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Abstract—Deep neural networks could help to identify the

internal sources of volcano-seismic events. However, direct ap-

plications of deep neural networks are challenging, given the

multiple seismic sources and the small size of available datasets.

In this paper, we propose a novel approach in the field of

volcano seismology to classify volcano-seismic events based on

fully-connected Deep Neural Networks (DNNs). Two DNN archi-

tectures with different weights scheme initialization are studied:

stacked Denoising Autoencoders (sDA) and Deep Belief Networks

(DBN). Using a combined feature vector of Linear Prediction

Coefficients (LPC) and statistical properties, we evaluate clas-

sification performance on seven different classes of isolated

seismic events. These proposed architectures are compared to

Multilayer Perceptron (MLP), Support Vector Machine (SVM)

and Random Forest (RF). Experimental results show that DNNs

can efficiently capture complex relationships of volcano-seismic

data and achieve better classification performance with faster

convergence when compared to classical models.

I. INTRODUCTION
Volcanic eruptions are natural spectacles due to their

physical power. But these spectacles might be lethal for
nearby populations, as volcanoes liberate hazardous gases
and produce intense earthquakes. The seismic anomalies
associated to volcanic eruptions are the result of an energy
exchange between volcanoes and the environment. This energy
exchange is produced by stress and relaxation processes,
pressure changes or fluid movements [1]. It generates
complex seismic signals with unique characteristics: when
magma is ascending towards the surface, resonance effects
produce seismic signals known as long-period events [2].
If gases are accelerated within the volcano edifice, heavy
explosions can be registered and volcanic debris processes
may occur at surface level. Volcanic seismology is the
most reliable approach to understand active volcanoes, and
to characterize their eruptive behavior. Signal processing
and machine learning algorithms provide an appropriate
framework to analyze these seismic signals and assess the
hazardous impact of an eruption. Monitoring volcanoes
based on robust automatic recognition systems will help to
refine our knowledge of underlying seismic sources, and to
improve human understanding of internal volcano dynamics.
In addition, new seismic networks provide vast amounts of
high-quality seismic data, opening a new horizon to build
robust forecasting systems by analyzing that data through the
lens of artificial intelligence and machine learning.

Inspired by neuroscience, the idea of artificial neural
networks (ANNs) composed by multiple processing layers to
learn representations of data with high level of abstraction
was introduced by [3] and [4]. Known as Deep Neural

Networks (DNN), these models are defined as an ANN
with multiple hidden layers between the input and output.
DNNs can discover intrinsic patterns within large datasets,
and fine-tune their internal parameters in each layer using
back-propagation algorithm. One of main pillars for success
of DNNs algorithms is the increased availability of data in
certain domains, including speech recognition or computer
vision [3]. In volcanic seismology, obtaining data from
volcanoes around the world is a challenging problem by
itself, as careful geophysical interpretation is needed in order
to determine seismic sources [2].

The complexity of a DNN is related with the number of
hidden layers. Some authors [4] consider a model as ”deep”
when more than one layer of hidden units is present between
its input and output layers. Others, [5] when the number
of hidden layers is high. Based on this affirmation, and the
aforementioned literature in the field of volcano-seismic
recognition, we assume MLP as a neural network with only
one layer of hidden units, in order to differentiate it from
deep networks.

This research is concerned with the practical applications
of deep neural networks in the context of volcano seismic
monitoring, where data is scarce, hard to obtain and
expensive to label. Hence, the aim of this paper is to study
how generalization capabilities of deep neural networks can
exploit volcanic-seismic data patterns to classify isolated
events. We explore initialization schemes and provide new
empirical results for the proposed models, extending the
study to the effects of unsupervised pre-training with respect
to data-set size and hidden layers depth. Our dataset is
composed by 9332 labelled seismic signals recorded at
”Volcan de Fuego” in Colima, Mexico. The network of
sensors, located at different parts of the volcano topography,
acquired over time seven different types of seismic events
associated to distinct eruptive periods of ”Volcan de Fuego”.
This dataset of isolated events, with no temporal relations
across eruptive periods, is very suitable to be modelled by
the classification capabilities of DNNs. Concretely, given our
dataset size, we focus on stacked denoising autoencoders
(sDAs) and deep belief networks (DBNs), as well as network
initialization effect to classify isolated events. In order to
develop these systems, we needed to take into account two
aspects: (i) the input layer of both DNNs must have the same
length regardless of the duration of the event; and (ii) the
performance of the systems depend on how good the statistical
modelling is, and how accurately the parameters of the model
can be estimated using the available training data. To address
these considerations the well-known Linear Prediction Coding
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(LPC) is applied to extract features from the signals [6].
Thus, all events are represented by the same number of LPC
coefficients, regardless of their duration. With this setting,
we aim to address the robustness of DNN as classifiers
for multi-class seismic events and assess the capabilities
of DNN to extract hierarchical representations of seismic data.

The rest of the paper is organized as follows: section
2 introduces the related research in the field of volcanic
seismology. Section 3 provides a theoretical framework of
deep neural networks architectures, and how they can be used
for recognition of volcano-seismic events. Section 4 describes,
from a geophysical point of view, the seismic signals registered
at ”Volcan de Fuego”. Section 5 describes the experimental
setup. Section 6 presents the results and discussions, and
section 7 concludes the study. An Appendix with confusion
matrices for the best architectures obtained is included.

