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Abstract

The green alga Chlamydomonas is a valuable model system capable of assimilating different forms of nitrogen (N). 
Nitrate (NO3

−) has a relevant role in plant-like organisms, first as a nitrogen source for growth and second as a signal-
ling molecule. Several modules are necessary for Chlamydomonas to handle nitrate, including transporters, nitrate 
reductase (NR), nitrite reductase (NiR), GS/GOGAT enzymes for ammonium assimilation, and regulatory protein(s). 
Transporters provide a first step for influx/efflux, homeostasis, and sensing of nitrate; and NIT2 is the key transcrip-
tion factor (RWP-RK) for mediating the nitrate-dependent activation of a number of genes. Here, we review how NR 
participates in the cycle NO3

− →NO2
− →NO →NO3

−. NR uses the partner protein amidoxime-reducing component/nitric 
oxide-forming nitrite reductase (ARC/NOFNiR) for the conversion of nitrite (NO2

−) into nitric oxide (NO). It also uses 
the truncated haemoglobin THB1 in the conversion of nitric oxide to nitrate. Nitric oxide is a negative signal for nitrate 
assimilation; it inhibits the activity and expression of high-affinity nitrate/nitrite transporters and NR. During this cycle, 
the positive signal of nitrate is transformed into the negative signal of nitric oxide, which can then be converted back 
into nitrate. Thus, NR is back in the spotlight as a strategic regulator of the nitric oxide cycle and the nitrate assimila-
tion pathway.
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Introduction

Chlamydomonas is a model green alga that shares with 
plants the capability of  assimilating different forms of 
nitrogen (N) compounds. Nitrate (NO3

−) is the preferred 
nitrogen source used for the formation of  amino acids, 
proteins, nucleic acid, and biomass. In addition, nitrate is 
an important signalling molecule in different plant pro-
cesses (Crawford, 1995; Wang et  al., 2012; Krapp et  al., 

2014; O’Brien et al., 2016). Understanding how the nitrate 
assimilation pathway is regulated is key to improving 
nitrogen use efficiency and avoiding the adverse effects of 
N-fertilization, such as waste nitrogen and environmental 
contamination.

Nitrate assimilation includes (i) the transporters, (ii) nitrate 
reductase (NR), (iii) nitrite reductase (NiR), (iv) GS/GOGAT 
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enzymes, and (v) regulatory protein(s) involved in sens-
ing and signalling of nitrate. Even though Chlamydomonas 
is a unicellular alga, it has developed a network of nitrate/
nitrite (NO2

−) transporters belonging to three different fami-
lies: nitrate assimilation-related component 1 [NAR1; formi-
ate/nitrite transporter (FNT) family], nitrate transporter 2 
[NRT2; nitrate nitrite porter (NNP)], and NRT1 (Fernandez 
and Galvan, 2007, 2008; Sanz-Luque et  al., 2015a). These 
transporters provide a first step for influx, homeostasis, and 
sensing of nitrate (Llamas et al., 2002; Rexach et al., 2002; 
Sanz-Luque et  al., 2015a). Although a number of regula-
tory factors have been related to nitrogen assimilation, the 
RWP-RK transcription factor NIT2 is crucial to mediate the 
nitrate-dependent transcriptional expression of a number of 
nitrate transporters and NR (Camargo et al., 2007; Higuera 
et al., 2014).

