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Abstract—This paper introduces recurrent neural networks
(RNN), long short term memory (LSTM) and gated recurrent
unit (GRU), to detect and classify continuous sequences of
volcano-seismic events at Deception Island Volcano, Antarctica. A
representative dataset containing volcano-tectonic earthquakes,
long period events, volcanic tremors and hybrid events was
used to train these models. Experimental results show that
RNN, LSTM and GRU can exploit temporal and frequency
information from continuous seismic data, attaining close to 90%,
94% and 92% events correctly detected and classified. A second
experiment is presented in this work. The architectures described
above, trained with data from campaigns of seismic records
obtained in 1995-2002, have been tested with data from the
recent seismic survey performed at Deception Island Volcano in
2016-2017 by the Spanish Antarctic scientific campaign. Despite
the variations in the geophysical properties of the seismic events
within the volcano across eruptive periods, results provide good
generalization accuracy. This result expands the possibilities of
RNNs for real-time monitoring of volcanic activity, even if seismic
sources change over time.

I. INTRODUCTION

Seismic monitoring of potentially active volcanoes is the
most popular remote sensing technique to forecast eruptions.
Seismic anomalies are often associated to volcanic eruptions,
as they reflect energy exchanges between volcanoes and the
environment [1]: for example, gases might be accelerated
within the volcano edifice, leading to heavy explosions and
intense earthquakes. These energy exchanges have their
source in stress and relaxation processes, pressure changes
or fluid movements [2], [3]. As a result, seismometers can
record a wide range of volcano-seismic signals that reflect
the nature and underlying physics of the source process. By
analyzing these seismic events, we can classify them into
classes and sometimes identify the active sources of emission,
and thus, improve our knowledge about the state of the
volcano. Machine learning and signal processing techniques
provide an appropriate framework to analyze such data.

Machine Learning algorithms have emerged as a reliable
approach to classify volcano-seismic data. Support Vector
Machines with Gaussian Kernels were proposed by [4]
as computational models to discriminate volcanic tremors,
landslides and explosions at Stromboli Volcano. Artificial
Neural Networks (ANNs) for binary classification of noise
and volcano-tectonic earthquakes were introduced by [5].
More recently, [6] used ANN to discriminate hybrid events at
Stromboli volcano, whilst [7] proposed deep neural networks
based on stacking of unsupervised pre-trained simpler models
to classify isolate events from Volcán de Fuego de Colima

(Mexico). Variations of Stromboli tremor features were
highlighted using a combined ANN-dynamical approach by
[8] . Similar approaches employ one-hidden-layer neural
networks to discriminate explosions from noise at Stromboli
Volcano like [9], [10], or to train a Self Organized Maps
(SOM) for identification and interpretation of events attributes
and correlations [11], to analyze Stromboli VLP events [12],
volcanic tremor at Etna [13], at Raoul Island [14], at Ruapehu
[15] and at Tongariro [16].

Research work by [17] introduced Hidden Markov Models
(HMMs) to classify seismic events at Merapi. [18] highlighted
their potential role in volcano alert level decision-support.
[19] applied continuous HMMs to study the continuous
seismic signal at Tenerife. [20] used HMMs to analyze Etna
flank eruptions while in [21], HMMs are used as statistical
models to classify temporal sequences of seismic data at
Deception Island volcano. Using feature vectors based
on log-scale cepstral coefficients, a HMM was trained to
discriminate between five different types of seismic events
at Deception Island volcano. Similar approaches by [22],
[23] applied HMMs to discriminate seismic events at Saint
Cristobal and Popocatepetl volcanoes. Research by [24]
studied the robustness of HMMs to discriminate earthquakes
and explosions from noise background, and combined both
datasets to test the portability of HMMs among volcanoes.
The time dependence is best exploited by the hidden semi-
Markov models (HSMM) proposed by [25]. [26] proposed for
Galeras a HMM based on a hybrid generative–discriminative
classification paradigm. Also interesting is the learning-while-
recording approach by [27] that can identify events as soon
as they first appear. [28] at Nevado del Ruiz exploited the
temporal contribution of features.

Sequence modeling requires efficient models that are able
to capture the temporal evolution of seismic data. Detecting
volcano-seismic events from seismic data is a sequential prob-
lem which involves complex and highly dimensional dynamic
signals. Recurrent Neural Networks (RNNs) have arisen as
neural networks with temporal modeling capabilities, being
able to translate input sequences into output sequences [29],
[30]. This mapping is performed by computing non-linearity
functions through time. However, for very long-duration se-
quences, RNNs had problems capturing long-term dependen-
cies since, computing the error derivatives, the gradient might
vanish or explode, acting as a constrain [31] [30]. To solve
this problem, two recurrent alternatives known as Long Short
Term Memory (LSTM) and Gated-Recurrent Units (GRU)
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were proposed by [29] and [30]. Using internal ”memory
cells”; both models can better capture long-term dependencies.

RNN have become the state-of-the-art in many scientific
disciplines, such as speech recognition [32], image generation
[33], natural language processing [34] and machine translation
[35], [36]. In remote sensing, RNNs have been used in a wide
range of tasks: research works by [37], [38] applied RNNs to
predict the time and location of moderate-to-large earthquakes.
Moreover, RNNs have been successfully implemented as rain-
fall forecast models, [39], [40]; cyclone track prediction [41];
river flow forecasting [42]; ocean wave forecasting [43] and
to classify satellite image data [44].

In this research, we present a new volcano-seismic recog-
nition framework based on RNNs for five different types
of seismic events recorded at Deception Island volcano. To
develop this system, we needed to take into account two
aspects:

• Environmental noise, faulty sensors and the fact that
soil conditions corrupt recorded signals by introducing
unwanted information.