II. RELATED RESEARCH

Machine Learning algorithms have been widely applied
for the classification of volcano-seismic events [7]. Support
Vector Machine (SVM) with Gaussian Kernels were used by
[8] to discriminate volcanic tremors, landslide and explosions
at Stromboli volcanoes. Research by [9], [10], [11], [12],
uses hidden Markov models (HMM) to analyze temporal
sequences of seismic data in real time. ANNs have been
applied as automatic classifiers for volcano-seismic signals.
The Multilayer perceptron (MLP) with one hidden layer was
first introduced by [13]: trained with spectral features, this
MLP was used as a binary classifier to discriminate noise and
volcano-tectonic earthquakes from Stromboli volcano. Further
research by [14] employs one hidden layer neural network to
detect underwater explosions at Stromboli volcanoes. Similar
approaches by [15] and [16] use multilayer perceptrons
to classify observed wave seismograms, using extracted
features and parametrized attributes. These architectures
are well suited to solve simple or structured problems, but
show limitations when applied to real world data [3]. In
volcano seismology, these classifiers are constrained by
the data acquisition process: volcanic signals are hard to
obtain and easily corrupted by external factors, such as
terrain composition or environmental noise [17]. In addition,
volcanic data often requires a careful engineering process to
design meaningful representations of the data in order to train
pattern recognition systems.

DNNs define the state-of-the-art frameworks in many
scientific disciplines, such as speech recognition [4], [18]
and computer vision [19]. These architectures have been
introduced in the field of remote sensing for hyper-spectral
image classification [20], [21], [22], weather forecasting [23],
and cyclones forecasting [24], although others works include
super-resolution, semantic segmentation and object detection
[25], [26], [27]. These computational models address the
limitations of shallow-structured architectures with one level
of non-linear feature transformations, and are able to learn
intrinsic patterns from vast amounts of labelled data.

To our knowledge, DNNs have not been extensively

applied to volcano-seismic data. DNNs, as stated by [3],
started its uprising with the discovery that greedy layer-
wise unsupervised pre-training can be used to find a good
initialization for a learning procedure over all layers, leading
to an efficient training of fully connected architectures.
The first deep networks trained with speech data used Mel
Frequency Cepstral Coefficients (MFCC) to perform acoustic
modelling, on Switchboard dataset [4]. These computational
models were based on an unsupervised pre-training stage
proposed by [5], [28], [29], [30] in order to provide a good
initialization of the internal parameters of the network.

III. DEEP NEURAL NETWORKS

Deep Neural Networks (DNNs) addresses the limitations
of shallow-structured architectures, with one layer of non-
linearity, and allows computational models to learn rich rep-
resentations of data with multiple levels of abstraction [3].
Whilst shallow architectures are enough to solve simple well
constrained problems, they lack the power to build internal
representations of data.

DNN are defined as several fully connected layers, stacked
on top of each other, let the information flow sequentially,
being the output of the previous layer the input for the
next one. However, as the model becomes deeper, limitations
appear due to the diffusion of gradients. The many distinct
local minima that the optimization process can find in the
highly non-convex objective function describing the model
parameter space [31].

Extensive work by [28] introduced a type of neural network
known as Deep Belief Networks (DBNs). These networks can
be efficiently trained using a procedure known as greedy layer-

wise pre-training [32]. Similar architectures, but based on
a different pre-training procedure, were developed by [33].
In both cases, these pre-training stages revealed an efficient
approach to further train deep architectures. In [5] and [34], it
is suggested how weights initialization render the optimization
process more effective, and unsupervised pre-training has
been reported to achieve faster convergence by initializing
the network parameters near a convergence region. Glorot
initialization proposes to initialize the network weights based
on a gaussian (or uniform) distribution [35]. Random weights
initialization has been used in the field, with poor results
[34]. Based on [5], [28], [29], [30], [31], [34], it is possible
to summarize that the complete process of training a fully
connected DNN with unsupervised pre-training comprises two
phases: the greedy layer-wise unsupervised pre-training and
the fine-tuning.

A. Greedy layer-wise unsupervised pre-training.

In this section we briefly introduce the main concepts behind
the greedy layer-wise unsupervised pre-training procedure, the
two main architectures derived of such strategy and how they
can be applied for volcano-seismic signals.

Regardless of the number of layers, pre-training stage is
supposed to be a first step, before applying any learning
algorithm to fine-tune all the layers of the model. As a greedy
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layer-wise algorithm, each layer is initialized via unsupervised
pre-training, and the output of the previous layer can be used
as the input for the next one. This implies that each layer
uses a single-layer algorithm to learn latent representations
from the previous layer, with higher relation to discriminative
parameters. The two most used architectures during the unsu-
pervised pre-training phase are Restricted Boltzmann Machine

(RBM) [28], [36], [37] and Denoising Autoencoder (DA) [5],
[30]. Regardless which unsupervised algorithm is chosen, the
training procedure is the same in all cases. As seen in Figure
1, by stacking and pre-training RBMs, we build Deep Belief
Networks (DBNs); by stacking and pre-training DA, we build
Stacked Denoising Autoencoders (sDA).

• Deep Belief Networks (DBN): DBNs are generative mod-
els in which each layer has been pretrained as a RBM.
The input layer (or visible) is real-valued, whereas the
hidden units are binary-valued [28]. Training one layer at
a time, each hidden layer is obtained independently from
the hidden states of a RBM via unsupervised learning,
in a bottom-up procedure [28]. This unsupervised pre-
training proves useful, as each hidden layer learns a
meaningful relationship from the units in the lower layer,
whereas the higher layer representation become more
complex. Each RBM is trained in using the contrastive
divergence algorithm CD-k, proposed by [36], [37], [38];
forcing each layer to improve the variational lower bound
of the training data distribution. To build a deep multi-
layer generative model, we must take the inverse direction
for each kth hidden layer, which is given by the transpose
of its weights matrix wT

k . On top, we add a softmax layer
to normalize per-class output probabilities (2):

p(Y = i|x) = eai(x)

P
je

aj(x)
(1)

where ai is the output from the previous hidden layer,
linked to the weights matrix i, and

P
j e

aj(x) is the sum
of all the hidden units outputs from the previous layer.
When unsupervised pre-training is done, we have a deep
belief network composed of one visible layer and many
hidden layers, that can be fine-tuned for a specific task.