Once nitrate is in the cell, the cytosolic NR catalyses its 
reduction to nitrite, which is then transported into the chlo-
roplast and converted to ammonium by the action of NiR. 
The nitrogen then continues up its assimilation pathway to 
be incorporated into amino acids/proteins (Fernandez and 
Galvan, 2007, 2008). Recently, NR was shown to be involved 
in nitric oxide (NO) production (Yamasaki and Sakihama, 
2000), but not as the catalyser as was previously thought. 
However, NR is an essential partner protein of the amidox-
ime-reducing component (ARC), renamed NOFNiR (nitric 
oxide-forming nitrite reductase), which catalyses nitrite con-
version to nitric oxide (Chamizo-Ampudia et al., 2016). The 
truncated haemoglobin THB1 also uses NR as a protein part-
ner for the conversion of nitric oxide into nitrate using its 
dioxygenase activity (Sanz-Luque et al., 2015b, Sanz-Luque 
et al.2015c)

In this work, we provide a view on how NR participates in 
the cycle NO3

− → NO2
− → NO→ NO3

−. The multifunction-
ality of NR depends on its partner proteins, and allows the 
conversion of nitrate, a positive signal for nitrate assimila-
tion, into nitric oxide, which is a negative signal similar to 
ammonium. Both ammonium and nitric oxide inhibit the 
activity and expression of high-affinity nitrate/nitrite trans-
porters and NR (de Montaigu et al., 2010). During this cycle, 
the negative signal of nitric oxide can be converted back to 
the positive signal of nitrate. Thus, NR can additionally be 
considered a key regulator for nitrate assimilation through its 
involvement in the nitric oxide cycle.

Nitrate and nitrite transporters

Nitrate and nitrite transporters are the first step required for 
nitrogen entry into the cell. In a unicellular organism, such 
as Chlamydomonas, nitrate/nitrite transporters have particu-
lar roles for communicating with the surrounding environ-
ment and respond according to the nitrate/nitrite supply. This 
is important because nitrate is a positive signal for nitrate 
assimilation, but nitric oxide, which can derive from nitrate, 
is a negative signal.

In plants, nitrate transport is carried out by a sophisticated 
network of membrane proteins that mediate the sensing, 

absorption, storage, and distribution of nitrate among the 
different tissues. Plant nitrate transporters belong to at least 
four main families: nitrate transporter 1/peptide transporter/
nitrate peptide transporter family (NRT1/PTR/NPF), NRT2/
nitrate nitrite porter (NRT2/NNP), chloride channels (CLC), 
slow anion channel-associated 1 homolog 3 (SLAC1/SLAH), 
and aluminium-activated malate transporters (ALMT), 
which have been extensively reviewed (Wang et  al., 2012; 
Krapp et al., 2014; Krapp, 2015; O’Brien et al., 2016; Sharma 
et al., 2016).

Genes homologous to SLAC1/SLAH and ALMT are 
absent in the Chlamydomonas genome; it instead con-
tains six CLC homologues (CLV1: Cre13.g57400; CLV2: 
Cre17.g729450; CLV3: Cre09.g404100; CLV4: Cre09.
g402051; CLV5: Cre01.g038700; and CLV6: Cre01.
g037150) (Phytozome v11.0). In Arabidopsis, AtCLCa is 
responsible for nitrate accumulation into plant vacuoles 
(De Angeli et  al., 2006) and its selectivity for nitrate is 
linked to the filter motif  GXGIP, absent in the rest of 
the AtCLCs (Wege et  al., 2010). AtCLCe is postulated 
to be a chloride (Cl−) or nitrite channel/transporter from 
the stroma into the thylakoid (Monachello et  al., 2009). 
AtCLCa and AtCLCe involve connected endomembrane 
systems that contribute to nitrate homeostasis in the plant 
cell. Whether the Chlamydomonas CLCs are involved 
in nitrate homeostasis is unknown. Notwithstanding, 
Chlamydomonas does not accumulate nitrate into a vacu-
olar compartment and its putative CLC/CLVs lack the 
nitrate selectivity filter motif.

Though Chlamydomonas is a unicellular organism, it also 
shows complexity for nitrate/nitrite transporters (Fig.  1), 
with a total of 13 transporters corresponding to the families 
NRT1 (one), NRT2 (six), and NAR1 (six), with NAR1 absent 
in higher plants (Sanz-Luque et al., 2015a).

