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The increase of energy consumption and their direct effects on pollution and global 
warming have motivated governments to develop new strategies to promote a better usage 
of energy. One of the most important aspects related to energy efficiency is the need 
for a suitable model of energy consumption that can be used to make predictions or to 
aid experts in high level decision making processes. Symbolic regression techniques can 
be used to discover an energy consumption model that fits these purposes. Traditionally, 
the problem of symbolic regression has been solved by using genetic programming 
approaches to find the algebraic expression that best fits the regression problem data, 
where each expression is encoded as a tree structure. In previous works, we found that 
a different approach using Straight Line Programs as a representation technique could 
provide promising results for symbolic regression, although the size of the resulting 
algebraic expression might be increased when compared to the traditional approach. 
This work proposes an Ant Colony Optimization algorithm for Straight Line Programs to 
solve the problem, and makes a study to compare the approach with traditional genetic 
programming in a real energy consumption modelling problem.

© 2020 Published by Elsevier Inc.

1. Introduction

The increase of energy consumption in the building sector has become a major problem for many governments in the 
developed world, due to limited energy sources, increases in the price of energy and production costs, and high emissions of 
C O 2. For all of the aforementioned reasons, the research efforts to reduce energy consumption and to use energy efficiently 
have been increased substantially during the past two decades [1]. More specifically, the advances in sensor technologies 
and communications allow us to study multiple problems regarding energy efficiency research, such as energy consumption 
forecasting [2,3], anomaly detection [4,5], consumer profile mining [6,7], energy demand planning [8], and energy consump-
tion modelling [9], among others.

In our research, we are interested in the problem of energy consumption modelling, whose objective is to find mathe-
matical or computational models that help to accurately approximate, or explain, energy consumption behavior. Examples of 
approaches to model energy consumption in the literature are reference [10], which uses a Bayesian semi-parametric quan-
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tile regression technique to model the energy consumption in a municipal wastewater plant; the study of computational 
intelligence methods to model the household electricity consumption in [11], the use of intelligent techniques (Genetic 
Programming, Multiple Regression, Artificial Neural Network, etc.) to build models that estimate the energy consumption 
of a building using weekdays energy consumption and outdoor data (temperature, wind speed, humidity, etc.) in [12], and 
reference [13], which makes use of machine learning techniques (linear regression, boosting, SVM, etc.) to estimate hourly 
energy consumption in residential buildings. As we can see, energy consumption modelling has been applied mostly to solve 
forecasting and correlation discovery problems, although it can also be applied in other scopes such as anomaly detection. 
Examples of previous efforts in this topic are reference [14], which describes a method of detecting abnormal energy con-
sumption in buildings using machine learning, or reference [15], which proposes a ensemble anomaly detection framework 
that helps the building manager in decision-making problems.

Designing a suitable model of energy consumption depends greatly on the formulation of the problem and the requisites 
to be accomplished in the solution. However, although several works have emerged that accurately solve modelling or 
prediction problems, they fall in its low interpretability [16]. Consequently, recent works attempt to find accurate and 
interpretable models. By means of example, this is the case of the proposal in reference [17], which developed a method 
based on decision trees to forecast energy consumption in buildings; or the approach in reference [18], which proposed a 
genetic fuzzy system that builds interpretable knowledge bases for predicting energy consumption in smart buildings.

Therefore, as has been argued by Bratko in [19] some data mining applications need to find a balance between accuracy 
and interpretability, such as applications of decision making in the scope of energy efficiency research. For this reason, 
in this work we use symbolic regression [20] for energy consumption modelling. More specifically, the solution found by 
symbolic regression can be represented as algebraic expressions that can approximate the energy consumption data. Then, 
these algebraic expressions are sufficiently interpretable to provide an explanation of the energy consumption behavior, and 
to be used for high-level decision making. Just to cite some scenarios where other researchers use symbolic regression to 
solve energy consumption problems, we find the work [21], which uses Genetic Programming (GP) to estimate demand 
and energy consumption, providing more accurate results than traditional regression analysis. The study [22] uses Linear 
Genetic Programming to perform consumer electricity demand forecasting, and our previous work in reference [23] studies 
Straight Line Programs and tree representation performance for the energy consumption modelling of a set of buildings in 
a compound.

Despite their potential benefits, algorithms and methods of the current techniques to solve symbolic regression are still 
under study. Examples of these problems that directly affect our research goals are a) the bloating problem [24,25], which 
consists of the increase of size of variable-length representations during the process of symbolic regression-solving; b) the 
representation problem, aimed at finding the best symbolic representation model that helps to reduce the search space and 
to facilitate optimization algorithm design; or c) the generalization problem to prevent overfitting, which also relates to find 
simpler algebraic expressions with reduced size that model training data patterns accurately. Different studies were carried 
out to minimize these limitations [23,26] which use fixed-size structures such as Straight Line Programs (SLPs) to avoid 
bloating and representation problems. In the cited article, we concluded that SLPs are able to provide solutions with equal or 
better accuracy than neural networks in some cases, especially when the neural network models are recurrent and training 
algorithm gets easily trapped in local optima. In this article we propose an algorithm inspired by Ant Colony Optimization 
(ACO) [27] to find accurate symbolic regression solutions with reduced size with regards to Genetic Programming algorithms 
used in the literature [23,28].

In this work, we validate our proposal over a set of energy consumption data of public buildings at the University of 
Granada. We address our research by assuming that if exists a correlation between the energy consumption of the working 
days, then we can develop a method able to detect which days are related and how, and find an interpretable solution with 
high accuracy that explains the energy consumption of a working day in terms of the energy consumption of the remaining 
working days. The main contribution of this article is the formulation of SLP training as a graph traverse problem for its 
use within the ACO paradigm, and the design of algorithm components to help us to obtain symbolic regression solutions 
of a lower size regarding the genetic programming approach. The proposal is firstly validated over a classical ACO approach 
to compare the results between two approaches formulated as a graph traverse problem, and then we make a comparison 
with classical genetic algorithms to test the quality of the solutions found. To achieve these objectives, this manuscript is 
structured as follows: Section 2 describes the main concepts regarding symbolic regression and Ant Colony Optimization, as 
an introduction to the methods and techniques developed in this piece of research. Section 3 introduces the ACO approach. 
Experiments are conducted in real energy consumption data problems, and then analyzed in Section 4. Finally, Section 5
concludes and discusses future work.