• Stacked Denoising Autoencoders (sDA): (sDA) is a mul-
tilayer generative model in which each layer has been
pre-trained using an autoencoder with noise corruption
criteria. This autoencoder is trained to minimize the
reconstruction error by the explicit corruption of the
input feature vector during the training stage [30]. The
main idea behind noise corruption is that obtained rep-
resentation remains stable even under corruptions of
the input, being the denoising task essential to extract
characteristic patterns from the input distribution. Thus,
pre-training with noisy inputs will enhance generalization
for a supervised learning task. Once the first auto-encoder

has been trained to minimize the reconstruction error, its
hidden representation is used as the input for the upper
layer. This pre-training procedure is repeated layer-wise
for k � th layers, obtaining a set of hidden layers, that
can be stacked together in multilayer generative model.

Figure 1. General overview of deep neural network building procedure
with pre-training initialization. If we use the hidden states of a
restricted Boltzmann machine (RBM) (a), then we build a Deep
Belief Network. If we use the hidden states of an autoencoder trained
with noise corruption criteria (b), then we build a Stacked Denoising
Autoencoder (sDA)

Similarly to the DBN, a softmax layer can be added on
top to compute per-class probabilities.

For both models, a normal fine-tuning operation is done by
applying Stochastic Gradient Descent (SGD) algorithm and
minimizing a cost function [3]. The entire deep system can be
fine-tuned to perform classification of seismic events.

B. Applying deep networks to volcano-seismic data.

One of the main attributes of deep learning is to replace the
feature extraction process with deep-network features learned
from the data. This contrasts with the criteria followed in
this work, where an algorithm for feature extraction is used.
The main success of deep learning is based on computa-
tional models, trained with vast amounts of labelled data.
This opens a new challenge when applying deep learning to
volcano-seismic data, given the high dimensionality of the
input data and relatively small amount of available labelled
data. Nature limits the data registered during an eruption,
with multiple incoming signals and noise in the background,
that require a careful interpretation by geophysicist. These
limitations translates into datasets that geophysicists carefully
label, known as ”snapshots”, in which magmatic processes
are intensively studied. Given the typical size of a snapshot, a
direct application of state-of-the-art deep learning architectures
is a challenge, having failed to reach satisfactory results when
they have been applied to Colima dataset. Thus, our main
objective is to find an application space between classical
and deep models, in which by using deep learning ideas, we
can explore if this approach improves current state of the art.
Following previous research by [34], [31] and [39], our study
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focus on the effect of greedy layer-wise unsupervised pre-
training as network pre-conditioner.
Seismic events have different temporal duration, limiting the
application of temporal models. As an example, volcanic
tremors can last from minutes to days, which lead to high-
dimensional signals with many long-range dependencies that
are hard to model. The classification of isolated events with
such temporal variation requires an input vector which ef-
ficiently exploits the signal information. Furthermore, sDA
and DBN based on fully connected architectures require input
vectors of equal lengths. These associated constraints forbid
the windowing of each signal: the training of a fully-connected
architecture will reveal complicated due to the high number
of windowed parts from long-lasting signals. To alleviate this,
we transform the raw data into a domain where each event has
the same length (see subsection IV-B), encoding each signal
using Linear Prediction Coefficients (LPC). With input vectors
of same length, DNNs can be trained to classify volcanic-
seismic data.

However, to use deep classifiers, we need to adapt the
model to the uniqueness of seismic data. First, the pre-training
procedure of the DBN architecture uses a Gaussian-Bernoulli
RBM (as seismic-volcanic data is real-valued) as first layer.
The hidden states of the first layer will be used as input
data for pre-training the upper RBMs (binary hidden states,
modelled with a Bernoulli-Bernoulli distribution) [37]. For
the sDA, each input vector has been 10% corrupted with
additive Gaussian noise, a natural choice for real valued inputs.
Minimization error can be optimized by minimizing the cross-
entropy error between the denoised output, and the uncor-
rupted input [33]. Both architectures, sDA and DBN, have a
softmax layer with seven probabilistic outputs, corresponding
to the target labels from the dataset (see section IV). The cost
function is given by the negative log-likelihood NLL(x, ✓),
defined as:

NLL(x, ✓) = �
n=NX

n=0

log(p(ck|xn, ✓)) (2)

Being N the total number of instances for training, xn a
training instance, ck the class-label assigned to input xn and
✓, the network weights. Afterwards, Equation 2 is minimized
using Stochastic Gradient Descent (SGD), with batch training,
performing a weights update for every batch of n training
instances. [40].

One of the biggest problems that arises when designing
DNN models is the selection of the best model with the opti-
mal number of layers, hidden units per layer and learning rate.
This problem is known in the literature as hyper-parameters
optimization [41]. Traditional algorithms to solve this problem
are based on grid search, random search or manual setting. Due
to the amount of time required to train deep neural networks,
in this work, the procedure used to select the best set of
parameters is similar to [42]. The hyper-parameter search is
based on fixing a neural network architecture and search for
a good optimization of hyper-parameters within a constrained
grid of best results. In addition, to prevent over-fitting, models
are trained with dropout ([43]), a regularization technique

which randomly drop weights during training time to avoid
weights to learn redundant representations, and reduce model
complexity. Early stopping criteria is also used to prevent
overfitting: at the end of each epoch, performance on the
test set is evaluated, and if results outperform the previous
best model, a copy of the model is saved. Otherwise, training
continues for a determined number of epochs (known as
patience interval) and testing performance is evaluated. If there
is not further improvement of the model, training is stopped
[40].

