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1 Introduction

When only two alternatives are at stake, majority voting is the best method,
the one satisfying well-known properties (see May, 1952). The challenge is to
extend majority voting among pairs to situations where there are more than
two alternatives. Condorcet proposed choosing the alternative defeating every
other alternative in pairwise comparisons (Condorcet, 1785). Borda proposed
assigning points to each candidate according to preferences and choosing the
alternative with the highest total score (Borda, 1781). These two proposals lead
to the two most acknowledged families of voting rules, Condorcet winner rules
and scoring (or positional) rules (Smith, 1973; Young, 1975). The Condorcet
consistent criterion, requiring the election of the Condorcet winner when it
exists, is a widely used principle for evaluating alternative voting rules. On
an unrestricted domain of preferences, for any odd number of voters and any
number of alternatives higher than two, each scoring rule is not Condorcet
consistent for some preference profile (Fishburn, 1973). In this paper we consider
the set of single-peaked preferences and we are interested in analyzing which
scoring rules, if any, are Condorcet consistent.

Finding out what is the “optimal” size of a group of voters has been paid
attention in the literature. In the context of the Condorcet’s jury theorem, where
a group of voters wants to reach the “correct” decision by majority voting,
the number of voters that should be included in the group depends on the
probability of voting for the correct decision of each voter (Condorcet, 1875;
Grofman, Owen, and Feld, 1983).

While Section 2 presents the model, Section 3 presents the main results and
their proofs. Other results are placed in the Appendix.

2 Model

Let A = {a1, a2, ..., am} be a finite set of m ≥ 3 alternatives where a1 < a2 <
... < am, and N = {1, ..., n} be an odd finite set of n ≥ 3 agents. Each agent
i’s preferences are linear orders over alternatives, denoted by Ri, which are
single-peaked on A. For any al, ak ∈ A, alRiak denotes that al is strictly
preferred to ak by i at Ri. A preference R is single-peaked on A if (i) there
exists an alternative p(R), the peak of R, such that p(R)Ral for any al ∈ A,
and (ii) for every pair of alternatives al, ak ∈ A such that p (R) < al < ak or
ak < al < p (R), alRak. Let S denote the set of all single-peaked preferences
on A. Elements in Sn are called preference profiles, and are denoted by RN =
(R1, ..., Rn). A voting rule r : Sn → 2A\∅ selects a non-empty set of alternatives
for each preference profile. We define two types of voting rules: the Condorcet
winner rule and the scoring rules.

We say that an alternative aj defeats alternative ak in majority comparison
if a strict majority of agents prefers aj over ak. When n is odd and preferences
are single-peaked, there always exists a unique alternative that defeats any other
by majority comparisons, which is called the Condorcet winner. The Condorcet
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winner rule CW assigns to each preference profile the Condorcet winner, that is,
the unique alternative that defeats every other alternative in pairwise majority
comparisons.

Fix a vector w = (w0, ..., wm−1) ∈ Rm satisfying w0 ≤ w1 ≤ ... ≤ wm−2 ≤
wm−1 and w0 < wm−1. Without loss of generality, we assume that w0 = 0
and wm−1 = 1. Points are assigned to every alternative in such a way that
if alternative x is in the j’th top position according to Ri, then x receives
sw(x,Ri) = wm−j points from agent i. Given a preference profile RN and an

alternative x, let sw(x,RN ) =
∑n

i=1
sw(x,Ri) be the score assigned to x at RN .

The w-scoring rule Sw assigns to each preference profile the set of alternatives
with the highest score.1

Given A and N , we say that a w-scoring rule is Condorcet consistent if for
any RN ∈ Sn, CW (RN ) ∈ Sw(RN ).

For each m, call semiplurality rules the family of w-scoring rules where
wm−2 = w1 ∈

[
0, 1

2

]
. Note that plurality is a member of this family for

w1 = 0. The Borda count for m alternatives is the w-scoring rule where
|wl − wl+1| = |wl+1 − wl+2| for all l = 0, ...,m − 2. The Borda count is a
semiplurality rule only for m = 3 and w1 = 1

2 .