NAR1 transporters for nitrite and bicarbonate

NAR1.1 was identified in Chlamydomonas as a plastidic 
nitrite transporter (Rexach et  al., 2000). NAR1.1 belongs 
to the FNT family present in bacteria (FocA and NirC, in 
Escherichia coli), fungi (NitA in Aspergillus nidulans), yeast 
(NAR1 in Hansenula polymorpha), and some marine pico-
cyanobacteria (NitM) and algae, but it is absent in plant 
genomes (Peakman et  al., 1990; Suppmann and Sawers, 
1994; Maeda et al., 2015; Sanz-Luque et al., 2015a). Briefly, 
the roles proposed for the different NAR1/FNT/NirC are as 
follows: (i) in E. coli, NirC is involved in both nitrite uptake 
and efflux (Jia et al., 2009); (ii) in A. nidulans, NitA mediates 
specific high-affinity transport of  nitrite and also has some 
role in nitrite efflux (Wang et al., 2008); (iii) in H. polymor-
pha, NAR1 mediates nitrate and nitrite efflux (Cabrera et al., 
2014); and (iv) in marine picocyanobacteria, NitM mediates 
specific nitrite uptake. Curiously, some NitM show a long 
C-terminus, proposed to inhibit/regulate nitrite uptake activ-
ity and avoid the toxicity caused by nitrite accumulation 
(Maeda et al., 2015).

The highest number of NAR1/FNT proteins has thus far 
been found in Chlamydomonas reinhardtii, with three in the 
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plasma membrane (NAR1.3, NAR1.4, NAR1.6) and three in 
the chloroplast (NAR1.1, NAR1.2, NAR1.5) (Fig. 1). Like 
some NitM from picocyanobacteria, NAR1.3 and NAR1.6 
have a long C-terminus, but its function is still unknown 
(Mariscal et al., 2006). The plastidic transporter NAR1.1 is 
co-regulated with other key proteins for nitrate assimilation 
(NR, NiR, NRT2.1, NRT2.2, and NAR2) (Rexach et  al., 
2000). NAR1.1 denotes a control step for nitrate assimilation 
at the chloroplast level. First, it is required for cell growth 
under limiting nitrate conditions, and second, it controls the 

amount of nitrate assimilated by the cells under limiting car-
bon dioxide conditions (Rexach et al., 2000, Mariscal et al., 
2004).

NAR1.2 also named LCIA (Low CO2 Component A) is 
a chloroplast envelope transporter and bispecific for both 
nitrite and bicarbonate, which overexpresses under low CO2 
conditions (Mariscal et  al., 2006). NAR1.2 (LCIA) forms 
part of the carbon dioxide-concentrating mechanism (CCM) 
operating at low carbon dioxide concentrations and is regu-
lated by the master gene for carbon CIA5/CCM1 (Wang and 

Fig. 1. Scheme for homeostasis of nitrate and nitrite in Chlamydomonas and the nitric oxide cycle. The transporters at the plasma and 
chloroplast membranes are shown as protein families. Those components under the control of the regulator NIT2 are shown in green.
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Spalding, 2014; Yamano et  al., 2015). The CCM is essen-
tial in aquatic microalgae to accumulate carbon dioxide in 
the region close to the Rubisco for efficient photosynthe-
sis. Accordingly, NAR1 transporters seem to adjust nitrate 
assimilation to carbon dioxide availability in Chlamydomonas 
(Mariscal et al., 2004, 2006).