IV. VOLCANO-SEISMIC DATA

DNNs architectures presented in the previous section have
been trained as discriminative models, using 9332 seismic
signals registered at “Volcán de Fuego”. The dataset was
collected using two monitoring seismic stations plus one
broadband station, at different soil locations, during the erup-
tive periods of 1998, 2004, 2005 and 2006. Data labelling
was performed by geophysicists based on their professional
criteria, knowledge and experience of the volcano.

A. Description of the volcano-seismic events.

Located within the East of the trans-Mexican volcanic belt,
the “Volcán de Fuego” in Colima is a very active andesitic
stratovolcano, with a maximum height of 3860 m. In [44],
a detailed analysis of the geophysical activity at “Volcán

de Fuego” is described. Figure III-B shows representative
waveforms and spectrograms of each type of volcano-seismic
event, recorded at Colima. Following the guidelines proposed
by [2] [17], volcano-seismic signals of “Volcán de Fuego” can
be classified according to their waveform and spectral content,
and additionally associated to potential sources as:

1) Long period events (LPE) (Figure 2(a)): These seismic
signals remain in duration to small VTE earthquakes but
wit different frequency contain showing a clear harmonic
signature [45]. In general they are quasi-monochromatic
signals with a narrow frequency band centered, in the
majority of the cases, between 1 to 6 Hz. Their source
models are associated to volumetric modes of deforma-
tion of the propagation medium. In general the proposed
models are related to resonance of the medium as a
consequence of fluid displacement inside of the volcanic
edifice or the generation of pressure transients in fluids.
We can mention as example, a crack in which a res-
onance occurs when the fluids (magma, gas or water)
are ascending towards the surface or the existence of
pressure transients within the fluid-gas mixture inside of
the volcanic edifice, causing also resonance phenomena
[45]. All proposed models are able to explain the behavior
of the observed features in time and spectral domains.
They are usually located in particular areas of the volcanic
structure where fluids generate disturbances. They have
been used as short-term precursors of volcanic eruptions.
In many cases, they appear in time forming the so call
“seismic swarms”: thousands of LPE events in a short
time period, often overlapped.
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(a) Long Period Event (LPE). (b) Volcano-Tectonic Earthquake (VTE).

(c) Tremor (TRE). (d) Explosion (EXP).

(e) Lava Flow (COL). (f) Regional Earthquake (REG).

Figure 2. Spectrogram of volcano-seismic signals registered at “Volcán de Fuego”, Colima (Mexico).

2) Volcano tectonic earthquakes (VTE) (Figure 2(b)): VTE
events are classical earthquakes originated inside of
volcanic environments. Their main characteristic is a
signal with a broad frequency contains reaching up
to 40 Hz with duration from a few to tens seconds.
They are the result of a brittle response of the medium
caused by seismic stress producing a shear failure of
the volcanic edifice generating a broad set of seismic
waves. This seismic stress could be produced by several
causes, from local tectonic regime to fluid (water, gas
or magma) displacement inside of the volcanic edifice.
The consequence of this fracturing of the medium is the
generation of two kinds of seismic waves (body waves)
with different propagation velocity: P-waves (longitudinal

displacement) associated to change of Pressure in the
medium, and S-waves (transverse motion) associated to
shear displacement of the elastic medium. They should
appear spread in space and time inside of the volcanic
edifice. Many times they have been used as long-term vol-
canic eruption precursory activity appearing from days,
months or years before the eruption.

3) Volcanic tremor (TRE) (Figure 2(c)): These events are in
general characterized by harmonic signals with sustained
amplitude and highly variable duration, lasting from
minutes to hours or even months. Their spectral charac-
teristics resemble LPE events with quasi-monochromatic
signature, but in some cases their peak of frequency could
reach up 10 Hz of more. Sources of volcanic tremor are
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Figure 3. Overview of the data pre-processing pipeline. First, signals are band-pass filtered between 1 and 25 Hz. Each signal has been
windowed into three non-overlapping segments. LPC coefficients, along with statistical properties, have been computed. All seismic events
(9332) are represented by 21 dimensional vectors, regardless of their waveform duration. During the training phase, each of these vectors
are batched and used as input for DNN models. The associated labels will be used as targets for our classification tasks.

diverse, from inner pressure disturbance to external gas
emission, debris avalanches or pyroclastic flows, among
others. Some theories suggest that, when the source of the
tremor is located inside the volcanic edifice, its source
is identical to those associated with LPE events, being
the tremor the consequence of a non-lineal overlapping
of multiple LPE events. This overlapping model is the
consequence of the observation of the similar spectral
characteristics, and that both TRE and LPE events share,
in many cases, space inside of the volcanic edifice,
appearing associated in the time.

4) Explosions (EXP) (Figure 2(d)): These signals are as-
sociated to the external activity of the volcano due to
the sudden emission of gas and ash to the atmosphere
(explosion). Since mostly of them can be visible and
recorded by video, it is possible to associate the external
effect to the signals recorded in the seismometers. They
are characterized by an initial short duration LPE event
followed by high frequency signals with a narrow energy
peak with peaks located at different frequencies, from 4
up to 20 Hz.

5) Lava Flow (COL) (Figure 2(e)): As mentioned above, a
class of tremor is originated by debris flow located at
the volcano surface. Since they can be monitored using
video record, it is possible to associate the surface lava
movement with the generation of this type of volcanic
tremor. These events provide very useful information on
the final consequence of the internal activity in a volcano.
These events exhibit frequency content between 5 to 10
Hz.