3 Results and Discussion

For each size of the society and the set of alternatives, we characterize the subset
of w-scoring rules that are Condorcet consistent. We focus on the cases of three
or more alternatives because in the case of two alternatives each w-scoring rule
trivially chooses the Condorcet winner. We obtain positive results for specific
situations, but only with three or five agents. The characterization is obtained
in Propositions 1, 2, and 3.

Proposition 1 Let n = 3. (i) For m 6= 4, a w-scoring rule is Condorcet
consistent if and only if wm−2 ∈

[
0, 1

2

]
and wm−2 = w1. (ii) For m = 4, a

w-scoring rule is Condorcet consistent if and only if wm−2 ∈
[
0, 1

2

]
.

For m 6= 4, this is the family of semiplurality scoring rules with wm−2 ∈[
0, 1

2

]
.

Proposition 2 Let n = 5. (i) For m = 3, a w-scoring rule is Condorcet
consistent if and only if wm−2 = 1

3 . (ii) For m ≥ 4, no w-scoring rule is
Condorcet consistent.

Proposition 3 For n > 5 and any m ≥ 3, no w-scoring rule is Condorcet
consistent.

1Our definition of scoring rules is from Moulin (1988). See Young (1975) and also Bossert
and Suzumura (2018) for the equivalent definition of positional scoring rules.

3



To prove the ”only if” implication (⇒) of Propositions 1 and 2 it is useful
to state the following two Lemmas, proved in the Appendix, that present the
scoring rules violating Condorcet consistency for three and five agents.

Lemma 1 Let n = 3. (a) For any m ≥ 3, no w-scoring rule with wm−2 ∈
(
1
2 , 1
]

is Condorcet consistent. (b) For any m ≥ 5, no w-scoring rule with wm−2 ∈[
0, 1

2

]
and wm−3 > w1, or with wm−2 ∈

[
0, 1

2

]
and wm−2 > wm−3 = w1 is

Condorcet consistent.

Lemma 2 Let n = 5. (a) For m = 3, no w-scoring rule such that wm−2 ∈[
0, 1

3

)
∪
(
1
3 , 1
]

is Condorcet consistent. (b) For m ≥ 4, no w-scoring rule is
Condorcet consistent.

Proof of Proposition 1. The proof of the ”only if” implication (⇒) of both
Parts (i) and (ii) is straightforward by Parts (a) and (b) of Lemma 1. It remains
to prove the ”if” implication of both Parts (i) and (ii). We provide a proof for
Part (ii).
(ii) Let n = 3 and m = 4. The w-scoring rule such that wm−2 ∈

[
0, 1

2

]
is

Condorcet consistent. We distinguish the following four cases:
Case 1: RN ∈ Sn such that p(R1) = p(R2) = p(R3) = p. Clearly CW (RN ) =
{p} = Sw(RN ).
Case 2: RN ∈ Sn such that p(R1) = p(R2) = at < p(R3) = at+l for some
t ∈ {1, ...,m−1} and l 6 m− t. Note that CW (RN ) = at. Also, observe on the
one hand that sw(at, RN ) ≥ 2 ≥ 1+2wm−2 since wm−2 ≤ 1

2 . On the other hand,
sw(at+l, RN ) ≤ 1 + 2wm−2 holds. Moreover, for all x /∈ {at, at+l}, sw(x,RN ) ≤
3wm−2 ≤ 3

2 since wm−2 ≤ 1
2 .Thus, sw(x,RN ) ≤ 3

2 < 2 ≤ sw(at, RN ). Thus,
CW (RN ) = at ∈ Sw(RN ).
Case 3: RN ∈ Sn such that p(R1) = at < p(R2) = p(R3) = at+l for some
t ∈ {1, ...,m − 1} and l 6 m − t. This case is symmetric to Case 2 exchanging
the roles of at and at+l.
Case 4: RN ∈ Sn such that p(R1) < p(R2) < p(R3). Note first that CW (RN ) =
p(R2). When computing we obtain that sw(p(R1), RN ) ≤ 1 + wm−2 + w1,
sw(p(R3), RN ) ≤ 1 + wm−2 + w1, and 1 + wm−2 + w1 ≤ sw(p(R2), RN ) ≤ 1 +
2wm−2. Furthermore, for any alternative x < p(R1), sw(x,RN ) ≤ sw(p(R1), RN )
and for any alternative y > p(R3), sw(y,RN ) ≤ sw(p(R3), RN ). Thus, CW (RN ) =
p(R2) ∈ Sw(RN ).
Wrapping up, Sw is Condorcet consistent. This shows Part (ii) that can be
replicated for Part (i). Thus, the proof ends.