NRT2 are nitrate and nitrite transporters

An NRT2 was first identified in the fungus Aspergillus nidu-
lans (Unkles et al., 1991) and later in the alga Chlamydomonas 
(Quesada et  al., 1994) and in barley (Hordeum vulgare) 
(Trueman et  al., 1996). A  relevant characteristic of  these 
transporters is the requirement of  a second protein compo-
nent, NAR2 (NRT3), for most NRT2s from plants, with the 
exceptions of  AtNRT2.7 from Arabidopsis that seems to be 
NAR2 independent (Chopin et  al., 2007) and OsNRT2.3b 
from rice (Oryza sativa) (Fan et al., 2016). Only two of the 
six NRT2s from Chlamydomonas (NRT2.1 and 2.2) require 
NAR2 (Quesada et al., 1994; Zhou et al., 2000). The NRT2s 
from Aspergillus (NRTA, NRTB), Hansenula (YNT), and 
E.  coli (NARK, NARU) do not require this second com-
ponent for functionality. Another characteristic of  NRT2s 
is their high affinity and specificity for the substrate. In 
Arabidopsis, the seven NRT2s have been characterized as 
influx and high-affinity nitrate transporters specific for nitrate 
(O’Brien et al., 2016), whereas in fungi and yeast (AnNRTA, 
AnNRTB, HpYNT) as well as in Chlamydomonas (NRT2.1/
NAR2) and E. coli (NARK, NARU), NRT2s are high-affin-
ity nitrate and nitrite transporters (Galván et al., 1996; Pérez 
et  al., 1997; Clegg et  al., 2002; Wang et  al., 2008; Akhtar 
et al., 2015).

Six genes (NRT2.1–6) account for the Chlamydomonas 
NRT2 family. NRT2.1, together with NAR2, is a bispecific 
high-affinity nitrate and nitrite transporter (Galván et  al., 
1996), and also has a role in nitrate signalling (Rexach 
et al., 2002; Llamas et al., 2002). NRT2.2/NAR2 is specific 
for nitrate. NRT2.1 and NRT2.2 account for all the high-
affinity nitrate transport activity in the cell under high car-
bon dioxide conditions (Rexach et  al., 1999; Fernandez 
and Galvan, 2007). The rest of  the transporters are NAR2 
independent and very probably involved in nitrite transport. 
Recently, NRT2.4 and NRT2.5 were characterized as atypi-
cal NRT2 proteins because they are half-size transporters 
bearing six transmembrane domains, of  which NRT2.4 
was shown to have high-affinity nitrite transport activity 
(Higuera et al., 2016). A significant fact in Chlamydomonas 
is that in spite of  the high number of  NRT2s, only one – 
NRT2.2  – is highly specific for nitrate, and the rest trans-
port both nitrate and nitrite or only nitrite. This denotes the 
importance of  regulating nitrite into the cell to avoid its tox-
icity. In fact, nitrite is not accumulated into Chlamydomonas 
cells under adverse conditions and is instead excreted out-
side the cell. These adverse conditions occur when cells are 
reducing nitrate owing to low carbon availability (Rexach 
et al., 2000; Mariscal et al., 2004), or when NiR is lacking 
(Navarro et al., 2000).

NRT1 transporter

NRT1 was the first nitrate transporter identified in Arabidopsis 
and is known as CHL1/NRT1.1/NPF6.3 (Tsay et al., 1993). 
NRT1 proteins are ubiquitously present in plants, animals, 
fungi, and bacteria, and a recently unified nomenclature 
renamed them as NPFs (Léran et al., 2014). Plant genomes 
contain a high number of NPF genes, with 53 in Arabidopsis 
up to 139 in Malus domestica (Léran et al., 2014). The NRT1/
NPF transporters have been extensively studied and reviewed 
in Arabidopsis, in which different NPFs are involved in nitrate 
uptake by the root and its distribution throughout the plant 
tissues (Krapp et al., 2014; Léran et al., 2014; Krapp, 2015; 
O’Brien et al., 2016). A key point for the large NPF family in 
Arabidopsis is their non-specificity for substrate. Most of the 
NPF studied are low-affinity nitrate transporters, but in addi-
tion to nitrate some transport nitrite, amino acids, peptides, 
glucosinolates, auxin, and abscisic acid (Léran et  al., 2014; 
O’Brien et al., 2016).