• Performance of the system is highly dependent on how
accurately parameters of the model can be estimated
using the available training data.

In order to address these considerations, log-filter banks (LFB)
features are extracted, in a similar process to [21]. Once
features are extracted, we aim to address the capabilities of
vanilla-RNNs, LSTMs and GRUs to map temporal volcano-
seismic sequences into human-readable labels, and determine
how usefully LSTM and GRU model long-term signals, such
as volcanic tremors.

The rest of the paper is organized as follows: section II
provides a theoretical framework of RNN architectures, and
how they can be used for temporal modelling of volcano-
seismic events. Section III describes from the geophysical
point of view, the seismic signals recorded at Deception Island
volcano. Section IV describes the experimental setup. Section
V presents the results and discussions. Section VI concludes
the study.

II. RECURRENT NEURAL NETWORKS

RNNs are feed forward neural networks that process se-
quential data. A RNN specializes to map a given sequence
X = x1, x2, ..., xn, into an output sequence Y = y1, y2, ..., yn,
by computing layers of non-linearities through time-steps (see
Figure 1). Furthermore, each time-step can be considered as an
additional layer in a deep feed-forward neural network, with
weights shared across time [29].

RNNs parameters θ are defined by three weights matrices:
U the input to hidden connections, W the hidden-to-hidden
recurrent connections between layers, and V from hidden layer
to the output layer. Then, h(t) (hidden states at time t), can
be computed following Equation 1:

h(t) = σ(x(t) ∗ U + h(t−1) ∗W + b) (1)

Being h(t−1) the hidden state of the network computed in
the previous time-step t − 1; x(t) the input vector at current
time-step t; W,U the recurrent and input weight matrices

above-mentioned; σ the non-linearity function, and b the biases
of the network. As a result, y(t) (the output of the time-step
t) can be obtained using Equation 2:

y(t) = softmax(V ∗ h(t)) (2)

Where V is weight matrix from hidden to the output layer,
and softmax() is the softmax function used over the out-
puts to compute the normalized per-class output probabilities.
Notice that matrix W keeps the weights shared across all time-
steps, and RNN takes into considerations previous information
to predict y(t). Weights sharing acts as a ”memory”, forcing
hidden units to be sensitive to input variations through time.

In a traditional feed-forward neural network, training stage
is performed using stochastic gradient descent (SGD) [29].
However, in a RNN the setting of the gradient depends not
only on the current time-step, but also the previous ones. This
procedure is known as backpropagation through time (BPTT)
[30]. Therefore, the error derivatives are propagated through
time, and matrices U , W and V are updated.

In this sense, the computation of the error derivatives faces
mathematical constraints: the gradients with respect to the
parameters in the early layers become extremely small (vanish)
or extremely big (explode), effectively preventing the weight
from changing its value, acting as a constrain for the RNN to
learn long-range dependencies. If the gradient vanishes, its
value will decrease exponentially after few time-steps, and
long-range dependencies will not be learnt. This problem,
known in the literature as exploding and vanishing gradient,
is widely studied by [31] and [30].

To alleviate this problem, several techniques such as clip-
ping and regularization gradients were suggested by [31]. In
practice, for large temporal sequences, it is more effective to
use specific models to tackle the vanishing gradient problem.
These models, known as Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), employ internal activation
gates to control information flow through time, efficiently
learning long-range dependencies.

A. Long Short-Term Memory

Long Short-Term Memory or LSTM networks are a variant
of RNN in which the hidden states h(t), has been replaced by
a memory cell (see Figure 1(b)). LSTM networks do have the
ability to remove or add information inside the memory cell
state, carefully regulated by a gated mechanism which allows
the information to flow through time, and explicitly model
long-term dependencies. The memory content c̃t, jointly with
the input it, forget ft and output ot gates are defined as:

it = σ(xt ∗ U i + ht−1 ∗W i) (3)

ft = σ(xt ∗ Uf + ht−1 ∗W f ) (4)

ot = σ(xt ∗ Uo + ht−1 ∗W o) (5)

c̃t = tanh(xt ∗ Ug + ht−1 ∗W g) (6)

Being σ the sigmoid function used to compute non-linear
complex functional mappings between the inputs and response
variable. The matrices U i,W i, Uf ,W f , Uo,W o, Ug,W g are
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Figure 1. (a) Classical vanilla-RNN time unfolding operation, defined by the matrices U , V and the recurrent connections W . Hidden states h are computed
over time, and predictions Y = y1, y2, ..., yn are made at each time step t. (b) LSTM cell with input i, output o, forget gates f and memory candidates c
are depicted. (c) GRU cell with input, reset gates r and update hidden states gate h̃t. Notice that GRU is a simplified version of the LSTM, with less gates
and internal connections.

initialized at the beginning of the learning process and they
are used to compute the values of each gate. By computing
a memory candidate c̃, the aim of these gates is to determine
which quantity of both, old and new memory, should be
ignored in order to compute the current hidden state ht. The
memory cell content ct, at time t, can be updated as:

ct = ct−1 ∗ f + c̃ ∗ i (7)

Being ct−1 the memory content at the previous time-step.
Given the associated candidate state of memory cell c̃t and
the output gate ot, the hidden state ht is computed by:

ht = tanh(ct) ∗ o (8)

Output states are computed using a softmax layer following
the same procedure used for the vanilla-RNN (Equation 2),
where ht (Equation 8) is the hidden state computed using
memory cells. Training stage is done via BPTT with a defined
loss-function. For categorical classification task, cross-entropy
cost function is used [45].