6) Regional Earthquakes (REG) (Figure 2(f)): Tectonic
earthquakes might occur anywhere in the earth if there is
enough elastic strain energy stored to drive the fracture
propagation along a fault plane. They normally have a
bigger duration than volcano-tectonic earthquakes, but
similar spectral content.

7) Seismic Noise (NOISE): Overlapped over any seismic
signal, there is a type of signal, mainly of low amplitude,

originated by multiple natural and artificial sources. This
signal is named seismic noise and typically contaminates
the registered seismic signals. As natural sources, we
can mention wind, atmospheric pressure variation or
rain. In case of artificial sources, this noise is known
as ”cultural noise” and is mainly introduced by nearby
populations and human activity. In some cases, this noise
could interfere the frequency range in which most of the
volcanic spectral content is located.

A total of 9332 volcano-seismic events compose the dataset
used in the experiments, with the following per-class distri-
bution: 1738 VTE, 2699 LPE, 1170 TRE, 455 REG, 1406
COL, 278 EXP, and 1586 NOISE have been selected. Captured
events are isolated: a recorded seismic signal with a specific
duration, and its associated label.

B. Data processing and feature extraction.

As we above-mentioned in section III-B, a direct applica-
tion of state-of-the-art architectures on raw volcano-seismic
data has failed to reach satisfactory results. Therefore, data
preparation and feature extraction is a crucial step to build
reliable classifiers, as we aim to provide useful features for
the discriminative stage. The feature extraction process has
been automated in a pipeline: the input is the full dataset of
9332 seismic signals in the time domain, sampled at 50 Hz
and band-pass filtered between 1 Hz and 25 Hz. Figure 3
shows two examples of the pipeline procedure for two events
with different duration. Then, after the feature extraction stage,
a data-set of 9332 features vectors is obtained, with their
associated labels. This new dataset will be used as training
data for the classifier. As suggested by [4], rich-features
carry useful discriminative information for DNNs. In addition,
experimental work by [13] has shown that Linear Prediction
Coefficients (LPCs) are robust features for volcano-seismic
classification, as LPCs can encode the values of any given
signal in a linear combination of k. coefficients, regardless of
its duration. An important advantage of LPC-based feature
vectors is their computational simplicity, being this a key
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factor when deploying this system in real time. Following the
mentioned guidelines, our feature extraction pipeline can be
summarized as follows:

1) To characterize temporal evolution of volcano-seismic
events, each signal has been windowed into three non-
overlapping segments of equal length. We decided to
compute three segments in order to capture information
at start, center and end of the signal. As suggested by
[46], and similar to human phonemes [47], windowing
the signal into three sections provides useful information
about how the signal behaves temporally, and can be
discriminitave enough for certain types of seismic events.

2) Aiming to provide a good representation of volcano-
seismic signals, and encode the three non-overlapping
segments into same dimensions, LPC with order k = 5
have been computed for a given signal and its segments.
Following [13], and after exhaustive analysis of our data,
we decided to use k = 5 LPC coefficients to avoid
excessive redundancy and maintain trade off between
dataset and architectures parameters.

3) For a given signal, LPC coefficients of each segment
are complemented with statistical features proposed by
[12]. These statistical features help to discriminate the
impulsiveness of the signal in both, time and frequency
domain. The 20th, 50th and 80th percentiles of the
cumulative sum of the signal amplitude in time and
frequency domain are appended to the feature vector.

The final feature vector is generated by concatenating the
parameters obtained for each frame. The size of each feature
vector is (3⇤k)+6, being k = 5 the order of LPC coefficients,
3 the number of temporal frames, and 6 the number of features
corresponding to the percentiles 20th, 50th and 80th, in both,
time and frequency domains. This procedure yields into a set
of 21� dimensional input vectors, containing temporal and
frequency features.

Given this set of features, we will train two DNNs archi-
tectures: Stacked Denoising Autoencoders (sDA) and Deep
belief networks (DBN). We aim to determine the robustness
of these architectures as classifiers of seven different types of
seismic events, to understand how pre-training helps in this
discriminative task, and to assess the capabilities of the model
to extract meaningful features from the data.

V. EXPERIMENT DETAILS
A. Experimental setup.

Experiments to determine the power of deep neural net-
works architectures as classifiers of seismic events are con-
ducted using the data from “Volcán de Fuego”, described
in section IV-A. Data pre-processing is performed before
training, as described in detail at subsection IV-B: At the
end of the pipeline, all seismic events are represented by 21
dimensional vectors, regardless of their duration.

Once processed, the ”Volcan de Fuego” dataset is divided
into training (75%) and test (25%) sets. This yields a training
set of 7000 training instances, and 2332 test instances. More-
over, we used 50% of the test set (1166 instances) as validation
data. In addition, a balanced random shuffle of the data was

Table I
BEST ARCHITECTURES FOR DBN AND SDA MODELS

2 hidden layers 3 hidden layers
DBN 250-165 260-385-35
sDA 260-385 260-385-235

done to avoid highly correlated batches during training stage.
Cross-validation with four partitions over the test data has been
used in order to test the model ability to generalize on unseen
data.