CHL1/NRT1.1/NPF6.3 is a peculiar protein in the NPF 
family in Arabidopsis. It is a dual-affinity nitrate transporter, 
showing high-affinity transport activity when it is phosphoryl-
ated at T101, and low-affinity transport activity in the dephos-
phorylated form (Ho et al., 2009). It is a bidirectional nitrate 
transporter involved in the influx and efflux of nitrate (Léran 
et al., 2014) and is also a nitrate-regulated auxin transporter 
(Krouk et al., 2010). This protein was proposed as a transcep-
tor able to detect low and high nitrate concentrations (Ho 
et al., 2009). Recently, in-depth knowledge of its characteristics 
has been derived from studies of its crystal structure (Parker 
and Newstead, 2014; Sun et  al., 2014), studies of the signal 
transduction pathway involving phospholipase C and calcium 
(Riveras et al., 2015), and transcriptomic analyses that show 
multiple and differential gene expression depending on the 
phosphorylation state of NPF6.3 (Bouguyon et al., 2015).

In contrast to higher plants, Chlamydomonas, as well as 
many other unicellular algae, contains a unique NRT1/NPF 
gene, but its precise role in the sensing, influx, and efflux of 
nitrate is still unknown (Sanz-Luque et al., 2015a).

Regulation of nitrate assimilation: nitric 
oxide plays a role

In Chlamydomonas, the expression of nitrate-assimilation 
genes is regulated by ammonium (negative signal) and nitrate 
(positive signal) (Fernandez and Galvan, 2007). Nitrate 
is required to induce NIA1, NII, NRT2.1–3/NAR2, and 
NAR1.1. Ammonium, in contrast, represses all these genes 
(Fig.  1) (Quesada and Fernández, 1994; Fernandez and 
Galvan, 2007) and causes rapid inhibition of nitrate transport 
activity (Florencio and Vega, 1983). Both positive and nega-
tive signalling are complex processes, as deduced from the 
high number of tagged genes involved (González-Ballester 
et  al., 2005). A  noteworthy difference has emerged for the 
two types of regulation: none of the ammonium-insensitive 
mutants are completely released from ammonium repression, 
and the presence of nitrate is always required to make the 
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ammonium-insensitive phenotype evident. Notwithstanding, 
for the positive nitrate signal, the single NIT2 gene is criti-
cal. Allelic NIT2 gene mutants are unable to grow in nitrate 
and have null pNIA1-ARS activity in nitrate (Camargo et al., 
2007). Thus, NIT2 is thus far considered to be the master reg-
ulator for nitrate assimilation genes and involved in the posi-
tive nitrate signal/signalling pathway. NIT2 is a transcription 
factor containing GAF and RWP-RK domains that shows 
conservation with plant nodule inception-like proteins (NLP) 
(Camargo et  al., 2007; Castaings et  al., 2009; Konishi and 
Yanagisawa, 2013; Marchive et al., 2013).

A number of transcription factors that regulate the nitrate 
response have been identified in Arabidopsis, including NLP, 
TGA1, TGA4, ANR1, bZIP1, LBD37, LBD38, TCP20, NAC4,  
SLP9 (reviewed in Chardin et  al., 2014; Vidal et  al., 2015;  
O’Brien et al., 2016), and, recently, NRG2 (Xu et al., 2016).

