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Abstract—Domain-specific problems where data collection is
a expensive task, are often represented by scarce or incomplete
data. From a Machine Learning perspective, this type of problems
have been addressed using models trained in different specific
domains as starting point for the final objective-model. The
transfer of knowledge between domains, known as Transfer
Learning (TL), helps to speed up training and improve the
performance of the models in problems with limited amounts of
data. In this paper we introduce a Transfer Learning approach
to classify isolated volcano-seismic signals at ”Volcán de Fuego”,
Colima (Mexico). Using the well-known convolutional architec-
ture (LeNet) as features extractor and a representative dataset
containing regional earthquakes, volcano-tectonic earthquakes,
long period events, volcanic tremor, explosions and collapses,
our proposal compares the generalization capabilities of the
models when we only fine-tune the upper layers and fine-tune
overall them. Compared to others state-of-the-art techniques,
classification systems based on Transfer Learning approaches
provide good generalization capabilities (attaining close 94% of
events correctly classified) and decreasing computational time
resources.

Index Terms—Transfer Learning, Deep Learning, volcano-
seismic signals, classification of isolated events.

I. INTRODUCTION

Seismic signals registered by seismometers in volcanic areas
can be classified based on the source mechanisms (seismic
events) that originated them [1]. This letter analyzes how
Transfer Learning (TL) [2] can be used to speed up training
and improve the performance of the models used to classify
volcano-seismic signals.

Deployed in vulcanological observatories, Volcano-seismic
signals Recognition systems (VSR) provide several advan-
tages: (1) They reflect the nature and underlying physics of
the source processes involved. (2) Analyzing these seismic
streams, geophysicists can separate rapidly into classes a large
number of events, which is important in case of eruptive crisis.
(3) They provide consistent catalogues of each type of event
improving the knowledge that we have about the state of the
volcano. (4) The new knowledge obtained can be used to
infer new eruptive crisis studying the temporal evolution of
the volcano.

Despite the good performance obtained by the existing
classification techniques in terms of time consumption and
accuracy rate [3], [4], [5], [6], [7], [8], [9], the accurate
recognition of certain kind of events remaining constrained due
to the difficulty of creating both, well-labeled and statistically
representative datasets [10], [5]. Hence, one of the most
challenging objectives in volcano-seismology is the develop-
ment of robust data pattern extraction mechanisms able to
characterize properly each event.

Traditionally, feature engineering approaches based on the

knowledge of human experts were used to extract relevant
and discriminative information. However, newer approaches
are based on deep hierarchical models that do not have to
be supplied with such ”hand-crafted” features. They can learn
representative features from raw data. These new approaches
have become the state of the art in many disciplines, improving
the traditional ones, at the cost of a much greater demand of
training material and computational resources [11].

Given the vast amount of data, computation and time
resources required to develop deep hierarchical models, an
emerging approach is to exploit what has been learned in
one domain (where a lot of labeled training data is available)
to improve generalization in another domain where data are
scarce. This is what in the related literature is known as
Transfer Learning [2], alluding to the fact of the translation
of knowledge acquired in a domain to a different one. Instead
of starting the learning process from scratch, the basic idea is
to use the parameters of a well-trained model in one domain
(original domain) as a pre-trained version for a model in a
different domain (in which there are much less training data
available). After that, pre-trained parameters are fine-tuned
using domain-specific available data (in the target domain).
Transferring the knowledge acquired in the original domain to
the target domain to be used as a starting point for the training
of the models.

In this letter, we use LeNet architecture [12], designed
for handwritten and machine-printed character recognition, as
features extraction algorithm to build a system for automatic
classification of volcano-seismic events. Input data, composed
by spectrograms, will be processed by LeNet model resulting
in a feature vector that will later be used to train several
multilayer perceptrons (MLP).

The main contribution of this work is to show the applicabil-
ity and potential of using hierarchical feature representations
obtained by models trained in a different specific problem as
efficient information to build a system for automatic classi-
fication of volcano-seismic events. Our proposal re-trains the
model, keeping the spatial and spectral information extracted
by pre-trained model in a different domain as input informa-
tion.