B. Gated Recurrent Unit

After empirical evaluation of how internal gates affect
performance, Gated Recurrent Units (GRU) were proposed as
a faster and computational lightweight version of the LSTM
by [36]. GRU reduces the number of gates by keeping the
essential gates to model long-term sequences, deprecating the
rest. Figure 1.c depicts the GRU scheme. GRU has a reset rt
and update gates zt, given by:

rt = σ(xt ∗ Ur + ht−1 ∗W r) (9)

zt = σ(xt ∗ Uz + ht−1 ∗W z) (10)

Where matrices Ur,W r, Uz,W z are initialized at the begin-
ning of the learning process. The candidate activation h̃ is
computed as in Equation 1. Note that GRU model is simpler
than standard LSTM networks. As its name suggest, the reset
gate controls the amount of information to flush from the
memory. The update gate controls how much information
needs to be stored at current time step for future computations.

The current hidden state is computed using the update gate,
the candidate activation h̃:

ht = (1− z) ∗ h+ z ∗ h̃t (11)

Simitar to LSTM models, output states are computed using
a softmax layer (Equation 2), being ht (Equation 11) the
hidden state of the network. Training stage is also done via
BPTT with a defined loss-function. According to empirical
evaluations by [30] and [46], both architectures LSTMs and
GRUs yield similar performance, being the fine-tuning and
hyper-parameters optimization the most time-consuming parts
in both architectures. It also important to emphasize that
GRUs may train a bit faster than LSTMs, as they have fewer
parameters and less gates.

III. VOLCANO-SEISMIC DATA AT DECEPTION
ISLAND

Volcanoes are the surface manifestation of dynamic and
complex processes occurring in the Earth’s interior coupling
physical and chemical processes. Due to the complexity of
these processes, a large variety of different seismic signals can
be recorded in these environments [47] [48], but no uniform
global classification scheme has been done. In despite of this
variety, there is a remarkable observation: many volcanoes
show comparable seismic signal characteristics that can be
associated to different seismo-volcanic sources [49]. Therefore
seismic signals are often classified into event families that
could help to evaluate potential seismic sources and their
relationship to the present volcanic process [22]. In our case,
at Deception Island, the main volcano-seismic events can be
grouped as:

1) Long period events (LP) (Figure 2(a)): The source
model is related to fluid dynamics within the volcano
edifice: from cracks in which resonances occur when
liquids are ascending towards the surface, to existence
of pressure transients within the fluid-gas mixture, also
causing resonance phenomena [2] [50]. They are located
at the shallow part of the volcano, and their frequency
content is restricted to a narrow band between 0.5 and 5
Hz.



4

[s]

0 2 4 6 8 10 12 14 16 18 20

A
m

p
li
tu

d
e

-2000

-1000

0

1000

2000

[s]

2 4 6 8 10 12 14 16 18 20

S
T

F
T

[H
z
]

0

10

20

(a) Long Period Event (LP)
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(b) Volcano-Tectonic Earthquake (VT).
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(c) Tremor (TRE).
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(d) Hybrid Event (HYB).

Figure 2. Spectrogram of volcano-seismic signals recorded at Deception Island volcano, during three seismic surveys: 1994-1995, 1995-1996
and 2001-2002.

2) Volcano tectonic earthquakes (VT) (Figure 2(b)): VT
are very impulsive signals originated within a range of
depths. They are produced by seismic stress; when a solid
fracture takes place, it produces a seismic wave in which
P (Primae) and S (Secundae) waves can be identified. The
spectral content of this signal is very wide, reaching up
to 30 Hz.

3) Volcanic tremors (TRE) (Figure 2(c)): Volcanic tremor
is a sustained sing always present in active volcanoes
[51]. Their spectral content is below 5 Hz. Their duration
is highly variable, lasting from few minutes to months.
Some theories consider they are caused by magma move-
ments, whereas other suggest gas fluctuations. Since their
source mechanisms are still unknown, the importance
and timing between the first appearance of tremor and
possible eruptive activity is still a matter of discussion
[52]. In many cases to identify and to distinguish it
from background noise is a quite complex task, requiring
advanced signal analysis. For the case of Deception Island
volcano, we used the well-know result described by [53],
[49]). In this sense, there is an indubitable distinction
between TRE and Noise in this database.

4) Hybrid events (HYB) (Figure 2(d)): These signals are
characterized by an initial high-frequency phase, with
short duration, and followed by a second signal identical
to that of the long period event. Their origin can be
explained by the increments of pressure that leads to

earthquakes. This pressure-induced fracture is filled with
volcanic fluids, producing LP events. Hybrid events are
related to imminent pre-eruptive episodes.

5) Silence (SIL): These type of signals, mainly of low
amplitude, are recorded when the internal seismic sources
within the volcano does not emit any seismic information.

The seismic waves contain information not only on the
volcanic dynamics but also about the inner complex structure
of the volcanic edifice affecting the seismic wave-field and
its interpretation [54]. In most volcanoes, a pronounced and
rough topography introduces new complex effects, such as
interference, severe attenuation effects, or changes in the path
followed by the direct seismic waves [55]. As final result,
even at same volcano, the same original seismic signal is
recorded with different shape and wave-field characteristics
according to the site of the placed seismometer. In addition,
at the same seismic station, similar seismic-sources generate
different signal patterns according to the way in which the
source radiates energy [56]. All of these effects can be mostly
classified according to path effects (attenuation) and source
effects (energy and radiation pattern).