Concerning the Arabidopsis NLP family (which comprises 
nine proteins), NLP7 is an important regulator of the early 
nitrate response. It is translocated into the nucleus in response to 
nitrate to regulate gene expression, and moves from the nucleus 
to the cytoplasm when nitrate is removed (Marchive et al., 2013). 
The nucleocytosolic shuttling seems to be a regulatory check-
point for nitrate induction in both Aspergillus nidulans (NirA) 
(Berger et al., 2006) and Arabidopsis (NLP7). The biochemi-
cal mechanism for this regulation is not completely resolved. 
However, a redox regulation mechanism underlines the activ-
ity of the fungal nitrate regulator NirA, in which a conserved 
methionine in the nuclear export sequence is key for its cellular 
location (Gallmetzer et al., 2015). NRG2 has been shown to 
interact directly with NLP7, but this interaction has no effect 
on the nuclear retention of NLP7 (Xu et al., 2016). NLP7 has 
also provided molecular evidence for nitrate-dependent regula-
tion between nitrogen and carbon metabolism. In fact, NLP7 
regulates several enzymes involved in carbon metabolism 
(Marchive et al., 2013; Yu et al., 2016) and the overexpression 
of NLP7 results in enhanced nitrogen and carbon assimilation 
and improved plant growth in both Arabidopsis and Nicotiana 
tabacum (Yu et al., 2016). Chlamydomonas NIT2 has also been 
reported to be involved in the regulation of carbon metabo-
lism, including in acetate uptake, organic acid accumulation, 
and starch storage (Remacle et al., 2014).

The negative ammonium signal and nitric oxide

In Chlamydomonas, ammonium and nitric oxide are con-
sidered to be negative signals that affect nitrate assimilation 
genes, at both the transcriptional and post-transcriptional 
levels (de Montaigu et  al., 2010; Sanz-Luque et  al., 2013, 
2015b, 2016; Chamizo-Ampudia et al., 2016).

Nitric oxide is a diffusible gas messenger that was first 
described in mammals through its role on blood pressure 
relaxation. Currently, nitric oxide is considered to be an ubiq-
uitous signal molecule involved in many biological processes 
in bacteria, fungi, plants, and mammals. Nitric oxide has been 
postulated as perhaps the first signalling molecule to appear 
in biological systems (Feelisch and Martin, 1995). In plants, 
nitric oxide is involved in seed germination, senescence, root 
development, plant immunity, and abiotic stress (for reviews, 

see Lamattina et al., 2003; Yu et al., 2014; Domingo et al., 
2015). Transcriptome profiling shows the multiple regulatory 
pathways mediated by nitric oxide in Arabidopsis (Hussain 
et al., 2016).

In Chlamydomonas, nitric oxide has been related to the 
remodelling of chloroplast and thylakoid proteins upon 
nitrogen starvation (Wei et al., 2014), the cell death induced 
by ethylene and mastoparan (Yordanova et  al., 2010), oxi-
dative stress at very high light (Chang et al., 2013), proline 
synthesis under copper stress (Zhang et al., 2008), salt stress 
(Chen et al., 2016), and regulation of nitrogen assimilation 
(de Montaigu et  al., 2010; Sanz-Luque et  al., 2013, 2015b, 
Chamizo-Ampudia et al., 2016)

The first molecular evidence for nitric oxide regulating nitro-
gen metabolism in Chlamydomonas came from the identifica-
tion of a defective form of the soluble nitric oxide-dependent 
guanylate cyclase CYG56 in an ammonium-insensitive mutant 
(de Montaigu et al., 2010). This CYG56 enzyme participates 
in ammonium repression of NIA1 through a pathway that 
involves nitric oxide, cyclic guanosine monophosphate, and 
calcium. In contrast to the wild type, the cyg56 mutant is par-
tially released from ammonium repression in media containing 
both ammonium and nitrate, which results in higher transcript 
levels of NIA1, NRT2.1, and the high-affinity ammonium 
transporters AMT1.1 and AMT1.2 than in the wild type (de 
Montaigu et al., 2010). Besides the down-regulation of these 
genes expression, nitric oxide also has a post-transcriptional 
inhibition effect on high-affinity transport of nitrate, nitrite, 
and ammonium and on NR activity (Sanz-Luque et al., 2013).