2. Background in symbolic regression and Ant Colony Optimization

2.1. Symbolic regression and the representation problem

Given a set of so-called independent variables �x = (x1, x2, ..., xn) and dependent variables �y = (y1, y2, ..., ym), where 
xi, y j ∈ R, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m, symbolic regression attempts to find an algebraic expression f̃ (�x, �w) and parame-
ters �w , where �w = (w1, w2, ..., wk), wi ∈ R, ∀i : 1 ≤ i ≤ k, such as �y ≈ f̃ (�x, �w). Symbolic regression can be viewed as 
an abstraction of traditional regression analysis techniques widely used in engineering and scientific research, such as 
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linear regression or logistic regression. In traditional regression analysis, the regression hypothesis f is established in ad-
vance, and the objective is to find the values for parameters �w that minimize an error measurement, as for instance 
e( f (�x, �w), �y) = || f (�x, �w) − �y||. On the other hand, symbolic regression assumes not only that �w are unknown in ad-
vance, but also f , and the objective is to find an approximation f̃ (�x, �w) of the optimal algebraic expression that minimizes 
e( f̃ (�x, �w), �y).

Symbolic regression problems have traditionally been addressed from the perspective of supervised learning in the ma-
chine learning community, where �x and �y are the input and output data, respectively, and the goal is to perform a search 
over a space of algebraic expressions to find the best expression f̃ that minimizes e( f̃ (�x, �w), �y). Since the space of algebraic 
expressions is large [29,30], heuristic global search methods, such as Genetic Programming (GP) [31], have been proposed 
in the literature to tackle the problem. Further information about learning, representation and GP algorithm design can be 
found in reference [32].

The traditional representation for algebraic expressions in GP is the tree representation [31]. Recent studies in the past 
decade have drawn attention to alternative representations, with a special focus on linear model representations [33], due 
to the simplicity and potential benefits regarding the traditional non-linear representation with trees. This study highlights 
additional benefits of a fixed-size linear representation regarding the design of components of the optimization technique, 
such as the crossover and mutation operators in genetic algorithms, and the simplicity of reducing the effect of the bloating 
problem. Nowadays, we can find several approaches based on linear grammar representations such as Gene Expression 
Programming [34], Linear Programs [35], or Straight Line Programs (SLP) [36], among others.

As described in the introduction, in previous research we have explored the use of Straight Line Programs to solve energy 
consumption modelling problems from the perspective of Genetic Programming for symbolic regression [23,37,26], obtain-
ing promising results regarding accuracy in real problem data. SLPs are grammar-based representations capable of encoding 
algebraic expressions for symbolic regression [36], and are inspired by Straight Line Grammars (SLG) [38]. SLG is a formal 
grammar that can be described as a tuple (V,T,P,S), where V is the set of non-terminal symbols, T is the set of terminal 
symbols, P is the set of production rules and S is the non-terminal starting symbol of the grammar. Each production rule 
in P is a context-free grammar production rule, each of these production rules cannot generate loops. A SLG in Chomsky 
normal form that generates a single non-empty word is a Straight Line Program. On the other hand, in the symbolic re-
gression problem addressed in this work, the set of terminal symbols (T) is composed by a set of known mathematical 
operators O  ∈ {o1, o2, ..., ol} (typically unary or binary arithmetic operators), a set of terminal input data {x1, x2, ..., xn} and 
a set of constant parameters {w1, w2, ..., wk}. Moreover, a SLP contains N production rules {U1, U2, ..., U N} ∈ V , where 
U N is the starting symbol (S) of the grammar. Each production rule of a SLP contains a mathematical operator and two 
operands, whose can be a terminal symbol of T or a non-terminal symbol in V . Finally, the non-terminal symbols used 
in a production rule must reference subsequent production rules to avoid recursion. Then, given a SLP, the generation of 
the algebraic expression encoded into a SLP starts at the production rule U N . Moreover, each non-terminal symbol Ui in 
the rule consequent is iteratively replaced by its associated production rule from i = N − 1 down to i = 1. Formula (1)
shows an example of a SLP with maximum size N = 6 and parameters �w = (w1, w2, w3) = (4, 8, 3). If we apply the de-
scribed procedure, then the algebraic expression encoded can be derived from U6 as f̃ (�x, �w) = U6; U6 ⇒ U3 + U5 ⇒
U3 + (U1 + U4) ⇒ U3 + (U1 + (w3 + U3)) ⇒ cos(U2) + (U1 + (w3 + cos(U2))) ⇒ cos(w2 ∗ x) + (U1 + (w3 + cos(w2 ∗ x))) ⇒
cos(w2 ∗ x) + (xw1 + (w3 + cos(w2 ∗ x))). For algebraic expression evaluation purposes, the parameters �w should also be 
substituted in a last step, therefore providing the expression f̃ (x, (4, 8, 3)) = cos(8 ∗ x) + (x4 + (3 + cos(8 ∗ x))).

U1 → pow(x,4)

U2 → 8 ∗ x
U3 → cos(U2)

U4 → 3 + U3
U5 → U1 + U4
U6 → U3 + U5

(1)

On the other hand, additional benefits are assigned to SLPs due to it can be represented as a directed acyclic graph (DAG), 
which implies a potential over classical structures such as trees. For example, the study of reference [39] compares tree and 
graph structures regarding Genetic Programming problems, and the outcomes of this research work suggest that graph 
structures are a promising alternative representation regarding trees, since the graph structure allows the reuse of nodes 
that represent pieces of the algebraic expression and reduces the effects of the bloating problem. Nevertheless, although SLPs 
are fixed-size structures and the bloating problem is limited because of this representation, in previous experimentations 
[37] we observed that the resulting algebraic expressions obtained from SLP optimization were large with regards to their 
simplified form, and less interpretable. This drives the research study of this article, where we pursue the development of 
techniques targeted at finding a balance between SLP accuracy and size. Different methods can be found in the literature 
to solve this problem, such as model regularization [28], ant colony optimization [40,41], or multi-objective optimization 
[42], among others. As mentioned in the introduction, our proposal is inspired by ant colony optimization. Subsection 2.2
provides a background to ACO, and then Section 3 describes the approach.
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2.2. Fundamentals of Ant Colony Optimization

Ant Colony Optimization [43] is a bio-inspired global search metaheuristic that belongs to the set of swarm intelligence 
methods [27], and it is used to solve combinatorial optimization problems defined as (S, �, e), where S is a search space 
defined over a finite set of discrete decision variables U = {U1, U2, ..., U N}, � is a set of constraints defined over U , and 
e : U1 × U2 × ... × U N → R≥0 is a loss function to be minimized. It is said that a solution s ∈ S is feasible if all variables 
Ui ∈ s have been assigned values from their domain, and they satisfy the constraints in �. An optimal feasible solution to 
the problem s∗ ∈ S verifies that e(s∗) ≤ e(si)∀si ∈ S : si is feasible.