A. Attenuation Effects.

The main phenomenon conditioning the spectral content
and shape of a seismogram is the seismic attenuation [57].
Seismic attenuation is the contribution of both, the energy
lost by in-elasticity (intrinsic attenuation) and the energy
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lost by dissipation (scattering attenuation). The effect of
the attenuation is a visible loss of energy, being more
effective at higher frequencies and directly dependent of
the distance receiver-source. In volcanic environments,
where the complexity and heterogeneity of the medium is
more pronounced, this effect strongly modifies the seismic
waveform, producing several phenomena such as: arrivals of
scattered seismic waves in the last part of the seismograms
[58]; reduction of high frequencies energy contribution in
the seismograms [59]; changes of the magnitude and laws
of scale [60]; or distortions in the spectra of the LP events
[61], among others. These effects increases the difficulty to
discriminate the type of event.

B. Source Effects.

The source of volcano-seismic signals is associated to
the interaction of geophysical systems. Source effects can
be related to the interaction of water and hot rocks, among
many others factors. At Deception island, evidences of
aquifers and hot materials placed near the surface have been
widely confirmed using seismic tomographies in velocity
and attenuation [62]. Interactions between water and hot
rocks generates a sudden change of phase at depth, with
its associated pressure step and radiation of high frequency
seismic waves. In addition, the presence of several and
complex fault systems in the area [63] induces low-frequency
seismic waves swarms as the result of fluid auto oscillations
filling the crack. When the interaction between water and hot-
rocks is simple, simple oscillations are recorded. However, in
case of multiple interactions, the continuous change of phase
and resonance of the faults generates an overlapping of signals.

C. Deception Island dataset

Deception Island is located at 62◦ 59’ S and 60◦ 41’ W
in the South Shetland Islands. It is considered as one of the
most active volcanoes in the Antarctic Peninsula, with more
than six eruptions in the last 160 years. The dataset was
collected during three seismic Antarctic surveys in 1994–1995,
1995–1996, and 2001–2002. In [49] a full description of sensor
and acquisition systems can be obtained. Data labelling was
performed by a committee of geophysicists, based on their
professional knowledge and experience of Deception Island
volcano. All volcano-seismic events have been selected as
the most representative of each class. As a result, a total of
512 continuous data streams were obtained, containing a total
of 2193 events, with the following per-class distribution: 75
VT, 765 LP, 77 TRE, 54 HYB and 1222 SIL. Recorded data
streams are continuous, that is, each recorder seismic signal
is composed by different volcano-seismic signals. Figure 3
shows the time (by number of frames) distribution histograms
for each volcano-seismic class recorded described. Notice that
the histograms of LP class in Figure 3(a) and SIL class in
Figure 3(e) contain many short frames, with a duration less
than 5 seconds (three overlapped frames).

IV. EXPERIMENT DETAILS

A. Data processing and feature extraction.

The overwhelming success of recurrent neural networks
and the replacement of hand-crafted features with features
learned directly from data might be a good approach to
classify volcano-seismic events. However, volcano-seismic
events are related to complex geophysical processes, which
yield to specific particularities from a signal processing
perspective (see subsection III). Temporal duration of events
within the same seismic campaign can be very different, with
long-range temporal dependencies that are hard to model.
During an eruption, events can be recorded simultaneously
(e.g., explosions can be associated to lava flows and/or
rock falls), making the classification problem harder. In
the context of volcanic-seismology, data parameterization
is still advisable in order to enhance the learning process.
Experiments are performed with raw data, linear prediction
coefficients (LPC) and log-filter banks (LFB).

Raw data has been windowed with 4 seconds Hamming
windows and 3.5 seconds overlapping. In the case of LPC
features approach, once the signal had been windowed, 5
LPC coefficients for each window are computed, yielding to a
feature vector with 5 components. LFB data parameterization
is automated in a pipeline: the input is the volcano-seismic raw
waveform, and the output is the parametric representation with
less redundant information. LFB carry rich information and
are computationally simple, being this an important advantage
when deployed in volcano observatories. These features have
been suggested by [21] and [24] as a robust approach to param-
eterize volcano-seismic signals. Figure 4 depicts the feature
extraction pipeline, which can be summarized as follows:

1) Once the signal has been windowed a 512-points FFT is
computed for each frame. The magnitude of the spectrum
is used as a set of 16 triangular filter bank uniformly
distributed, on a logarithmic frequency scale with 50%
overlapping between adjacent filters. The purpose of this
filter bank is to give the average of the energy of the
signal at a given frequency band.

2) Optionally, we can compute the logarithm of the output
filter-bank energies and apply the discrete cosine trans-
form (DCT) in order to decorrelate the features. In the
case of ANN, this step is not necessary since DCT is a
linear operation, being counterproductive with the non-
linear nature of the activation functions of the hidden
units.

As a result, each window provides a feature vectors of
16 components. During training stage, and for a specific
temporal sequence in the dataset, successive 16−dimensional
frames are fed to the recurrent architectures. Given this set of
extracted features, we will train three recurrent architectures:
vanilla RNNs, LSTM and GRU networks. Our main goal in
this paper is to show the robustness of RNNs architectures as
temporal classifiers of five different types of seismic events
and to understand if internal gates in LSTM and GRU can
capture specific temporal patterns within the seismic data.
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(a) Long Period Events.
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(b) Volcano-Tectonic Earthquakes.
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(c) Tremor.
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Figure 3. Histograms summarizing the length distribution by frame for the volcano-seismic signals recorded during 1994–1995, 1995–1996,
and 2001–2002 seismic campaign at Deception Island volcano. Dashed lines are centered on the mean duration of each event. All signals
have been windowed with a 4 seconds Hamming window, with 3.5 seconds overlapping, as explained in subsection IV-A.
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Figure 4. Data pre-processing pipeline. Each signal is windowed every 4 seconds, with 3.5 seconds overlapping, using a Hamming window.
A 512-FFT spectrogram is computed for each frame, and 16 log-filter banks features are used. At the end of this pipeline, all volcano-seismic
signals are encoded into frames, each frame containing a feature vector of 16 coefficients, being these the inputs to our recurrent neural
networks. Thus, any given seismic signal is represented by a matrix with dimension (number of frames x 16).