The rest of the paper is organized as follows: Section
II provides a theoretical framework of Transfer Learning
approaches, and how it can be used for discriminative feature
modelling of volcano-seismic events. Section III describes
from the geophysical point of view, the seismic signals
registered at ”Volcán de Fuego”. Section IV describes the
experimental setup and presents the results and discussion.
Section V concludes the study.
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Figure 1: LeNet architecture

II. THEORETICAL FOUNDATIONS AND RELATED WORKS

One of the most promising techniques that could someday
increases the capacity of generalization of Artificial Intel-
ligence is the transfer of knowledge from an environment
(domain) to other environment (domain), widely know as
Transfer Learning (TL) [2]. As we mentioned above, TL
tries to exploit knowledge that has been learned in one task
to improve generalization in a different but related task.
Following [2], a domain consists of two components, a feature
space and a marginal probability distribution. Given a specific
domain, a task (learning problem to be solved) can be defined
as a label space and an objective predictive function which
will be learned from the training data. Therefore, based on
the different relations between domains and tasks, TL can be
categorized into inductive transfer learning (ITL), transductive
transfer learning (TTL), and unsupervised transfer learning
(UTL). Considering the nature of our proposal, we will only
describe the inductive approach.

In ITL, target and source task are different. The domains
of this two tasks may differ. In this case, as the purpose
of both classification tasks differs, some labelled data are
required in the target domain to induce its particular predictive
model. The parameters of previously trained models (source)
can be seen as a starting point of a new developing model,
where the later layers of the original model are fine-tuned
using available domain-specific data. This approach is based
on the idea that low-level features (earlier layers) contain
generic information (edge detectors, color regions detectors,
etc), while progressively, the middle and the later ones, ex-
tract shapes and some task-specific features respectively [13].
Therefore, given computation and time resources required
to develop new models from scratch, ITL has become a
very useful solution in areas as Computer Vision (CV) [14],
Natural Language Processing (NLP) [15] or Automatic Speech
Recognition (ASR) [16] in order to speed up training and
improve the performance of the models.

Applied to geoscience disciplines, TL has been found to be
helpful in domain adaption problem as hyper-spectral images
analysis [17], remote sensing data classification [18], wind
speed prediction [19] and cyclone tracking [20], among others.

III. DATA AND METHODS

This section describes the dataset used in the study and the
proposed architectures used for the experimental setup.

A. Proposed Architectures.

Given that convolutional neuronal networks (CNNs) [12]
have proven great success in fields such as CV, NLP or ASR,
it was decided to incorporate some of the most accurate models
as base of our classification system to finally adjust their final
layers with our data set.
In this sense, using the spectrogram images as parameteriza-
tion scheme, we proposed to use LeNet network [12] as base
model.

Basically, LeNet network is a CNN with 7 levels of depth
trained with MNIST data set to classify handwritten and
machine-printed character images of 32x32 pixels in gray scale
(Figure 1). The model consist of several convolution layers,
each of them followed by a max pooling operation:

• Each convolutional layer can be understood as feature
extractor taking as inputs the outputs from its previous
layer in the hierarchy. It takes as input a stack of input
planes and produces as output some number of output
planes know as feature maps. At the same time, each
feature map Ok can be understood as a arranged map of
responses of a spatially local non-linear operation, applied
identically over the whole input planes. The main build-
ing block used to construct the non-linear transformation
is the convolution operation. Hence, each feature map Ok

is associated with one kernel and computed as follows:

Ok = σ(bk +
∑
r

Wkr ∗Xr) (1)

Being Xr,Wkr, ∗, bk, σ the r-th input channel, the sub-
kernel for that channel, the convolution operation, the
bias term, and the element-wise non-linearity (sigmoid,
hyperbolic tangent or ReLU) applied to the result of the
kernel convolution, respectively.

• The pooling step can be understood as down-sampling
operation along the spatial dimensions (width and height).
Thus, max pooling operation consists of substituting each
sub-window of size pxp by the maximum feature value
in it. This procedure can be formalized as follows:

Hk,ij = max
p

(Ok,Si+p,Sj+p) (2)

Where p and S determine the pooling window size and
the stride value which corresponds to the horizontal and
vertical increments at which pooling sub-windows will
be positioned.
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Figure 2: Overview of the data pre-processing pipeline. First, signals are band-pass filtered between 1 and 25 Hz. For each signal, we
obtain its spectrogram using a FFT of 512 points. Finally, each spectrogram is resized to 32x32 and transformed to grayscale.

• The final extracted features are flattened and used as
input vector in order to feed one (or even two) fully
connected layers added in the end.

The basic idea behind LeNet architecture [12] is that the
earlier convolutions are able to extract lower features as
generic information (edge detectors, color regions detectors,
etc) while, later convolutions are specialized on higher-level
features as specific shapes.