To prove Proposition 2, we need some notation. For m = 3, there are
only four single-peaked preferences, say R, R′, R′′, and R′′′ defined as follows:
a1Ra2Ra3, a2R

′a3R
′a1, a2R

′′a1R
′′a3, and a3R

′′′a2R
′′′a1. For any RN ∈ Sn,

let n1 be the number of agents with preferences R, n2 the number of agents
with preferences R′, n3 the number of agents with preferences R′′, and n4 ≡
n − (n1 + n2 + n3) the number of agents with preferences R′′′. Note that the
triple (n1,n2,n3) uniquely defines a profile.

Proof of Proposition 2. Part (ii) of Proposition 2 is proved since it coincides
with Part (b) of Lemma 2. To prove Part (i) of Proposition 2, observe that Part
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(a) of Lemma 2 shows the ”only if” implication (⇒) of Part (i). It only remains
to prove the ”if” implication of Part (i): We have to show that for n = 5 and
m = 3, the w-scoring rule such that wm−2 = 1

3 is Condorcet consistent.
Let RN ∈ Sn and (n1, n2, n3) be the triple uniquely associated to RN . Since
wm−2 = 1

3 , then sw(a1, RN ) = n1 + 1
3n3, sw(a2, RN ) = 2

3 (n2 + n3) + 5
3 , and

sw(a3, RN ) = n4 + 1
3n2. Consider five cases.

Case 1: n1 = 5. Observe that CW (RN ) = a1, and sw(a1, RN ) = 5 > sw(a2, RN ) =
5
3 > sw(a3, RN ) = 0 which shows Condorcet consistency.
Case 2: n1 = 4. Observe that CW (RN ) = a1, sw(a1, RN ) ≥ 4, sw(a3, RN ) ≤ 1,
and sw(a2, RN ) ≤ 7

3 , which shows Condorcet consistency.
Case 3: n1 = 3. Observe that CW (RN ) = a1 and that sw(a1, RN ) = 3 + 1

3n3 >
sw(a3, RN ) = (2−n2−n3)+ 1

3n2 = 2−n3− 2
3n2. To get Condorcet consistency,

it remains to show that sw(a1, RN ) ≥ sw(a2, RN ). Since n = 5 and n1 = 3,
then 0 ≤ n2 + n3 ≤ 2, and for any possible such tuple (n2, n3), we can check
that 3 + 1

3n3 ≥ 2
3 (n2 + n3) + 5

3 . This ends the proof of Case 3.
Case 4: n1 = 2. Note that CW (RN ) 6= a1. Moreover, CW (RN ) = a3 if and
only if n4 = 3. The Condorcet consistency of this subcase is proved by symme-
try to Case 3 exchanging the roles of n1 and a1 by n4 and a3, respectively.
Note that CW (RN ) = a2 if and only if n4 ≤ 2, equivalently, 1 ≤ n2 + n3 ≤ 3.
Subcase 4.1 : n4 = 0, or equivalently, n2 + n3 = 3. Note that sw(a3, RN ) = 1

3n2

≤ 1. Moreover, 1 < 2 + 1
3n3 = sw(a1, RN ) and since n3 ≤ 3, 2 + 1

3n3 <
sw(a2, RN ) = 2 + 5

3 . Thus, we get Condorcet consistency.
Subcase 4.2 : n4 = 1, or equivalently, n2 + n3 = 2. Since n2 ≤ 2, note first that
sw(a3, RN ) = 1+ 1

