fuzzy
Analytic Hierarchy Process. Appear Anniversary Issue J Reliable
Intell Environ 10(3)

171. Corno F, De Russis L, Mannella L (2022) Helping novice
developers harness security issues in cloud-IoT systems. J
Reliable Intell Environ 8(3):261–283. https://doi.org/10.1007/
s40860-022-00175-4

1 3

244

https://doi.org/10.11591/ijece.v13i1.pp809-822
https://doi.org/10.11591/ijece.v13i1.pp809-822
https://doi.org/10.1109/icaaid51067.2022.9799502
https://refactoring.guru/design-patterns
https://refactoring.guru/design-patterns
https://doi.org/10.3390/fi11110235
https://doi.org/10.3390/fi11110235
https://doi.org/10.1007/s41870-022-00880-6
https://doi.org/10.1007/s41870-022-00880-6
https://doi.org/10.3390/IOT2020016
https://doi.org/10.1109/jiot.2020.2993216
https://doi.org/10.1007/s40860-022-00175-4
https://doi.org/10.1007/s40860-022-00175-4

	Development methodologies for IoT-based systems: challenges and research directions
	Abstract
	1 Introduction
	2 Methodologies for IoT-based system development
	2.1 Overview of existing methodologies
	2.1.1 Development methodologies for traditional information systems
	2.1.2 Agile methodologies
	2.1.3 Model-based approaches

	2.2 Life cycle stages of software systems
	2.3 Analysing key methodologies for IoT system development
	2.3.1 Methodologies based on (meta)modelling
	2.3.2 Service-oriented methodologies
	2.3.3 Agent-oriented methodologies
	2.3.4 Methodologies based on other approaches

	2.4 Conclusions from the methodology review conducted
	3 Challenges in IoT-based system development
	3.1 Heterogeneity and interoperability
	3.1.1 Hardware integration issues
	3.1.2 Software integration issues

	3.2 Scalability, adaptability and integration with emerging technologies
	3.3 Security and privacy
	3.4 User-centric approaches
	3.5 Reliability or dependability
	4 Open research avenues
	4.1 Need for more integrative and holistic methodologies
	4.2 Support tools for the effective application of methodologies
	4.3 Advancing towards widely used standard methodologies
	4.4 Enhancing IoT development with AI-driven tools
	4.5 Development of more intuitive and user-centred tools

	5 Conclusions
	References