The topological structure in the first step uses a bank of six
5x5 filters with stride 1. This filter design results in six feature
maps of 28x28 pixels. The pooling operation (using a filter
width of 2 and stride of 2) reduces the dimension by factor of 2
and ends up with six feature maps of 14x14 pixels. The second
step applies another bank of sixteen 5x5 filters, resulting on
sixteen feature maps of 10x10 pixels. Again, applying the
same pooling operation, sixteen feature maps of 5x5 pixels
are obtained.

Once the features have been extracted, they are flattened
into a 1-D vector in order to feed one (or even more) fully
connected layers with specific number of nodes. Finally, on
top, we add a softmax layer to normalize per-class output
probabilities corresponding to each of the available events.
The final number of parameters is approximately 60K, in-
cluding the parameters associated to filters design and fully-
connected layers.

B. Dataset.

The database used to test TL architectures proposed
consists of 9332 volcano-seismic signals distributed per-class
as follows: 1738 volcano tectonic earthquakes (VTE), 2699
long period events (LPE), 1170 volcanic tremors (TRE),
455 regional earthquakes (REG), 1406 collapses (COL),
278 explosions (EXP), and 1586 volcanic noise (NOISE).
Following [21] and [5] each type of event can be described
according to its properties (source mechanism, length,
frequency content):

Volcano tectonic earthquakes (VTE)): VTE events are
originated by seismic stress when a solid fracture takes
place producing a seismic wave; it is possible to identify the
P waves (pressure) and S waves (shear) arrivals. Spectral
content could reach up to 30Hz.

Regional Earthquakes (REG): These earthquakes occur
outside the volcanic structure and are related to tectonic
stresses and to fault fractures. They can have larger duration

and magnitude than VTE, but similar spectral content. P and
S-waves arrivals are generally clear.

Long period events (LPE)): Their sources models are
generally associated to the resonance of fluid-filled cavities
such as cracks or magmatic conduits, in the shallow part
of the volcano. Their spectra usually present one or several
dominant peaks below 5 Hz.

Volcanic tremor (TRE)): Its spectral content is below
5Hz, and the duration is highly variable, lasting from a few
minutes to months. Volcanic tremor is a sign of high activity
inside the volcano. Some theories suggest that it is caused
by the movement of magma or gas, being almost identical to
long-periods events, except for the duration.

Explosions (EXP)): They are characterized by variable
duration (from second to tens of minutes) and a distinctive
spectrogram with a narrow energy peak around 20 Hz.
Explosions are naturally related to sonic boost waves,
produced when the expanding gas is accelerated within the
volcano structure.

Lava Flow (COL)): Volcanic debris processes located at
the volcano surface exhibiting frequency content above 5 Hz.

Environmental Noise (NOISE): Mainly introduced by
nearby populations, human activity will interfere the
frequency range where most of the volcanic spectral content
is located.

IV. EXPERIMENT AND DISCUSSION

This section illustrates the performance of the proposed
method. We compare the results obtained with others meth-
ods and parameterization schemes in terms of classification
accuracy.

A. MODEL TRAINING

Following [5] the feature extraction process is summarized
in Figure 2. The input of the model is the full dataset of
9332 seismic signals (belonging to the station EZ5V4) in the
time domain, sampled at 50 Hz and pre-processed using a
band-pass filter between 1 Hz and 25 Hz.

After the pre-processing stage, a data-set of 9332
spectrogram images using short-time Fourier Transform
(FFT) of 512 points is obtained, with their associated labels.
In order to extract representative features using LeNet
architecture, we need to adapt the input dimensions of the
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Table I: Classification results obtained by different architectures. 1 FC correspond to one fully connected layers. L and A correspond to
models where the Last and All layers were fine-tuned. CNN-128 and CNN-512 correspond to models with similar topology to LeNet but

without TL stage.

#Model #Parameterization #Topology #Acc(%) # Speed up(%)
SVM LPC+Statistical information RBF Kernel 91.55 -
SVM LPC+Statistical information Lineal Kernel 92.32 -
RF LPC+Statistical information 120 estimators 92.80 -
MLP LPC+Statistical information 500 hidden units 93.57 -
sDA-2H LPC+Statistical information 260-385 94.32 -
CNN-LeNet 128 L 512 FFT Spectrogram LeNet + 1 FC layer (128 units) 88.3 56.5
CNN-LeNet 512 L 512 FFT Spectrogram LeNet + 1 FC layer (512 units) 89.3 36.4
CNN-LeNet 128 A 512 FFT Spectrogram LeNet + 1 FC layer (128 units) 93.4 11.3
CNN-LeNet 512 A 512 FFT Spectrogram LeNet + 1 FC layer (512 units) 94.1 32.3
CNN-128 512 FFT Spectrogram LeNet + 1 FC layer (128 units) 92.5 -
CNN-512 512 FFT Spectrogram LeNet + 1 FC layer (512 units) 93.0 -

images at 32x32 px. For that, spectrogram images are re-
scaled. Finally, the flattened features from LeNet architecture
will be used as training data for the classifier. As we are
working with different streams of data, a direct consequence
of normalizing all images to the same dimensions is that the
longer signals lose more information. However, as we shall
see later, the large size of the dataset used to train LeNet
architecture minimizes the impact of this fact.