Hyper-parameters optimization and best model selection are
based on grid-search, in a similar way to the approach used
in [42]. Deep neural models are tested with a total number of
250100 different configurations of hyper-parameters. For both
architectures, sDA and DBN, the number of hidden units at
first, second and third layers are tested from 50 up to 1250
hidden units, with increments of 25 hidden units. In this case,
the architecture is tested varying the number of hidden units
of the last layer with increments and decrements of 5 hidden
units, obtaining several new architectures. Learning rates have
been tested within the range of 0.000001 to 0.01. Data has
been normalized in mean and variance, and sigmoid is used
as non-linearity function. Both models, sDA and DBN, have
a softmax probability layer, defined by Equation 1 with seven
target outputs, corresponding to each class of our dataset.
These models have been trained with a batch size of 10
training instances. Dropout regularization technique was used
with p = 0.20. To further alleviate over-fitting problem, early-
stopping criterion with a patience interval of 10 epochs was
used with the validation set.

Classification performance of deep architectures are com-
pared to Glorot initialized MLP (with tanh non linearity),
Support Vector Machine (SVM) [48] and Random Forest (RF)
[49]. Performance of the MLP architecture with one hidden
layer is explored by varying the number of hidden units from
25 to 2000, obtaining the best performance with 500 hidden
units. For SVM, radial and linear kernels are used. Similarly,
for RF models, we explore a large range of estimators (up to
500), obtaining the best performance with 120 estimators. The
best results obtained for DBN and sDA with 2 and 3 hidden
layers are summarized in the Table I. Following the same
procedure, an experimental study of unsupervised pre-training
effects and layer depth with respect to the size of the dataset
has been designed and compared against deep architectures
with Glorot initialization.

B. Defining the metric of the architectures.

The reported metrics are based on F1 score, Precision

(PR) and Recall (RC) [50]. The aim of using precision is
to determine how good the model is at classifying specific
classes. By using recall, we can assess how good the model
is at selecting instances of a certain class from the dataset.
F1 score is a trade-off measure between precision and recall.
Precision is computed as:

PR =
TruePositives

(TruePositives+ False Positives)
(3)
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and it shows which percentage of positive predictions were
correct. Recall is computed as:

RC =
TruePositives

(TruePositives+ FalseNegatives)
(4)

and it measures which percentage of positive events were
correctly predicted. Thus, precision is a measure of how good
predictions are with regard to false positives, whereas recall
measures how good the predictions are with regard to false
negatives. F1 score can be computed as the weighted average
of precision and recall:

F1score =
2 ⇤ (RC ⇤ PR)

(RC + PR)
⇤ 100% (5)

All deep neural models were implemented using Theano

[51], a deep learning framework written in Python. In the case
of SVM and RF, we used scikit-learn [52], an open-source
Python framework for machine learning. Given the elevated
number of computations required by deep models, training
stage is done on two Graphic Processor Unit (GPU): NVIDIA
K40c GPU, and NVIDIA GEFORCE GTX 1080 GPU.

VI. RESULTS AND DISCUSSIONS

In this section, we report the classification results for the
DBN, sDA, MLP, SVM and RBF with data from “Volcán

de Fuego”. Given the vast amount of experiments performed
(about 250100), results are presented only for best configura-
tions and best performances obtained in terms of Precision,
Recall and F1 score (seet Table I). Initialization effect on
dataset size for those models are compared with the same
network topologies but with Glorot initialization. Moreover,
given that we are working with real-world data, an experi-
mental study using a threshold at the output probabilities of
the softmax layer will help us to understand the confidence
of the model when classifying volcano-seismic signals at real
time. At the Appendix, confusion matrices for the DBN, sDA,
SVM and RBF and the four test sets are included.

A. General performance of the system.

Table II shows per-class Precision and Recall of the
implemented algorithms. There are several conclusions which
can be drawn from these results. Compared to MLP, SVM
and RF, DNNs attain higher recall, precision and F1 score in
those seismic events that are hard to discriminate. Concretely,
they work remarkably well on explosions (EXP), lava flows
(COL) and volcanic tremors (TRE). During an eruption,
explosions can be associated to lava flows and/or rock falls.
This simultaneity in time is translated into less sensitivity
for the SVM, RF and MLP, increasing the amount of false
positives and inserting more errors across classes. Regarding
table II, it is also important to notice that all models are
able to classify seismic events that are very distinctive, such
noise (NOISE), regional earthquakes (REG), volcano tectonic
earthquakes (VTE) and long-period events (LPE). However,
whilst SVM, RF and MLP attain good precision on these
events, they do have smaller recall if compared with the sDA
and DBN. This result suggests that the pre-training stage

was indeed able to produce more useful feature detectors,
and weights initialization via unsupervised pre-training
does lead to better optimized models for classification of
volcano-seismic signals.

In terms of precision and recall, we can see in table III that
DNNs with 2 and 3 hidden layers can exploit information from
seismic events and achieve good generalization. Therefore,
the advantage of deep models is clear: whereas the SVM, RF
and MLP can classify with high precision events in which
the temporal and spectral contents are very characteristic, the
sDA and DBN do the same but with higher precision and
recall in their predictions. In addition, sDA and DBN tend to
classify complex seismic events such explosions and tremors
with higher recall and precision.

Table III shows per-class and average F1 scores. Addi-
tionally Accuracy score has been calculated for the global
dataset with a confidence interval of 95 %. In consistence
with the analysis of table II, best results are obtained for
deep architectures; being especially remarkable in the cases
of explosions.

B. Effect of greedy layer-wise unsupervised pre-training

The experimental results at Table III show that sDA and
DBN classify complex seismic events with higher recall,
precision, and increased performance for the rest of classes
when compared to classical models. This proves essential
when monitoring volcanic environments, as explosions, earth-
quakes and long-period events can be seen as precursory
of intensive volcanic activity, leading to potential eruptions.
Thus, DNNs have proven useful to discriminate seven of the
most important volcanic-seismic events in nature. However,
the use of deep learning frameworks imposes the availability
of large datasets to train computational models with millions of
parameters. DNNs tends to overfit if the dataset size is small.
As mentioned in subsection III-B, the direct application of
DNNs as classifiers for volcano-seismic data is challenging
given the number of available snapshots.