B. Experimental Setup

All recurrent neural network were implemented using
Theano [64], a deep learning framework written in Python.
Data parameterization and feature extraction have been imple-
mented in Python.

Experiments to determine the temporal modelling capa-
bilities of recurrent architectures are performed using data
from Deception Island volcano (section III). Before training
stage, data is pre-processed as described in section IV-A. Once
processed, the dataset is split into training (80%), and test
(20%) sets. A random shuffle of the data is done to balance
both sets. In order to test model capabilities to generalize

on unseen data, leave-one-out cross-validation with four test
partitions is used.

Vanilla RNNs, GRU and LSTM are optimized following
a similar approach as described in [65], evaluating several
models between 10 and 300 hidden units. A softmax prob-
ability layer with five target outputs, corresponding to each
class of our dataset is added on top. Learning rates have been
tested within the range [0.1, 0.001], with a momentum of 0.9
and learning rate decay of 0.001. L2 regularization and early-
stopping criterion with a patience interval of 10 epochs were
used to prevent over-fitting. These models have been trained
with a batch size of 10 training instances. Given the elevated



7

number of computations required by recurrent architectures,
we train these models on two Graphics Processor Unit (GPU):
NVIDIA K40c and NVIDIA GEFORCE GTX 1080.

C. Defining the metric for evaluation.

The reported metric is given in terms of accuracy, defined
as:

Acc(%) =
C − I

T
∗ (100) (12)

where C is the number of correct predictions, I the number
of insertion errors and T the total number of events present
in the test. With this setup, we determine the performance of
recurrent architectures, and provide an in-depth study of how
these models generalize to recent seismic periods at Deception
Island volcano. After a certain length of time, the dynamics
of the volcano can change, causing certain characteristics of
the events differ from previous ones even being the same
type of event. Therefore, training the models with volcano-
seismic data from 1994 to 1996 campaigns, and evaluate
those architectures with data from 2017, permits us to test
if recurrent architectures generalize across different seismic
campaigns.

D. Adding geophysical knowledge to RNN predictions

At each time step, recurrent architectures assign a label
for each incoming frame. Whilst from a machine learning
perspective this procedure is correct, it may not consider the
nature of volcano-seismic signals (see section III). Based on
geophysical knowledge of Deception Island volcano, a set of
rules can be incorporated to improve the interpretability of all
models: the average duration of seismic events allows to check
that predictions are coherent with the expected lengths of
events. In Figure 3, histograms and average duration for each
volcano-seismic event are depicted (see section III). These
values have been used to establish the following rules:

• Predictions of events with very short duration in-between
two well recognized events: in this case, spurious incom-
ing frames have triggered the recognition of an event
without the expected duration. We correct the wrong
frame by assigning the highest class probability between
the two well recognize events.

• Many consecutive predictions with different labels and
short duration, in-between well recognized events: seis-
mometers record overlapped events, which translate into
signals with very heterogeneous frequency contents.
Thus, RNNs architectures output a prediction for each
incoming frame, switching between overlapped events.
To solve this, we introduced the class unknown event: a
special event considered as an insertion, that can be later
analyzed by geophysics experts.

V. RESULTS AND DISCUSSION

This section reports the classification results obtained by the
recurrent architectures described in subsection II. Besides the
attained classification results, an in-depth review of how these

Table I
PER-FRAME ACCURACY (ACC %) PERFORMANCE OBTAINED BY
VANILLA-RNN, GRU AND LSTM ARCHITECTURES WITH RAW

DATA, LPC AND LFB.

vanilla-RNN GRU LSTM
Raw 73.83 77.10 77.64
LPC 77.15 80.25 79.76
LFB 79.83 84.07 83.56

Table II
ARCHITECTURE DIAGRAM SHOWING THE BEST TOPOLOGIES

OBTAINED BY VANILLA-RNN, GRU AND LSTM ARCHITECTURES
WITH RAW DATA, LPC AND LOG-FILTER BANKS FEATURES.

vanilla-RNN GRU LSTM
Raw 170 110 240
LPC 250 220 290
LFB 60 20 130

models work internally, and how they generalize to recent
seismic data is also presented. In addition, we perform an
experiment with recent seismic data. After a careful param-
eter optimization process, results are presented for the best
obtained models in terms of accuracy. Best models have been
found with 20 hidden units for the GRU, 60 hidden units
for the vanilla-RNN and 130 hidden units for the LSTM
architecture using LFB features (Table II).

A. General performance of the system

Table I shows per-frame recognition results for parameter-
ized and non-parameterized seismic data. Despite promising
results have been attained using raw data, notice that LFBs
features yield to higher results. Based on these results, we
decided to develop this work using LFB features, but we also
include the LPC approach results.

Table III shows Acc and Cor with LPC and LFB features,
for the best obtained models. The term Acc is computed as
equation 12, and Cor refers to the number of correct events
with respect to the total. Average performances of all systems
are also included for the four test sets. Acc results show that
recurrent architectures attain similar performance, with 74.15
% for the vanilla RNN, 79.28 % for the LSTM and 81.76 %
for the GRU. The training times obtained by these models are
summarized in Table IV.