The ACO design methodology is based on the problem formulation as a graph traverse over a construction graph G =
(V , E) that represents the search space S , where V stands for the graph vertices and E for the edges. A solution s ∈ S is 
incrementally built from a selected starting node of the graph. Thus, traversing the graph performs the assignment of values 
to variables Ui ∈ s until the solution s is constructed. This is a simulation of the real behavior of an ant that departs from 
the nest to the food. Each time the ant traverses an edge of the graph (i.e., a value to a variable Ui ∈ s has been assigned), 
pheromone is released to mark the edge for other members of the colony that will perform another graph traverse in the 
future. The literature offers a plethora of Ant Colony Optimization approaches whose algorithm components differ from each 
other, as for instance the way an ant chooses the path, the way pheromone is released and evaporated, parallel algorithm 
approaches, etc. We refer the reader to [44] for a survey on ACO methods.

The first Ant Colony Optimization method was proposed in [43], and it is known as the Ant System optimization. The Ant 
System used a single ant to solve the problem. Nowadays, Ant Colony Optimization refers to a variation of this approach where 
not a single ant, but a population of ants, are deployed together over the construction graph to find the best solution to the 
problem addressed, and uses heuristic values that encode expert information about the problem instance definition in order 
to speed up the search procedure. Classically, the heuristic information that defines the construction path is encoded as α
and β values in a formula, as for instance Formula (2). We refer the reader to the work [45] for a more detailed explanation 
of the algorithm’s component design.

pi
jk(t) =

⎧⎪⎪⎨
⎪⎪⎩

l

[
τ jk(t)

]α[
ν jk(t)

]β
∑

l∈Ni
j(t)

[
τ jl(t)

]α[
ν jl(t)

]β if k ∈ Ni
j(t)

0 if k /∈ Ni
j(t)

(2)

As was previously mentioned, ACO has been applied for symbolic regression and automatic program generation in pre-
vious works with promising results. The work in [40] proposed ant colony programming, to solve symbolic regression 
problems where the construction graph is built from a predefined set of rules. Reference [41] also shows an approach to 
solve symbolic regression problems, where the construction graph is built over a fully-connected graph of operators and 
operands. Later, the work [46] suggested using the ACO approach to evolve grammar structures to find classification rules 
in data mining problems. The Enhanced Generalized Ant Programming (EGAP) was proposed in [47], to solve tree symbolic 
regression using tree-based grammar representation. In [48], GP is compared with the EGAP approach, concluding that GP 
statistically improves EGAP in the problems addressed.

In this work, we use ACO to search for SLPs with a balance between accuracy and size. Finding SLPs with reduced 
size is a topic that has been addressed before in reference [28], which offers an approach to improve accuracy of SLPs for 
symbolic regression problems in the presence of noisy data, using model regularization. The experimental section of this 
article compares our approach with the procedure mentioned as a baseline method. Dynamic Ant Programming (DAP) [49], 
another ACO-based approach developed to tackle the bloat problem under the assumption of tree representation of algebraic 
expressions, will also be included in the experimental section as a baseline method for comparison.

3. Ant Colony Optimization for Straight Line Programs

3.1. Design of the construction graph

As it is mentioned in previous sections, a SLP can be represented as a DAG. The DAG is obtained by means of a simple 
procedure applied over the SLP grammar rules. Starting from rule U N , the starting node is created and labelled as U N , and 
assigned with the operator of rule U N . One or two nodes are then created, depending on the arity of the operator, and 
linked to U N . If the first (or second, respectively) operand is a terminal symbol, then the node is assigned with the value of 
the terminal symbol. Otherwise, this procedure is applied recursively over the generated nodes until terminal symbols are 
reached.

As an example of this procedure, Fig. 1 shows the resulting DAG for the SLP of the Formula (1).
In our approach, since SLPs are grammar-based representations of algebraic expressions, the problem of finding the 

algebraic expression f̃ that accurately fits output data �y from a set of input data �x, can be formulated as finding the correct 
grammar production rules that build a valid SLP. Then, given a maximum number of allowed rules (maximum size N), 
our approach attempts to find the minimum number of production rules that build a valid SLP (which generates only an 
algebraic expression), that minimize a loss function e( f̃ (�x, �w), �y). Besides, the grammar representation can be translated into 
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Fig. 1. Example of the corresponding DAG for the SLP example of Figure (1).

a DAG, and this fact suggests that the problem can also be formulated as a graph traverse problem. Thus, the combinatorial 
problem (S, �, e) to be solved in our research work assumes that S is the space of straight line grammar rules with a 
maximum number of rules equals N , � are the constraints of the grammar rules, and e is an error measurement that 
evaluates the accuracy of an SLP to approximate the desired output data �y.

The construction graph used for ACO algorithms in our research is therefore designed as follows: The starting node is 
the grammar rule whose antecedent is the non-terminal symbol U N . The feasible neighborhood of a node Ui is the set of 
arithmetic operators allowed for building algebraic expressions, {O 1, O 2, ..., O l}. Let O Ui be the selected operator for rule 
Ui . Then, its feasible neighborhood is the set of available operands {x1, x2, ..., xn, w1, w2, ..., wk, Ui−1, Ui−2, ..., U1}, where 
x j, 1 ≤ j ≤ n, is the j-th input variable, w j, 1 ≤ j ≤ k, is the j-th algebraic expression parameter, and U j, 1 ≤ j < i, is a 
non-terminal symbol that makes reference to grammar production rule U j . Once the first operand has been chosen, then 
the second operand is selected using the same feasible neighborhood as the one used for the first operand, if O Ui is a 
binary operator. The feasible neighborhood of the last generated operand is the node corresponding to rule Ui−1, and then 
the process is repeated until the operators and operands of rule U1 have been generated. This graph representation allows 
us to store the pheromone trails into 3 matrices:

• Matrix To(1..N, 1..l), to store pheromone trails from nodes of rules Ui to operator nodes. To(i, j) contains the 
pheromone regarding the selection of operator O j at rule Ui .