In spite of these drawbacks, Table III has shown that
pre-training helps to initialize network weights, giving the
model with a a-priori knowledge of the data distribution, and
provides an optimization advantage which translates into fast
convergence. This a-priori knowledge in both architectures
can be explained by how hidden layers are pre-trained, as
in both cases, a lower bound is being maximized [33], [37],
which naturally leads to a minimization of the KL divergence
between the true data distribution and model parameters [53].
Further evidence of this statement is supported by Table
IV, which shows the effect of unsupervised pre-training in
different dataset sizes, compared against a Glorot initialization
scheme, in terms of global accuracy. DBN and sDA with
Glorot initialization can be seen as deep neural models where
pre-training phase is removed. The weights of the best archi-
tectures obtained for the sDA and DBN with 2 and 3 hidden
layers (see Table I), are initialized with Glorot (no unsuper-
vised pre-training) and compared against best unsupervised
pre-trained architectures. Table IV shows that generative pre-
trained models (DBN) with two hidden layers, behave slightly
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Table II
PER-CLASS Precision AND Recall MEASURES OBTAINED FOR EACH OF THE LEARNING MODELS. VALUES ARE EXPRESSED IN %.

NOISE EXP REG COL VTE TRE LPE
PR RC PR RC PR RC PR RC PR RC PR RC PR RC

SVM-Rad 97.52 96.20 78.98 65.96 92.72 85.27 93.87 95.66 93.03 93.77 85.9 83.39 91.91 95.9
SVM-Lin 97.52 96.20 87.07 53.72 94.26 87.95 91.66 96.88 92.75 94.11 85.22 76.82 89.45 96.29

RF-120 97.62 95.47 86.57 61.70 92.09 88.39 93.53 96.07 93.32 94.9 86.90 85.95 92.27 96.06
MLP-H1 97.53 96.69 82.39 69.68 93.72 86.61 95.24 97.69 93.68 95.70 87.25 86.13 94.03 95.66
DBN-H2 97.20 97.92 82.39 69.68 92.27 90.63 97.03 97.56 92.96 95.70 89.63 88.32 94.66 95.03
sDA-H2 97.78 97.06 84.91 71.81 94.31 88.84 96.26 97.69 93.03 96.72 89.64 89.96 95.11 95.11
DBN-H3 97.55 97.43 82.82 71.81 91.47 86.16 97.16 97.42 93.37 95.70 87.97 89.42 94.35 94.79
sDA-H3 97.78 96.94 83.44 72.34 93.40 88.39 96.10 97.01 92.79 96.15 88.41 90.51 95.56 94.95

Table III
PER-CLASS F1 SCORE OBTAINED USING Precision AND Recall, GLOBAL ACCURY (ACC).

NOISE EXP REG COL VTE TRE LPE
F1 (%) F1 (%) F1 (%) F1 (%) F1 (%) F1 (%) F1 (%) F1 average (%) Acc. Glob (%)

RF-120 96.53 71.88 90.13 94.78 94.10 86.41 94.13 89.71 92.80±0.61
SVM-Lin 96.85 66.39 91.03 94.19 93.42 80.80 92.75 87.92 91.55±0.80
SVM-Rad 96.86 71.86 88.81 94.75 93.39 84.63 93.87 89.17 92.32±0.76
MLP 97.11 75.33 90.03 96.45 94.68 86.67 94.85 90.73 93.57±0.70
DBN-H2 97.56 75.42 91.43 97.29 94.30 88.98 94.85 91.40 94.04±0.68
sDA-H2 97.41 77.78 91.51 96.97 94.84 89.78 95.11 91.92 94.32±0.66

DBN-H3 97.00 77.00 89.00 97.00 95.00 89.00 95.00 91.00 93.87±0.69
sDA-H3 97.00 78.00 91.00 97.00 94.00 89.00 95.00 92.00 94.10±0.68

worse than Glorot initalized models with two hidden layers
without pre-training for critically scarce data (25%). When
dataset increases, overall accuracy for all models increases, but
the improvement is more substantial for pre-trained models. To
our criteria, these substantial improvement can be explained
on the underlying weights for the sDA and DBN. For the
DBN, the RBM tries to learn a probability distribution over
its input, by performing a sampling over data distribution with
CD-k sampling. This sampling can approximate the probability
distribution, even under data scarcity. Alternatively, the DA
tries to minimize the expectation over the reconstruction error,
maximizing the lower bound with respect to the true data
distribution, and learning the most representative input data
structure. Hence, when data is critically scarce the DA can
not learn efficiently such approximation.

C. Analyzing the confidence of the classifications

Previously analyzed results suggest that classifiers emit high
probabilities for overlapping classes. From a geophysical point
of view, simultaneous seismic events would help to understand
the evolution of the volcanoes. At seismic observatories, this
problem is often solved by expert geophysicists. Analyzing the
confidence of deep neural models when classifying seismic
events would help to understand if the detection of unclear
events can be enhanced

Previous results have shown that SVM and RF are outper-
formed by ANN models. Therefore, we will focus our analysis
in neural network models. Using softmax probabilities at the
output layer, we can compute the assigned class probabilities
per event. Figure 4 depicts the cumulative distribution function
(CDF) of class probabilities for the sDA, DBN and MLP.
The CDF has been computed using the normalized cumulative
sum of the histogram of output probabilities. By looking at

the CDF of the predicted explosions (EXP), Figure 4 (c),
notice that deep architectures assign higher class probabilities
of belonging to explosion class for any given instance, whereas
the MLP has less confidence when assigning class probabilities
for same class. Moreover, from Figure 4, it is noteworthy that
deep architectures always assign higher class-probability for
COL and TRE classes than the MLP. Events such as VTE,
COL and LPE, tend to have high class probabilities, close to
one.