Some insertion errors might be produced by the capability of
the model to detect information not seen by human operators.
Deletion errors evidence that models are missing events from
the input data stream. Thus, if we consider only the events
correctly predicted by the models (Cor), vanilla RNN achieves
a classification accuracy of 89.54 %, whilst LSTM and GRU
attain 93.81% and 91.60 % respectively. An in-depth analysis
of these results must be done to provide a better understanding
of how RNN architectures detect seismic data.

B. Detailed analysis of results

Notice that the number of inserted events is much greater
than the number of deleted events. Nature of the seismic
data might play an essential role in the elevated number of
those insertions: the RNNs detect overlapped events, which
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Table III
PERFORMANCE OBTAINED BY RNNS ARCHITECTURES. RESULTS WITH THE BEST CONFIGURATIONS ARE REPORTED.

LFB LPC
Acc (%) Cor (%) Acc (%) Cor (%)

RNN-Vanilla

test1 82.01 95.23 84.12 92.06
test2 75.58 88.95 72.09 84.88
test3 69.10 88.20 70.78 87.07
test4 69.94 85.79 76.50 85.79
avg(%) 74.15 89.54 75.87 87.45

GRU-RNN

test1 85.18 93.65 79.36 94.17
test2 77.32 87.20 71.51 86.62
test3 83.14 92.13 71.91 87.64
test4 81.42 93.44 75.95 89.07
avg(%) 81.76 91.60 74.68 89.37

LSTM-RNN

test1 85.18 97.88 83.06 91.53
test2 77.32 90.69 74.41 84.30
test3 79.77 92.69 80.33 88.76
test4 74.86 93.98 68.85 87.97
avg(%) 79.28 93.81 76.66 88.14

Table IV
TRAINING TIMES OBTAINED BY THE BEST CONFIGURATIONS

USING VANILLA-RNN, GRU AND LSTM ARCHITECTURES WITH
LFB AND LPC FEATURES. VALUES ARE EXPRESSED IN SECONDS.

vanilla-RNN GRU LSTM
LPC 2600.21 8086.50 27777.81
LFB 437.21 577.62 6810.25

increases the quantity of frames labelled as unknown events,
and therefore, the insertions. Another hypothesis suggests that
RNNs are detecting events that were not originally recognized
by expert geophysicists. We have performed a detailed analysis
of some signals in which the models have the highest number
of insertions. Figure 5 depicts an example of them:

• Figure 5(a): the labels associated with this part of sig-
nal in the dataset are SIL-TRE. However, vanilla-RNN,
LSTM and GRU recognize them as SIL-VT-TRE. After
a posterior supervision by a geophysical expert, we can
consider as correct the output obtained by the classifiers.
At the beginning of the tremor, a short and overlapped VT
can be recorded by the seismometer, but the signal has
been labelled as a TRE since often, the source of these
types of tremors are preceded by a small earthquake. In
our classification system based on the labels originally
provided, the event VT had been erroneously considered
an insertion, decreasing the performance of the architec-
tures.

• Figure 5(b): the labels associated with this chunk of
signal are SIL-VT-SIL-LP. The second event labelled
as silence (SIL) has a duration shorter than the range
of duration considered in the grammar applied, being
able to be considered as part of the coda of the VT.
Therefore recurrent architectures ignore it and return the
classification sequence as SIL-VT-LP. After applying the
grammar, they return SIL-HYB, introducing a deletion
error.

• Figure 5(c) and 5(d): these spectrograms correspond

to two different signals, SIL-TRE and SIL-HYB-TRE,
which all architectures recognize as SIL-TRE, introduc-
ing several deletions on the classification accuracy. These
deletions are easy to explain: by looking at both spectro-
grams, the presence of HYB events can not be easily
distinguished, and waveform is needed to classify them.
In this case, human factor has an essential role: some
labels in this type of signals include the HYB events,
whereas other not, which depends of the geophysical
subjectivity of the human operator.

C. Generalization capabilities of RNNs for recent campaigns.

One of the most important challenges in automatic volcano-
recognition systems is to build robust computational models
that can easily re-adapt themselves to highly dynamical inter-
nal seismic sources inside volcanoes. Thus, even if volcano
properties do change over time, the system trained with data
from past campaigns should be able to provide an efficient
monitoring.

A 3.5 hours seismic record from the 2016-2017 Spanish
Antarctic campaign (January 2017) at Deception Island has
been used as testing data. All signals have been filtered
between 1 and 50 Hz, in order to work in the same frequency
range as the dataset described in subsection III-C. This dataset
is selected from a raw seismic records, with unknown events,
and no prior human supervision. This might influence the
predictions, as this new dataset contains events that may differ
from the carefully chosen prototype events used to train the
system-. Best vanilla-RNN, LSTM and GRU are trained on
1995-1996 and 2001-2002 campaigns, have been tested with
data from this recent seismic survey.

In order to compare the results with other architectures,
several experiments using HMM -Hidden Markov Models
have been tested. In doing so, we have used the Hidden
Markov Model Toolkit (HTK) [66]. Two were the approaches
followed:
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(d) Labels: SIL-HYB-TRE.

Figure 5. Spectrogram of seismic signals in the Deception Island volcano dataset. These spectrograms were selected from the test set to
explain the high number of insertions by the recurrent architectures.
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ated.

Figure 6. Attenuation effects with data the 2016-2017 Spanish Antartic campaign. Seismograms and spectrograms which summarize how
seismometer location affects recorded shape and wave-field characteristics of volcano-seismic signals.
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Table V
CLASSIFICATION PERFORMANCE OBTAINED BY RNNS WITH TEST DATA FROM 2016-2017 SPANISH ANTARCTIC CAMPAIGN.