3n2 < 1+ 2
3 ≤ sw(a1, RN ) = 2+ 1

3n3. Moreover, since n3 ≤ 2,
sw(a1, RN ) = 2 + 1

3n3 ≤ 2 + 1
32 < 3 = 2

32 + 5
3 = sw(a2, RN ). Thus, we get

Condorcet consistency.
Subcase 4.3 : n4 = 2, or equivalently, n2 + n3 = 1. Since n3 ≤ 1, sw(a1, RN ) =
2 + 1

3n3 ≤ 7
3 = sw(a2, RN ). Similarly, since n2 ≤ 1, sw(a3, RN ) = 2 + 1

3n2 ≤
7
3 = sw(a2, RN ). Thus, we get Condorcet consistency.
Case 5: n1 = 1. Note first that CW (RN ) 6= a1. Moreover, by definition of CW
the following two statements hold: (1) CW (RN ) = a3 if and only if n4 ∈ {3, 4}
and (2) CW (RN ) = a2 if and only if n4 ≤ 2. We first show Condorcet consis-
tency for situation in (1). Since n4 ∈ {3, 4}, or equivalently 0 ≤ n2 + n3 ≤ 1,
sw(a3, RN ) = n4 + 1

3n2 ≥ 3 > 7
3 ≥ sw(a2, RN ) = 2

3 (n2 + n3) + 5
3 and also

sw(a3, RN ) = n4 + 1
3n2 ≥ 3 > 4

3 ≥ sw(a1, RN ) = 1 + 1
3n3. To show Condorcet

consistency for situation in (2), that is, when CW (RN ) = a2, note that n4 ≤ 2
if and only if 2 ≤ n2 + n3 ≤ 4. Observe that sw(a1, RN ) = n1 + 1

3n3 = 1 + 1
3n3

is always smaller than sw(a2, RN ) = 2
3 (n2 + n3) + 5

3 . Note that since n4 ≤ 2,
sw(a3, RN ) = n4 + 1

3n2 ≤ 2+ 1
3n2 which is smaller or equal than 3 when n2 ≤ 3.

Since 2 ≤ n2 + n3, sw(a3, RN ) ≤ 3 ≤ sw(a2, RN ) = 2
3 (n2 + n3) + 5

3 . For
the case where n2 > 3, that is, n2 = 4, we have that n3 = n4 = 0. Clearly,
sw(a3, RN ) = n4 + 1

3n2 = 4
3 < sw(a2, RN ) = 2

3 (n2 + n3) + 5
3 = 13

3 . Thus, we
prove Condorcet consistency.
Case 6: n1 = 0. Note first that CW (RN ) 6= a1 and observe that sw(a1, RN ) =
1
3n3 is always smaller than sw(a2, RN ) = 2

3 (n2 + n3) + 5
3 . Moreover, on the one

hand, CW (RN ) = a2 if and only if n2 +n3 > n4 and CW (RN ) = a3 if and only
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if n2 + n3 < n4, since being n odd and n1 = 0, n2 + n3 6= n4. On the other
hand, the scoring single winner is a2, that is, sw(a2, RN ) = 2

3 (n2 + n3) + 5
3 >

sw(a3, RN ) = 5 − n3 − 2
3n2 if and only if 4n2 + 5n3 > 10, which holds if and

only if n2 + n3 > n4. To check the first ”if and only if” implication note that
2
3 (n2 +n3) + 5

3 > 5−n3− 2
3n2 if and only if 4

3n2 + 5
3n3− 10

3 > 0, which holds if
and only if 4n2 + 5n3 > 10. The latter ”if and only if” implication is proved by
checking that for each triple n2, n3 and n4 with n2 + n3 > n4 for the smallest
value of n2 + n3 (that is, 3), the inequality 4n2 + 5n3 > 10 holds. Observe that
if the latter inequality holds for the smallest value of n2 + n3, it will also hold
for all possible cases. Then, we also have that CW (RN ) = a3 if and only if
n2 + n3 < n4. We get Condorcet consistency which ends the proof.

Proposition 3 states an impossibility result to obtain Condorcet consistent
w-scoring rules for seven or more agents. Its proof is in the Appendix.