All CDFs have three distinctive probability regions: A low
and high confidence one around 0.4 and 0.9 respectively,
within an intermediate plateau of class-probabilities. The spar-
sity in this plateau for the MLP gives us information of how
deep networks assign class probabilities. Thus, determining a
certain value for the threshold leads to two types of model:
For a small threshold, the system will be very sensitive, and all
events with a probability above the threshold will be detected,
and eventually, many of them classified in an erroneous
manner. For high thresholds, the nature of earthquake-volcanic
signals will make harder to characterize signals that are not
very clear.

A study of the F1 score was performed by varying the
threshold value from 0.4 to 0.8. The F1 score of sDA and
DBN for 2 and 3 hidden layers outperforms the classic MLP.
As seen from Figure 5, even for highly sensitive systems, F1
score for deep architectures is higher when compared to the
MLP. When the threshold increases, the MLP is surpassed by
deep architectures. These results confirm the previous hypoth-
esis: Deep models can classify very characteristic events, such
NOISE, VTE, COL and LPE. Complex events are classified
with higher probabilites. Pre-training stage and increased depth
(number of hidden layers) help the model to extract better
features from seismic data, which translates in lesser sparse
softmax probabilities.
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(a) CDF for instances classified as VTE.
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(b) CDF for instances classified as TRE.
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(c) CDF for instances classified as EXP.
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(d) CDF for instances classified as COL.
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(e) CDF for instances classified as LPE.
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(f) CDF for instances classified as REG.

Figure 4. Per class Cumulative Distribution Function (CDF) for different kind of events. The x-axis represents the class probabilities assigned
by the models, whereas y-axis represents the normalized cumulative sum of events predicted within that class. For a high performance
classifier, the ideal graph would tend towards probability one over x-axis, as the output probability vector would be less sparse.

Table IV
INITIALIZATION EFFECT ON DATASET SIZE FOR SAME DBN, SDA AND DNN BEST TOPOLOGIES.

Acc. Global 25% Acc. Global 50% Acc. Global 75% Acc. Global 100%
DNN-H2-Glorot 91.07±0.39 92.22±0.6 92.71±0.43 93.31±0.58
DBN-H2-preTra 90.69±1.4 93.06±0.97 92.83±0.7 94.04±0.68

DNN-H2-Glorot 90.73±0.31 91.83±0.82 92.77±0.72 93.17±0.66
sDA-H2-preTra 90.17±2 91.21±1.4 92.83±1 94.32±0.66

DNN-H3-Glorot 89.35±1.5 91.58±0.64 92.35±0.69 93.24±0.74
DBN-H3-preTra 91.25±1.1 92.2±0.57 92.8±0.44 93.87±0.69

DNN-H3-Glorot 90.25±1.4 91.67±0.52 92.63±0.63 93.09±0.55
sDA-H3-preTra 90.77±0.88 92.09±0.76 92.97±0.53 94.1±0.68

By choosing 0.8 as a safe threshold to avoid excessive
errors, we show the relative improvement of DNNs over the
MLP at Figure 6. Notice that explosions present a relative
improvement (RI) of 13% for the DBN-H3 and 2.5% for
the sDA-H3. On the other hand, there are significant im-
provements related to volcanic tremors, up to 4% in both
architectures. Finally, it is remarkable the recognition improve-
ment for REG events. They are easily confused with VTE
and , in some cases, with moderate explosions (EXP) with
very energetic arrival and quick decay. Increasing the class
probability threshold leads to more confident models that can
be deployed in real environments, and provide geophysicists
with a tool to analyze most dubious signals.

VII. CONCLUSION AND FUTURE WORK

In this research, we proposed DNNs for automatic clas-
sification of volcano-seismic events based on pre-training
initialization. Two different DNNs, DBN and sDA, are tested
with seismic data recorded at “Volcán de Fuego”, Colima
(Mexico). In our experiments, classification results show that
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Figure 5. Evolution of F1 score for several class probability thresh-
olds, ranging from 0.4 to 0.8.

deep architectures outperforms the SVM, MLP and RF. Pre-
training initialization was found to be a particularly effective
strategy to achieve this improvement. In addition, depth helps
to increase the overall generalization capabilities of the system.
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Figure 6. Per-event relative improvement of DNN architectures when
compared to the MLP for a fixed threshold of 0.8.

We find that sDA and DBN can classify seismic events with
higher precision and recall than classical architectures. More-
over, deep architectures are more sensitive to detect events that
occur simultaneously in time, such as explosions and tremors.
Classifiers based on deep neural networks can be deployed
in real-environments to monitor the seismicity of restless
volcanoes, and enhance current early warning systems. Finally,
given the nature and size of volcanic snapshots (dataset), the
use of raw volcanic events as training data results on non-
useful representations, and therefore, a direct application of
state-of-the-art deep learning architectures is still a challenge.
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[12] G. Cortés, R. Arámbula, L. Gutiérrez, C. Benı́tez, J. Ibánez, P. Lesage,
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(a) DBN-H2 (b) DBN-H3

(c) sDA-H2 (d) sDA-H3

(e) MLP-H1 (f) Random Forest

(g) SVM (linear) (h) SVM (rbf)

Figure 7. Normalized confusion matrices related to the implemented architectures. The results are over the whole set of tests.