• Matrices T R1 (1..N, 1..l, 1..n + k + N − 1), and T R2 (1..N, 1..l, 1..n + k + N − 1), to store pheromone trails from operator 
nodes to the first and second operand nodes, respectively. The value of T Rk (i, p, j) contains the pheromone regarding 
the selection of symbol j as the value for operand k in the rule Ui , when operator O p was selected for the rule. Symbol 
j links to an input variable x j if 1 ≤ j ≤ n, to an algebraic expression parameter w j−n if n < j ≤ n + k, and to rule 
U j−n−k if n + k < j ≤ n + k + l. To ensure verification of the constraints � of the combinatorial problem stated, the 
values T Rk (i, j) = 0, ∀ j : n < j < i + n + k, i.e. a rule Ui can only contain rule references in the set {Ui−1, Ui−2, ..., U1}.

Fig. 2(a) outlines the general design of the construction graph described. As an example, Fig. 2(b) assumes a set of 
operators O  = {O 1, O 2, O 3, O 4, O 5} = {+, −, ∗, /, cos}, a set of variables �x = {x}, a set of algebraic expression parameters 
�w = {w1, w2} = {3, 4}, and a maximum set of grammar rules N = 3, and describes an example of the graph traverse to 
obtain the grammar rules U3 := U2 ∗ U2, U2 := w1/U1, U1 := cos(x). Firstly, rule U3 is generated. The operator ∗ is proba-
bilistically selected, and then the first and second operands are generated. In this case, non-terminal symbol U2 is selected 
probabilistically for both operands. After rule U3 is completed, then rule U2 is generated. The probabilistically selected op-
erator is /, and w1 and U1 as the first and second operands, respectively. Finally, rule U1 is generated, probabilistically 
choosing the operator cos. Since the operator cos requires a single operand, then only the first operand is generated prob-
abilistically. In this case, terminal symbol x is selected. The construction of the solution is completed, and the algebraic 
expression encoded into the generated SLP is (3/cos(x)) ∗ (3/cos(x)).

Once the construction graph is designed, the next section describes the components of the algorithm.

3.2. Algorithm design

In this section, we design an ACO-based algorithm to find algebraic expressions f̃ (�x, �w) encoded as SLPs, with a local 
search procedure to optimize the algebraic expression parameters �w simultaneously. The literature offers different methods 
to solve the problem of parameter �w estimation, such as [50,51]. Other proposals reduce the problem complexity and select 
a fixed value for parameters �w from the beginning [52], although this strategy could shrink the search to less accurate 
solutions. In our approach, a non-linear least-square method (NLS) [53,54] that minimizes a loss function, is used during 
the evaluation of each candidate solution f̃ to fit the numerical values for the parameters �w . The loss function used in this 
work is shown in equation (3), where n stands for the number of data samples, �x(i) is the i-th input sample, and y(i) is 
the i-th output sample. Using this fitness measure, the optimal solution f̃ ∗ has f itness( f̃ ∗) = 1, while the worst solutions 
have a fitness value closer to 0. Then, the problem is formulated as a maximization problem.
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Fig. 2. Scheme and example of the construction graph for SLP search using ACO.

f itness( f̃ ) = 1

1 + 1
n

∑n
i=1( f̃ (�x(i), �w) − y(i))2

(3)

The adaptation of classical ACO implementation [43] to our proposal is shown in Algorithm 1. The procedure starts by 
initializing the pheromone matrices to an initial value, which is found experimentally by means of a trial-and-error process. 
Also the best solution, named Best Ant , is assigned with an empty value. After initialization, the main algorithm repeats until 
a stopping criterion is satisfied. In this article, the stopping criterion used in the experimentation is to achieve a number of 
feasible solutions evaluated.

Each algorithm iteration comprises the following steps: Solution construction, Local search, Solution evaluation and 
Pheromone update:

• The step Solution construction builds the path for each ant in the algorithm, following the graph traverse process 
over the construction graph described in Section 3.1. Unlike classic Ant Colony methods, which use α and β values in 
equation (2) to define a balance between pheromone trails and heuristic criteria to explore the search space, our model 
does not rely on heuristic information to build the ant solution. This is because it is difficult to find an appropriate 
heuristic for operators and operands in symbolic regression, since the fitness of an algebraic expression also depends 
on the other subexpressions in the solution, and the heuristic of an operator could fail when used in different contexts. 
For this reason, we set the values α = 1 and β = 0 in our approach. This decision is not uncommon in symbolic 
regression problems, and it was assumed in previous works as in [49]. The selection of operators and operands is 
performed probabilistically, using the formula in equation (4), where Ni(t) is the feasible neighborhood of vertex i at 
algorithm iteration t , τi j(t) is the pheromone trail from vertex i to vertex j at iteration t , and pij(t) is the probability 
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Algorithm 1 SLP-ACO algorithm.
Require: Input: S p , the number of ants that run in parallel
Require: Input: �x = (x1, x2, ..., xn), input data variables for SLP evaluation
Require: Input: O  = {O 1, O 2, ..., O l}, the operators allowed for the algebraic expression
Require: Input: K , the maximum number of algebraic expression parameters {w1, ...wk}
Require: Input: �y = (y1), output data for SLP evaluation
Ensure: Output: SL P (1...N) a sequence of rules that encode the algebraic expression

{Initialization}
Set initial operator pheromone To(i, j) := T0, ∀i, j : 1 ≤ i ≤ N, 1 ≤ j ≤ l
Set initial operands pheromone T R1(i, p, j) = T0, T R2(i, p, j) := T0, ∀i, p, j : 1 ≤ i ≤ N, 1 ≤ p ≤ l, 1 ≤ j ≤ n + k + l
Best Ant := {∅}
t := 1 {Current iteration}
{Main loop}
while No stopping criterion is fulfilled do

for counter a=1 to S p do
{Solution construction}
Initialize anta , the a-th ant
for i:=N downto 1 do

Select operator and operands for rule anta(i) according to equation (4)
end for
{Local search}
�w := NLS(�x, �y, anta)
{Solution evaluation}
Evaluate(anta, �(w), �x, �y)
{Update best solution}
if fitness(anta) > fitness(Best Ant) then