LFB
Acc (%) Cor (%)

LSTM-RNN 75.22 80.42
GRU-RNN 54.12 74.31
RNN-Vanilla 54.12 77.37
HHM 42.55 60.79

(a) Energetic tremor. (b) Attenuated tremor.

Figure 7. Attenuation effects. Seismograms and spectrograms summarizing how two different volcanic tremors, with similar source mechanism
in their frequency pattern as shown in their spectrogram, but with evident differences in the energy level due to attenuation effects.

(a) Long Period event with high frequency
waves associated to the explosive step of pres-
sure in the source region.

(b) Classical Long Period event.

Figure 8. Source effects. Seismogram and spectrogram summarizing how the source of the seismic signal influences the recorded waveform
and the spectral content.

• Finding a single or general purpose competitive config-
uration. To do that, we evaluated models with 5,9 and
11 hidden estates. In this sense, to model the emission
probabilities for a feature vector in any state, we evaluated
between 1 and 16 multivariate Gaussian probability den-
sity (pdfs) functions with diagonal covariance matrices.

• Taking into account the wide variability of the volcano-
seismic signals, we also considered the implementation
of a HMM for each kind of event, that is, knowing that

each event has different temporal features, we proposed to
use different model configurations based on the average
duration of events. For relatively short events as LP and
VT (less than three minutes), we proposed models with
5 states-model. For intermediate events, with duration
between 3 and 7 minutes (SIL and HYB), we used 10
states, and finally, for large events like TRE, we chose
15 states. As above mentioned, to model the emission
probabilities in any state, we evaluated between 1 and 16
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multivariate Gaussian probability density functions (pdfs)
with diagonal co-variance matrices.

The best result was obtained using the second approach and
12 multivariate Gaussian pdfs by state. Table V summarizes
the test results. Whilst recognition results are good, there is a
noticeable drop in performance by the GRU and vanilla-RNN
architectures. After human expertise reviewing, this degrada-
tion could be explained from a geophysical perspective.

As mentioned in sections III-A and III-B, attenuation and
source effects condition the recognition accuracy of all recur-
rent models. In this sense, Figure 6 depicts three VT events,
recorded by the same seismic station, but with different hypo-
center (source to receiver) distance (whose estimation has been
done using the velocity model derived by [67], [68],[69], [70]).
Notice how the attenuation effect introduces a bias in the
recognition pattern of VT class:

• Figure 6(a) plots a VT with S-P time of around 1 second,
i.e., a received-source distance lower than 3-4 km. As it
can be visible in its spectrogram, the spectral content
reach more than 20 Hz, but higher frequency content can
be visible. RNNs architectures consider this event VT
class with a probability higher than 66%.

• In Figure 6(b) the VT event was recorded with S-P time
of around 2 seconds (distance close to 8 km). The spectral
shape is different and the high frequency content does
not reach beyond 15 Hz. All RNNs assign a lower class
probability of VT (52%).

• Finally, in Figure 6(c), the S-P time is close to 3 seconds
(at least 12 km of distance). The distance is not too large
for the size of Deception Island volcanic environment,
and many VT events can be recorded at further distances.
However, in the spectrogram, the attenuation of the high
frequency contents is evident, with the main presence of
frequencies lower than 6 Hz. This yields VT signals with
clear similarities with some of the trained LP events. In
this case, RNNs architectures assign lower but similar
(40%) per-class probabilities for VT and LP classes,
leading to a confusion in the recognition.

Another important aspect related to attenuation effects can
be observed by the peak to peak amplitude degradation of the
recorded signal. Figure 7 depicts two examples of volcanic
tremor (TRE) recorded by the same seismic station, at same
scale for visualization purposes. Whilst the frequency pattern
shown in their spectrogram suggest they have been generated
by the same source mechanism, the noticeable differences in
their energy level indicates strong attenuation effects. Figure
7(a) shows a volcanic tremor (TRE) of high amplitude that all
RNNs architectures identified as a tremor. Instead, Figure 7(b)
shows another volcanic tremor, which has very low amplitude,
forcing all RNNs to recognize it as silence (SIL). However,
expert geophysicist indicated as potential tremor. In this case,
both (automatic system and operator) are correct: from the
spectral point of view, this signal resembles a TRE, but can
be considered as SIL since the amplitude of the signal is
almost ten times lower than the expected amplitude level for
a volcanic tremor. Results from Table V reflect this type

of inconsistency between human operator and RNN-based
recognition systems, and it accounts for 5% of the total error
(mostly deleted events). Thus, if we consider as correct the
output of the RNNs, recognition accuracy would improve
noticeably. Theses examples of how seismic attenuation could
affect to the spectral content of VT and TRE events can be
extensible to the case of HYB events, where in the nearest
stations, a signal can be identified as HYB and in a more
distant one as LP. For future some conditions must be included
when a whole seismic network will be analyzed providing
highest weight to the nearest stations of the seismic source.

The source effect addressed in section III-B is a direct
influence in the accuracy drop by the vanilla-RNN and GRU
in Table V. At the volcanic environment of Deception Island,
LP events generated near the station have a first arrival of high
frequency waves that resemble a hybrid event (HYB). Figure
8(b) shows a recorded LP event with a short distance to the
generation source. It is visible the first arrival of this high
frequency waves associated to the explosive step of pressure
in the source region. This signal is identified as a package
of high frequency signals (up to 20 Hz) in the spectrogram.
No visible exponential decay in frequency is observed. After
that, a well identify low frequency arrival is observed and
directly associated to classical LP event. In Figure 8(a) we
plot the same LP event recorded at a more distant station.
The attenuation effect has decreased the energy of the high
frequency waves (and in general of the total energy, see the
lower vertical scale in the seismogram) showing a classical
LP event.