Summarizing, in this paper, we show that if the size of the group of voters is
three, a sub-family of the scoring rules is Condorcet consistent for any number
of alternatives. We also show that when there are three alternatives at stake,
if the size of the group of voters is between three and five, then some scoring
rules are Condorcet consistent.

Lepelley (1996) considers also single-peaked preferences but concentrates on
different Condorcet criteria. Moreno and Puy (2005) analyze Condorcet consis-
tency of scoring rules but in a setting where the agenda is not fixed. Bossert and
Suzumura (2019) propose a generalization of positional voting rules allowing for
non-additive criteria to be included. Skowron, Faliszewski, and Slinko (2019)
characterize a class of multi-winner scoring rules satisfying axioms in the spirit
of Young’s characterization for single-winner scoring methods. In the context of
experimental economics, Slater (1958) proposes to estimate the “optimal” group
size as the size preferred by group members. The author considers groups of
two to seven individuals from a single population who meet several times to
discuss about some human relations problem and submit a group solution to it.
Slater finds that five-person groups are optimal. Hackman and Vidmar (1970)
extend Slater’s analysis to the case in which groups members are drawn from
two different populations and where three types of intellectual tasks to be car-
ried out by those groups are distinguished. In line with Slater’s conclusion, they
find that agents in the experiment consider a group size between four and five
members as optimal.
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Appendix
We prove Proposition 3 and Lemmas 1 and 2 used for the proof of Proposi-

tions 1 and 2. We first introduce and prove six Lemmas.
Define four preferences used in the proofs of Lemmas 3 to 7: R ∈ S is

such that a1Ra2R...Ram−1Ram, R′ ∈ S is such that a2R
′a3R

′...R′amR′a1,
R′′ ∈ S is such that amR′′am−1R

′′...R′′a2R
′′a1, and R′′′ ∈ S is such that

a3R
′′′a4R

′′′a5R
′′′...R′′′amR′′′a2R

′′′a1. To prove these lemmas, we propose pref-
erence profiles for which Condorcet consistency fails.

Lemma 3 For any n ≥ 3 and m ≥ 3, no w-scoring rule with wm−2 ∈
(
1
2 , 1
]

is
Condorcet consistent.

Proof. Let RN ∈ Sn where # {i ∈ N : Ri = R} = n+1
2 and # {i ∈ N : Ri = R′} =

n−1
2 . Note that CW (RN ) = a1 and x /∈ Sw(RN ) for x ∈ A\{a1, a2} since
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sw(a2, RN ) > sw(x,RN ). Moreover, sw(a2, RN ) = n−1
2 +n+1

2 wm−2 > n−1
2 +n+1

4
and n+1

2 + n−3
4 ≥ n+1

2 = sw(a1, RN ) since n ≥ 3. Thus, Sw(RN ) = {a2}.

Lemma 4 For any n ≥ 5 and m ≥ 4, no w-scoring rule with wm−2 < 1 is
Condorcet consistent.

Proof. Let RN ∈ Sn where # {i ∈ N : Ri = R} = n−1
2 , # {i ∈ N : Ri = R′} =

1, and # {i ∈ N : Ri = R′′′} = n−1
2 . Note that CW (RN ) = a2, sw(a2, RN ) =

n−1
2 wm−2+1+ n−1

2 w1, and sw(a3, RN ) = n−1
2 +wm−2+ n−1

2 wm−3. Since n−1
2 =

1+ n−3
2 and wm−2 < 1, we obtain that sw(a3, RN ) > n−1

2 wm−2 +1+ n−1
2 wm−3.

Moreover, n−1
2 wm−2 + 1 + n−1

2 wm−3 ≥ sw(a2, RN ) since wm−3 ≥ w1. Thus,
a2 = CW (RN ) /∈ Sw(RN ).

Lemma 5 For any n > 5 and m = 3, no w-scoring rule with wm−2 ∈
[
0, 1

2

]
is

Condorcet consistent.

Proof. Distinguish three cases: (1) wm−2 < n−3
2(n−2) , (2) wm−2 > n−3

2(n−2) , and

(3) wm−2 = n−3
2(n−2) .