Best Ant := anta

end if
end for
{Pheromone update}
Perform pheromone update according to equation (5)
Update next iteration t := t + 1

end while
return Best Ant

of moving the ant from vertex i to vertex j in the construction graph. This probability is calculated depending on the 
type of vertex i on which the ant is located in the construction graph. On one hand, if the ant is located on a vertex 
corresponding to a non-terminal symbol Ui ∈ {U1, ...U N }, then τi j(t) = To(i, j), and the feasible neighborhood of vertex 
i is the set of operators Ni(t) = {O 1, O 2, ..., O l}. On the other hand, if the ant is located at operator p of production 
rule r, then τi, j = T R1(r, p, j) and the feasible neighborhood is {x1, x2, ..., xn, w1, w2, ..., wk, U1, U2, ..., Ur−1}. In case 
the operator p selected for rule r is binary, and the ant is located in vertex i associated with a symbol for the first 
operand, then τi, j = T R2(r, p, j), and the second operand is selected. Otherwise, the remaining possible vertices do not 
fulfill the constraints in � and their selection probability is 0.

pij(t) =
⎧⎨
⎩

τi j(t)∑
p∈Ni(t)

τil(t)
if j ∈ Ni(t)

0 if j /∈ Ni(t)
(4)

• The Local search performs the algebraic expression parameters �w optimization, using a non-linear least-square method 
(NLS) [53,54].

• The Solution evaluation process calculates the fitness for each feasible solution found by ants in the current iteration. 
A solution evaluation is performed as follows: For each i-th input data sample �x(i), all rules in the solution from U1 to 
U N are evaluated in ascending order, until U N is reached. Then f̃ (�x(i), �w) is assigned with the resulting value of the 
best rule of the SLP. The fitness is calculated using all f̃ (�x(i), �w) values according to the formula in equation (3).

• The step Pheromone update is applied not only to control the amount of pheromone that an ant deposits on the path, 
but also the pheromone evaporation. Formula (5) shows that the pheromone evaporation rate is controlled using an 
algorithm parameter ρ ∈ [0, 1], which reduces the quantity of pheromone proportionally at each iteration.

τi j(t + 1) = (1 − ρ)τi j(t) + � f itnessi j(Best Ant) (5)

In our approach, only the best ant that was found during the search deposits pheromone in proportion to its fitness, as 
is performed in the Best-Worst ACO approach [55]. The deposition rate is also controlled by an algorithm parameter �. 
The value f itnessi j(Best Ant) = f itness(Best Ant) if the edge E V i ,V j is included in the path over the construction graph 
obtained by solution Best Ant and E V i ,V j is not part of a rule classified as dead code. The value f itnessi j(Best Ant) = 0
otherwise. With the term dead code we mean all the production rules that are encoded into the SLP solution provided 
by an ant, but which cannot be derived from U N . Since these production rules are not used to generate the algebraic 
expression encoded into the solution, then pheromone deposition is also avoided for these production rules. Formula 
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(6) shows an example of SLP with size N = 3, where the production rule U2 is dead code, since U3 ⇒ U1 ∗ U1 ⇒
(x − w2) ∗ (x − w2), and U2 cannot be derived from U3.

U1 → x − w2
U2 → U1 + w1
U3 → U1 ∗ U1

(6)

Finally, with regards to the computational complexity of our proposal, we remark that each solution construction, solu-
tion evaluation and pheromone update methods are O (n), where n is the size of the SLP. Then, although the time complexity 
of the local search procedure is exponential, it is executed under a set of predefined number of iterations, which implies 
a constant time complexity, as is shown in the experimental section. Consequently, the time complexity of our proposal is 
O (n3 ∗ m), where n is the size of the SLP and m is the number of ants. Once the proposed SLP-ACO algorithm has been 
described, the next section performs an experimental study in a real data scenario.

4. Experiments

Since the final goal of our research is to develop data mining techniques aimed at finding energy consumption models 
that encompass a balance between accuracy and interpretability, the proposal SLP-ACO is validated using a set of real energy 
consumption data. In order to prove the potential of our proposal, we used ACO and GA baseline methods to compare the 
results in terms of not only accuracy but also expression size. Firstly, we have selected an ACO algorithm used to solve 
symbolic regression problems as baseline method for comparison. More specifically, we used Dynamic Ant Programming 
(DAP) [49] which uses a tree representation to encode algebraic expressions. For this comparison, we are motivated to study 
the potential of SLPs over trees and also to verify if the local search method used in SLP-ACO for parameter estimation allows 
to perform accurate solutions of reduced size. On the other hand, we also compare our proposal with genetic programming 
algorithms [56]. We have used two genetic programming approaches: the first one uses a local search method for parameter 
estimation and it is compared with SLP-ACO; the second one does not include a parameter estimator and it is compared 
with DAP.

In order to clarify the comparison carried out in this section, we named each approach as follows: DAP for Dynamic 
Ant Programming; SLP-GA for Genetic Algorithm without using parameter estimation; SLP-GA-Cte which uses a local search 
method for parameter estimation and SLP-ACO for our proposal. These algorithms help us to cover a wide variety of pro-
posals that focus on different features regarding our approach -representation, strategies to address the bloat problem, and 
training models-. Therefore, the main goal of this experimentation attempts to verify the quality of the results provided by 
each algorithm and study the advantages and limitations of our proposal.