In this scenario, it is plausible the potential confusion
between near source LP and HYB events: Vanilla RNN and
GRU, with less internal gates, recognize incoming frames
being able to detect rapid seismic changes. Therefore, a
potential VT event with short duration is inserted, decreasing
the accuracy of vanilla-RNN and GRU. In the case of the
LSTM, such short packages are ignored and no internal
updates within their states cell memory is done. However,
vanilla-RNN and GRU predictions should not be associated
to a mistake, revealing the necessity to create a large dataset
with near field LP events included.

VI. CONCLUSION

This work focuses on how RNNs can be applied as sta-
tistical models to exploit temporal information of volcano-
seismic signals, and explores their generalization capabilities
over different seismic periods. Three recurrent architectures
are studied: vanilla-RNN, LSTM and GRU. Experiments have
been performed with seismic data from Deception Island
volcano, with seismic records from 1994-1996 and 2001-2002,
and further tested with data from a recent seismic survey in
2017 by the Spanish Antarctic scientific campaign. Using LFB
features, attained results have shown that vanilla-RNN, LSTM
and GRU classify volcano-seismic events with good accuracy,
and memory cells (LSTM and GRU) enhance the detection
of long-term signals. However, volcano-seismic data nature,
specially path and source effects influences predictions. We
incorporated a set of rules, based on geophysical knowledge,
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which take into consideration the particularities of volcano-
seismic data. These results demonstrate RNNs capability to
generalize for recent recorded seismic data, presenting them
as robust monitoring tools to enhance current early warning
systems in real time.
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[67] J. Ibañez, E. Del Pezzo, J. Almendros, M. La Rocca,
G. Alguacil, R. Ortiz, and A. Garcia. “Seismovolcanic
signals at Deception Island volcano, Antarctica: Wave
field analysis and source modeling”. In: Journal of
Geophysical Research 105.B6 (2000), pp. 13–905.

[68] T. Ben-Zvi, W. Wilcock, A. Barclay, D. Zandomeneghi,
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J. Ibáñez. “Results of seismic monitoring surveys of De-
ception Island volcano, Antarctica, from 1999–2011”.
In: Antarctic Science 24.5 (2012), pp. 485–499.

Manuel Titos received the M.Sc. degree in Com-
puter Engineering and the Master degree in Com-
puter Networks Engineering from University of
Granada, Spain, in 2012 and 2013, respectively.
He currently is a PhD candidate at University of
Granada, working on development of advanced
signal processing algorithms for description and
characterization of seismo-volcanic signals. His
main research interests include deep learning
techniques (machine learning) and computational
intelligence in remote sensing signals, particulary

in the volcanic eruption early warning area. He also interested in data
analysis and high-resolution image processing.



15

Angel Bueno received his MSc. in Telecommuni-
cations engineering with specialization in signal
processing from University of Granada, Spain.
He is working towards his PhD. degree in the
intersection of deep learning and geophysics. His
current main research interest is the optimization
of deep learning algorithms, acoustic modeling
for robust signal recognition and bayesian meth-
ods.

Luz Garcı́a received the M.Sc. degree in telecom-
munication engineering from the Polytechnic
University of Madrid, Spain, in 2000. She re-
ceived the Ph. D. degree from the University
of Granada, Spain, in 2008. After working as a
Support Engineer for communication networks at
Ericsson-Spain for 5 years, she joined a European
research project at the University of Granada.
She has belonged to the Department of Signal
Theory, Telematics and Communications, Univer-
sity of Granada, Spain, since 2005, having worked

first as Assistant Professor and currently as an Associate Professor. Her
research interests are signal processing, pattern recognition, and machine
learning in the fields of speech and geophysics.

M. Carmen Benı́tez received the M.Sc. and
Ph.D. degrees in physics from the University of
Granada, Spain, in 1991 and 1998, respectively.
From 1990 to 2004, she was a part of the Depart-
ment of Electrnica y Tecnologa de Computadores,
Faculty of Sciences, University of Granada. Since
2004, she has been a part of the Department of
Signal Theory, Telematics, and Communications,
(ETSIIT); RST as a Researcher and an Assistant
Professor and then as an Associate Professor
since 2003. Since 2015, she has been the Head

of the Department. She was a Visiting Researcher at the International
Computer Science Institute, Berkeley, CA, USA, and with the USGS,
Menlo Park, CA, USA. Her research interests include signal processing,
geophysical signal processing, speech processing, machine learning, and
pattern recognition.

Full Professor at the University of Granada in
the area of Physics of the Earth. Specialist in
Seismology and mainly in Volcanic Seismology,
including High definition seismic tomography of
volcanic areas using active and passive data, in
velocity and attenuation. Seismo-volcanic sources,
volcano tectonic earthquakes, long period events,
volcanic tremor and explosive signals. Seismic
antennas, inversion of volcano seismic signal,
seismic pattern and seismic swarm analysis.
Seismic signal analysis and processing, pattern

recognition, seismo-volcanic signals classification. Automatic and Real-
time volcano-seismic signals classification and identification. Seismic
attenuation, seismotectonic, site effects and seismic source. Tectonic
activity of subducting regions. I have been responsible of more than 20
Research projects funded by the Spanish Government, European Union
and other thirds counties focused in the above mentioned research lines.
I have been the head of several seismic experiment carried out in active
volcanoes such as Deception Island (Antarctica), Teide, Lanzarote and
El Hierro (Canary Islands, Spain), Stromboli, Vesuvius, Campi Flegrei
and Etna (Italy), Sao Miguel (Azores, Portugal), Copahue (Argentina),
Colima (Mexico) and Fogo Volcano (Cape Verde) among other experiment
in which I participated as researcher.