Considering the inductive nature of our proposal, we
compare the result obtained by the models training all the
layers and the later fully connected one. To do that, we use a
sigmoid function as activation function and Adam optimizer
[22] to optimize the loss function (Negative Log-Likelihood).
The over-fitting scenarios are controlled during training using
a validation set and early stopping criteria with a patience of
10 iterations. The dataset was divided into training (75%) and
test (25%) sets. This yields a training set of 7000 training
instances, and 2332 test instances. Furthermore, we used 50%
of the test set (1166 instances) as validation data [5]. Other
techniques as dropout or batch normalization did not offer
any improvement. All the experiments were carried out using
cross-validation with four partitions of the original database.

B. CLASSIFICATION OF ISOLATED EVENTS

The basis of the comparative study was derived from
[5] where volcano-seismic signals were classified by several
classical and deep architectures. As classical approaches, this
work used MLP [23], Random Forest (RF) [24] and Support
Vector Machines (SVM) [25] with both, linear and radial
kernels. Regarding the deep ones, the architectures tested were
Deep Belief Networks (DBN) [26] and stacked Denoising
AutoEncoders (sDA) [27]. The parameterization scheme was
based on linear prediction coefficients (LPC) and statistical
information associated to impulsivity of the signals.

The best results obtained for different architectures and
parameterization schemes are summarized in Table I. In order
to prove the efficiency of the TL-based models against the
version trained from scratch, we measure the relation between
the runtime of both training algorithms according to :

speedup =
TLline − baseline

baseline
(3)

Where baseline is the runtime spent without TL version and
TLline is the total runtime achieved with TL version. The
reported metrics are based on accuracy. Only the best results
obtained after testing several configurations varying different
units at first and second hidden layers have been reported.

Compared to TL approach, several conclusions can be
drawn from these results:(1) By applying the trained model
as feature extraction, we notice that ITL provides useful fea-
tures for the discriminative stage, outperforming hand crafted
ones applied to shallow classical classifiers (SVM, MLP,
RF). (2) Although the results obtained do not improve those
obtained by deep networks using a specific hand crafted-
parameterization [5], they are really promising, most espe-
cially considering the vast amount of data, computation and
time resources required to develop deep hierarchical models
from scratch. (3) Compared to specific features based on signal
processing approaches, the ones extracted from spectrogram
images have proven to be very useful for the classification of
isolated seismo-volcanic events. (4) Given the large number
of images of very different quality used to train LeNet archi-
tecture, the rescaling operation of spectrogram does not have
an undesired effect. The hierarchical features obtained from
resized images focus mainly on the contours and shapes of
the spectrograms proving to be sufficiently discriminative.

Moreover, it should be pointed out that: (a) the dimen-
sion and resolution of the spectrogram images often have a
big influence on the performance of the systems. Therefore,
changing both, or even the number of input channels, models
could obtain better discrimative information, improving the
performance in learning and classification tasks. However, the
use of higher resolution, even if the models use the same filters
design, will result in larger feature maps increasing the number
of parameters to be tuned and therefore, affecting the size of
the dataset necessary to guide the optimization process. (b)
Given the size of the dataset used in this work, we noted that
the inclusion of more than one hidden layer between flattened
and softmax layers degrades the performance. This degrada-
tion may be due to an over-fitting problem. The convolutional
features extracted are very representative. Thus, the inclusion
of new non-linear transformations lead the system to model
noise and memorize rather than to generalize data.
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V. CONCLUSION

In this work we present the use of Inductive Transfer
Learning as knowledge base from which to build reliable
and efficient volcano-seismic classification systems. Based on
the results obtained, we conclude that the use of previously
adjusted CNN and, more specifically, the hierarchical learning
representation that they implement, can be efficiently exploited
in the classification of isolated seismo-volcanic signals, taking
advantage of the invariance and locality characteristics that
convolution operations offer.
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