4.1. Application to real scenarios

The real scenario to test our approach is an energy consumption modelling problem that attempts to obtain interpretable 
and accurate models of energy consumption in public buildings. More specifically, we use a dataset containing the energy 
consumption of four buildings at the University of Granada, measured hourly in kW/h from March 2013 to October 2015. 
In order to acquire the energy consumption data, each building is equipped with a Building Automation System (BAS) [57]
that retrieves the energy consumption data from sensors and stores the values with their timestamp in a database. The raw 
energy consumption data series for each building were preprocessed and aggregated to obtain a daily consumption data 
series, which we use as a starting point in this experimentation. The preprocessing also included filling in missing values 
due to power cuts, sensor malfunctioning and maintenance tasks, etc. Fig. 3 shows the raw aggregated data series for the 
four buildings. Finally, to work with uniform data, the data were normalized in the interval [0.0 1.0] (see equation (7), where 
vi is the response value, vmax is the maximum response observed, vmin is the minimum response observed and rnormalized is 
the normalized response). For confidentiality reasons, we are not allowed to provide the data, and the buildings are labelled 
as B1, B2, B3, B4, and contain two research centers, a large faculty, and a small faculty.

rnormalized = vi − vmin

vmax − vmin
(7)

The modelling problem that we tackle attempts to explain the relationships on energy consumption data between 
working days in the same week. Our goal is to provide an interpretable model that can accurately estimate the energy 
consumption of a working day considering the remaining working days in the same week. The expected outcomes are mod-
els of energy consumption which aid understanding of how the energy consumption of different days relates to each other, 
in order to include these models in other high-level tasks such as anomaly detection and forecasting, for future research. 
Assuming we name the energy consumption of the working days as d1, d2, d3, d4, d5, equation (8) shows that we want to 
approximate the energy consumption of day i considering the remaining days j1, j2, j3, j4, where jk �= i∀k, and �w and f
are unknown. For this reason, each energy consumption data series initially had 650 values, and was transformed into a 
multivariate data series with 5 dimensions (one per each working day), with 130 samples (one sample per week).
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Fig. 3. Energy consumption data series for buildings B1, B2, B3, B4.

Fig. 4. Correlation matrices of energy consumption for buildings B1 to B4, from Monday to Friday. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

di = f (d j1 ,d j2 ,d j3 ,d j4 , �w) (8)

There are 20 experiments, to estimate energy consumption of Mondays, Tuesdays, Wednesdays, Thursdays, and Fridays 
separately, considering the energy consumption of the remaining days in the week as input data, for buildings B1 to B4. A 
preliminary visual and statistical study was first performed, in order to know if there was a correlation between the energy 
consumption of the working days. Fig. 4 shows the correlation matrices for all buildings and working days. The diagonal 
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plots of the figures show the histogram of the energy consumption for each working day, and each cell (row i, column j) 
shows the correlation of day j to day i. Finally, the text in red in the correlation plots shows the correlation coefficient R
for the two days being compared. We observe that, as could be expected, there is a high correlation (R ≥ 0.7) between the 
energy consumption of two working days in many cases, although there are some cases with an intermediate correlation 
(0.3 ≤ R < 0.7). This fact suggests that symbolic regression could be applied to obtain accurate estimation models in the 
energy consumption modelling problem addressed.

To study generalization capabilities, all datasets were divided into training (first 70% of data) and test (last 30% of 
data). After that, the training set was used to calculate the fitness value of each method, and the test set was applied 
over the solution returned from each algorithm execution in order to obtain the results analyzed in this section. For the 
experimentation, we performed a preliminary extensive experimentation to tune the parameters of both Genetic Algorithms 
(SLP-GA and SLP-GA-Cte) and Ant Colony approaches (DAP and SLP-ACO). Then, the parameters tuned for both SLP-GA are: 
80% of crossover probability and 20% for mutation probability, the population size were established at 70. After that, the 
experimental configuration for SLP-ACO and DAP are: the minimum value of pheromone rate (ρmin) has been set to 0.01, 
the evaporation rate (p) were established to 0.5; the number of ants used were 70 and the pheromone value of an inserted 
node (ρins) in DAP is 1. In addition, we allowed a total of 7 parameters (w1, w2, ..., w7) for each approach. Moreover, 
whereas both SLP-GA and DAP have a set of predefined values for each parameter (w1 = 1, w2 = 2, ..., w7 = 7), a local 
search method is used to estimate parameter values for each SLP-GA-Cte and SLP-ACO. Besides, the mathematical operators 
allowed for all approaches are {+, −, ∗, /, exp, sin, cos, pow, min, max, tan, tanh}; the maximum SLP/Tree size are 32 and the 
stopping criteria are 10000 evaluations. Finally, we performed 30 executions of each algorithms so that we could analyze 
the results statistically.

Table 1 gathers the results obtained for each algorithm over the test data. Column 1 shows the target working day 
whose energy consumption is estimated. Then, Columns from 2 to 21 describe the median, best and worst fitness, the 
average execution time in seconds, and the average size of the solutions provided by DAP, SLP-GA, SLP-GA-Cte and SLP-ACO, 
respectively. Fitness value is calculated as is described in equation (3) and the size of an algebraic expression is calculated as 
the number of operators it contains, i.e. the number of non-leaf nodes in tree representation and the number of valid rules 
in SLP. Moreover, in order to compare the results of each algorithm in terms of fitness and algebraic expression size, we used 
a statistical test. Due to the results performed by each algorithm does not come from a normal distribution, we decided 
to use a non parametric test. Consequently, Columns 22 to 25 plots the results of the Kruskal-Wallis (KW) statistical test 
with a 95% confidence level, to compare each method in terms of fitness values, and Columns 26 to 29 show the solutions 
regarding the algebraic expression size. The KW test was applied as follows: For each experimentation, the algorithms were 
sorted from best median fitness/size to worst median fitness/size. A paired KW was applied over the two first algorithms. If 
significant differences were found (p-value < 0.05), then the algorithm with the best fitness/size was marked with tag 1, and 
the other one with tag 2, and then the comparison continues with the next algorithm with the best fitness/size. Otherwise, 
both algorithms were tagged with 1, and the comparison is performed between the algorithm with best median fitness/size 
and the third algorithm with best median fitness/size. This procedure is applied for all the remaining algorithms results 
for each problem, until all algorithms have been compared. Finally, for a better analysis of the results in Table 1, we have 
included the boxplots of the error distribution of all experiments in Fig. 6. Each picture contains the boxplots of the error 
measure for the algorithms being compared: DAP, SLP-GA, SLP-GA-Cte and SLP-ACO, for the same building and working day.

In order to compare baseline methods, the analysis starts by comparing DAP and SLP-GA. Thus, we may observe in 
Table 1 that SLP-GA achieved better solutions in terms of median values in all cases, whereas DAP performed the worst 
solution in all problems. With regards of the best fitness, SLP-GA achieved the best solution in 5 experiments, DAP did it 
in 2 cases and similar solutions were achieved in the remaining 13 experiments. From this analysis we may conclude that 
SLP-GA is potentially better than DAP, which is supported by the KW test, where SLP-GA achieved better solutions in all 
cases (shown in columns 22 and 23). The worst solutions provided by DAP may be consequence of the tree representation 
used to encode algebraic expression and also the local search procedure used by SLP-GA, which may help to avoid local 
optima and perform better solutions.