Case 1: let RN ∈ Sn such that # {i ∈ N : Ri = R} = n−1
2 , # {i ∈ N : Ri = R′} =

1, and # {i ∈ N : Ri = R′′} = n−1
2 . Note that CW (RN ) = a2. We can check

that sw(a2, RN ) = (n − 1)wm−2 + 1, sw(a3, RN ) = wm−2 + n−1
2 , and thus,

sw(a3, RN ) > sw(a2, RN ) if and only if wm−2 < n−3
2(n−2) .

Case 2: let RN ∈ Sn such that # {i ∈ N : Ri = R} = n+1
2 , # {i ∈ N : Ri = R′} =

2, and # {i ∈ N : Ri = R′′} = n−5
2 . Note that CW (RN ) = a1. We can

check that sw(a2, RN ) = (n − 2)wm−2 + 2, sw(a1, RN ) = n+1
2 , and thus,

sw(a2, RN ) > sw(a1, RN ) if and only if wm−2 > n−3
2(n−2) .

Case 3: let RN ∈ Sn such that # {i ∈ N : Ri = R} = n+1
2 , # {i ∈ N : Ri = R′} =

3, and # {i ∈ N : Ri = R′′} = n−7
2 . Note that the profiles is well-defined

since n > 5. Note that CW (RN ) = a1. We can check that sw(a2, RN ) =
(n− 3)wm−2 + 3, sw(a1, RN ) = n+1

2 , and thus, sw(a3, RN ) > sw(a1, RN ) if and
only if wm−2 > n−5

2(n−3) , which holds for all n > 1, since wm−2 = n−3
2(n−2) .

Lemma 6 For any n = 5 and m = 3, no w-scoring rule with wm−2 ∈
[
0, 1

3

)
∪(

1
3 ,

1
2

]
is Condorcet consistent.

The profiles of preferences in Cases (1) and (2) in the proof of Lemma 5
work to prove Lemma 6.

Lemma 7 For any n = 3 and m ≥ 5, no w-scoring rule with wm−2 ∈
(
0, 1

2

]
and wm−3 > w1 is Condorcet consistent.

Proof. Let RN ∈ Sn such that # {i ∈ N : Ri = R} = 1, # {i ∈ N : Ri = R′} =
1, and # {i ∈ N : Ri = R′′} = 1. Note that CW (RN ) = a2. We can check that
x /∈ Sw(RN ) for x ∈ A\{a1, a2, a3} since sw(a2, RN ) > sw(x,RN ). Moreover,
since sw(a2, RN ) = 1 + wm−2 + w1 < sw(a3, RN ) = 1 + wm−2 + wm−3 by
wm−3 > w1, we get that CW (RN ) = a2 /∈ Sw(RN ).
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Lemma 8 For any n = 3 and m ≥ 5, no w-scoring rule with wm−2 ∈
[
0, 1

2

]
and wm−2 > wm−3 = w1 is Condorcet consistent.

Proof. Take any RN ∈ S3 such that the preferences of the three agents are
R̃, R, and R̂ ∈ S, where a2R̃a1R̃a3R̃...R̃am−1R̃am, a3Ra2Ra4Ra1Ra5R...Ram,

and a4R̂a5R̂a3R̂a2 R̂a1R̂...R̂am. Note that CW (RN ) = a3. We can check that
x /∈ Sw(RN ) for x ∈ A\{a2, a3, a4} since sw(a2, RN ) = 1+wm−2+w1 > wm−2+
2w1 ≥ sw(x,RN ). Moreover, sw(a2, RN ) = 1 + wm−2 + w1 > sw(a3, RN ) =
sw(a4, RN ) = 1 + 2w1 since wm−2 > w1. Then, we get that CW (RN ) = a3 /∈
Sw(RN ) = {a2}.

The proof of Lemma 1 is straightforward by Lemmas 3, 7, and 8.
The proof of Lemma 2 is straightforward by Lemmas 3, 4, and 6.
The proof of Proposition 3 is straightforward by Lemmas 3, 4, and 5.
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