On the other hand, if we compare ACO methods (DAP and SLP-ACO) we may observe that SLP-ACO was able to find better 
solutions in terms of median fitness in all cases, whereas DAP achieved the worst solution in all experiments. Moreover, 
with regards to the best fitness, SLP-ACO achieved the best solutions in 6 of 20 problems and DAP did it in 1 experiment. 
These results help us to conclude that the SLP proposal may improve the search of the best algebraic expression, which is 
supported by KW test in Columns 22 and 25 of Table 1 where we may observe that SLP-ACO performed better solutions than 
DAP in all experiments. The analysis continues by comparing SLP-ACO and SLP-GA-Cte. Firstly, regarding median fitness, the 
reader may observe that SLP-ACO was able to achieve the best solution in 1 problem, whereas both approaches performed 
similar solutions in the remaining 19 experiments. Regarding the best fitness, SLP-GA-Cte found the best solution in 1 
experiment and similar solutions were achieved in the remaining 19 experiments. With regards to the worst fitness, SLP-
GA-Cte performed worse solutions in 6 problems and SLP-ACO did it in 3 cases. Finally, regarding the KW test we may 
conclude that SLP-ACO performed better solutions in 4 experiments, SLP-GA-Cte achieved better results in also 4 problems 
and significant differences were not found in the remaining 12 problems.

From this first analysis we may conclude that SLP approaches are able to find more accurate solutions than tree ap-
proaches. Moreover, if we compare SLP-GA-Cte and SLP-ACO approaches, we cannot conclude which approach is better in 
terms of fitness. On the other hand, regarding the algebraic expression size, we can conclude that ACO approaches are able 
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Fitness Test Size Test
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7 174.29 6.07 3 2 1 2 2 1 4 3

8 147.73 3.60 3 2 1 1 2 3 4 1

9 175.30 4.83 4 2 1 3 2 1 3 1

6 160.68 4.40 2 1 1 1 3 1 4 2

4 176.02 6.30 3 2 1 1 3 1 4 2

9 165.08 4.70 2 1 1 1 2 3 4 1

9 163.35 5.13 3 2 1 1 1 2 4 3

9 164.34 4.20 4 3 2 1 2 3 4 1

8 157.48 3.57 3 2 1 1 2 3 4 1

8 166.70 5.23 3 2 1 1 2 3 4 1

9 179.88 4.73 2 1 1 1 2 3 4 1

9 157.04 3.93 4 3 2 1 2 3 4 1

9 167.11 5.30 2 1 1 1 1 2 4 3

9 157.58 5.93 3 2 1 1 1 2 4 3

9 173.40 6.37 3 2 1 1 1 2 4 3

9 169.79 4.90 4 3 1 2 2 3 4 1

7 175.12 4.47 4 3 2 1 1 3 4 2

9 156.33 3.73 3 2 1 2 2 3 4 1

9 155.00 4.20 3 2 1 1 3 1 4 2

9 168.21 5.17 4 3 2 1 1 2 4 3
Table 1
Results of DAP, SLP-GA, SLP-GA-Cte and SLP-ACO in energy consumption modelling problems.

Working Day DAP SLP-GA SLP-GA-Cte SLP-ACO
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Building B1

Monday 0.42 0.97 0 13.9 5.9 0.98 0.99 0.98 6 3.93 0.99 0.99 0.97 100.14 11.57 0.99 0.99 0.9

Tuesday 0.32 0.99 0 13.78 4.2 0.98 0.98 0.97 6.02 5.66 0.98 0.99 0.98 93.45 8.00 0.98 0.98 0.9

Wednesday 0.49 0.99 0 13.73 5.43 0.99 0.99 0.99 5.89 4.83 0.99 0.99 0.97 96.96 10.97 0.99 0.99 0.9

Thursday 0.49 0.98 1 ∗ 10−3 13.309 5.7 0.99 0.99 0.69 5.44 4.36 0.99 0.99 0.94 103.84 10.73 0.99 0.99 0.9

Friday 0.75 0.96 0 13.33 7.36 0.97 0.98 0.97 5.48 5.43 0.98 0.98 0.97 103.04 11.97 0.98 0.98 0.9

Building B2

Monday 0.48 0.99 0 14.65 4.8 0.99 0.99 0.99 5.81 6.36 0.99 0.99 0.97 93.91 10.43 0.99 0.99 0.9

Tuesday 0.39 0.99 0 14.4 3.63 0.99 0.99 0.99 5.65 4.93 0.99 0.99 0.98 89.85 9.53 0.99 0.99 0.9

Wednesday 0.15 0.98 0 14.67 4.6 0.99 0.99 0.99 5.86 5.76 0.99 0.99 0.74 96.60 11.37 0.99 0.99 0.9

Thursday 0.83 0.99 0 14.3 4.03 0.99 0.99 0.99 6.21 4.36 0.99 0.99 0.97 89.41 9.33 0.99 0.99 0.9

Friday 0.9 0.99 0 14.3 5.46 0.99 0.99 0.99 6.19 5.6 0.99 0.99 0.99 91.01 8.20 0.99 0.99 0.9

Building B3

Monday 0.46 0.99 0 14.63 5.06 0.99 0.99 0.99 5.49 5.13 0.99 0.99 0.99 85.93 10.60 0.99 0.99 0.9

Tuesday 0.3 0.99 0 13.76 4.63 0.99 0.99 0.99 5.49 4.93 0.99 0.99 0.99 79.09 8.90 0.99 0.99 0.9

Wednesday 0.73 0.99 0 13.83 4.9 0.99 0.99 0.99 5.48 5.03 0.99 0.99 0.99 76.81 7.67 0.99 0.99 0.9

Thursday 0.45 0.99 0 12.96 3.73 0.99 0.99 0.99 5.51 5.43 0.99 0.99 0.99 80.93 9.53 0.99 0.99 0.9

Friday 0.32 0.99 0 13.69 4.93 0.99 0.99 0.99 5.46 6.03 0.99 0.99 0.99 84.68 10.53 0.99 0.99 0.9

Building B4

Monday 0.44 0.98 0 13.17 5 0.98 0.98 0.98 5.47 6.06 0.99 0.99 0.99 93.79 10.90 0.99 0.99 0.9

Tuesday 0.58 0.99 0 13.45 3.96 0.98 0.98 0.98 5.47 4.83 0.98 0.99 0.98 76.45 8.47 0.99 0.99 0.9

Wednesday 0.55 0.99 0 14.37 4.16 0.99 0.99 0.98 5.49 4.76 0.99 0.99 0.99 78.35 9.70 0.99 0.99 0.9

Thursday 0.67 0.99 0 14.37 4.9 0.99 0.99 0.99 5.44 4.1 0.99 0.99 0.99 81.22 9.43 0.99 0.99 0.9

Friday 0.45 0.98 0 14.49 2.9 0.99 0.99 0.99 5.49 4.76 0.99 0.99 0.99 88.52 9.27 0.99 0.99 0.9
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Fig. 5. Plots of real data (blue), DAP estimated data (magenta), SLP-GA estimated data (yellow), SLP-GA-Cte estimated data (red) and SLP-ACO estimated 
data (green) for buildings B1 to B4.

to find shorter algebraic expressions with high accuracy. To give support to this conclusion, we may observe the results 
of the Kruskal-Wallis test in columns 26-27 and 28-29 of Table 1. Firstly, regarding the algebraic expression size of DAP 
and SLP-GA (columns 26 and 27, respectively), we conclude that DAP performed shorter algebraic expressions in 15 of 20 
experiments, whereas SLP-GA achieved shorter algebraic expressions in 5 problems. After that, comparing the results of 
the algebraic expressions found by SLP-GA-Cte and SLP-ACO (columns 28 and 29, respectively), we may confirm that SLP-
ACO achieved shorter solutions in all cases. Nevertheless, if we compare SLP-ACO with SLP-GA we may verify that SLP-GA 
achieved shorter solutions in 9 cases. In contrast, regarding fitness accuracy, the KW test concludes that SLP-ACO was able 
to perform better solutions in 13 problems. In this way, we want to highlight the main goal of this research, which attempts 
to find a balance between accuracy and interpretability. Therefore, we may conclude that SLP-ACO was able to find shorter 
algebraic expressions with potential accuracy.

With regards to the execution time, we may conclude that ACO approaches need more computational time to find a 
solution. This fact may be verified in the execution time between DAP vs SLP-GA and SLP-ACO vs SLP-GA-Cte, where both 
ACO methods need by means two times more than GA approaches to perform a solution. Besides, we want to remark that 
the local search used in SLP-GA-Cte and SLP-ACO introduces a time overhead of almost 200% regarding the execution time 
of both methods.

Finally, equations (9) to (12) show an example of the most accurate algebraic expressions found by DAP, SLP-GA, SLP-GA-
Cte and SLP-ACO, respectively, to approximate Thursday’s energy consumption of building B4. In these equations, we use the 
notation shown in equation (8), where d1, d2, d3, d4, d5 stand for the energy consumption of Mondays, Tuesdays, Wednes-
days, Thursdays, and Fridays, respectively. As we observe, DAP and SLP-GA return simpler algebraic expressions, following 
by SLP-ACO and SLP-GA-Cte. Nevertheless, although all approaches seem to perform similar fitness, the statistical tests show 
that SLP-ACO and SLP-GA-Cte were able to achieve better results, but SLP-ACO reached a simpler algebraic expression. As 
an example of the equation provided by SLP-ACO, an expert could conclude that Thursday’s energy consumption can be 
explained as the combination of the energy consumption of Monday’s, Wednesday’s and Friday’s. The interpretability of this 
type of algebraic expression could therefore contribute to a better data analysis in higher level decision-making processes. 
Regarding the accuracy of all methods, Fig. 5 shows that the approximation of the whole data series with the algebraic ex-
pressions provided by each method fits the real data correctly, and this fact suggests that SLP-ACO is a promising technique 
to be used for obtaining a suitable balance between accuracy and solution complexity.
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Fig. 6. Boxplots of fitness results for each building, working day and algorithm.
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dD A P
4 = max((log(min(2,d5)) + 1),d3) (9)

dS L P−G A
4 = d3/1

exp(d3 − d5)
(10)

dS L P−G A−Cte
4 = 0.63 ∗ min(((d3 + min((((d3 + (d5 + (d3 ∗ −0.95)))1.07) ∗ 0.6),

(1.44d5)))1.07), (1.44d5)) (11)

dS L P−AC O
4 = (

1.03d1

exp(1.38)
+ 1.03d1

exp(1.38)
) ∗ ((d5 + d3) − log(1.01)) (12)

From the aforementioned analysis, we conclude that both SLP-GA-Cte and SLP-ACO provided promising results regarding 
accuracy in the real symbolic regression problems addressed. On the other hand, SLP-ACO was able to provide solutions 
with a lower size in all cases, at a cost of increasing the computational time substantially. These lower-size solutions could 
be more interpretable by an expert, and therefore more suitable for use in higher-level decision making processes than 
SLP-GA’s solutions.

5. Conclusions

In this paper, we have introduced a new algorithm based on Ant Colony Optimization for symbolic regression using 
Straight Line Programs (SLPs). The approach has been compared with state-of-the-art algorithms with different algebraic 
representation schemes, and also targeted at minimizing the size of the resulting solutions. The approach has been tested in 
real energy consumption data. Regarding accuracy, SLP-based algorithms obtained promising results in the problems studied. 
The linear representation of SLPs allows us to perform a better search over the solution space of algebraic expressions, and 
also time complexity is reduced when SLPs are trained with genetic programming, compared to tree-based representation 
schemes. We have also included a local search to fit the resulting algebraic expression parameters inside GA and ACO 
algorithms. Our experiments show that time complexity is substantially increased using this strategy, but also that accuracy 
of the resulting solutions can be improved. Regarding the size of the resulting algebraic expressions, ACO based methods 
provided smaller algebraic expressions than GA approaches. More specifically, DAP was able to find smaller solutions in 15 
of 20 problems compared to SLP-GA and SLP-ACO achieved shorter algebraic expression in all experiments, compared to 
SLP-GA-Cte.

As a general conclusion, the SLP-ACO method proposed in this article has helped to maintain a balance between accuracy 
and complexity of the solutions provided, and has been tested successfully in real scenarios. Simpler and accurate solutions 
were obtained using this method, which can help to facilitate a better expert analysis in higher-level decision making 
processes.
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