In Chlamydomonas, NIT2 controls the expression of  key 
players for nitrate assimilation in response to nitrate (Fig. 1). 
Two of these genes encode truncated haemoglobins, THB1 
and THB2, but THB1 is also partially induced by nitric 
oxide (Sanz-Luque et al., 2015b). THB1 has been shown to 
connect nitric oxide metabolism and nitrate assimilation. Its 
dioxygenase activity is able to transform nitric oxide into 
nitrate under oxygenic conditions (NO + O2 + e−→ NO3

−), 
but only when in a reduced form (bonded with Fe2+). NR 
is able to reduce THB1, through its diaphorase activity, 
more efficiently than free cofactors (NADH and FAD), or 
cytochrome b5 reductase (Cytb5-R), which has high homol-
ogy to NR (Sanz-Luque et  al., 2015c). The partners NR/
THB1 seem to result in two effects: first, the scavenging 
of  nitric oxide to produce nitrate, transforming a negative 
signal into a positive one; and second, redirecting the elec-
tron flux from NR-diaphorase to THB1, which inhibits NR 
activity and thus moderates nitrite production (Fig. 2). The 

Fig. 2. Model for the dioxygenase activity of THB1 involving NR. 
The domains containing the prosthetic groups are shown in colour. The 
binding site domain of NADPH is indicated. The oxygenase reaction of 
THB1 is proposed to receive electrons (red arrow) from the FAD domain of 
NR (Sanz-Luque et al., 2015a).
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major function of  NR is to reduce nitrate to allow its assimi-
lation, a task specific to plants-like organisms. However, 
nitrate reduction must be adjusted in line with the capacity 
to assimilate it into amino acids to avoid accumulating high 
concentrations of  nitrite, which is both toxic and a substrate 
for nitric oxide production.

In maize (Zea mays), coordinated regulation of NR and 
non-symbiotic haemoglobins has also been described and 
proposed to be involved in nitric oxide homeostasis and sig-
nalling for root growth in response to nitrate (Manoli et al., 
2014; Trevisan et al., 2014). NR and haemoglobins seem to 
be pieces of a complex puzzle for nitric oxide homeosta-
sis. S-nitrosoglutathione, as a reservoir of nitric oxide, and 
S-nitrosoglutathione reductase, which catalyses the reduction 
of S-nitrosoglutathione into glutathione disulfide and ammo-
nia, are also involved in nitric oxide homeostasis and the 
feedback regulation of nitrate assimilation (Frungillo et al., 
2014), recently reviewed in plant (Frungillo et  al., 2016). 
Interestingly, S-nitrosoglutathione reductase has been shown 
to be S-nitrosylated in Arabidopsis and Chlamydomonas 
(Frungillo et  al., 2014; Chen et  al., 2016) as well NR in 
Chlamydomonas (Chen et al., 2016). In summary, nitric oxide 
homeostasis seems to regulate nitrate uptake and reduc-
tion, but a key question in this puzzle is how nitric oxide is 
produced.

Nitrate reductase and the nitric oxide cycle

Chlamydomonas reinhardtii has no animal-type nitric 
oxide synthase

Although evidence has accumulated for more than 15 years 
showing that nitric oxide is a signal molecule in plants, the 
identification of  the enzymes responsible for nitric oxide 
synthesis has remained a challenge (Gas et al., 2009; Gupta 
et al., 2011; Jeandroz et al., 2016). In animals, nitric oxide 
synthase (NOS) converts L-arginine to L-citrulline and nitric 
oxide, via N-hydroxy-L-arginine as an intermediate. This 
enzyme has a typical molecular architecture containing an 
N-terminal oxygenase domain and a C-terminal reductase 
domain that are connected by a calmodulin-binding motif  
(Bredt and Snyder, 1990; Alderton et  al., 2001; Campbell 
et al., 2014). Recently, a gene encoding functional NOS in 
the green alga Ostreococcus tauri was identified (Foresi et al., 
2010). However, genome and transcriptome analysis from 
1087 land plants and 265 from algae show that land plants 
have no NOS. Interestingly, 15 algae species do contain a 
NOS with the complete multidomain structure of  animals 
NOSs (Foresi et al., 2010; Jeandroz et al., 2016). As in land 
plants, the Chlamydomonas reinhardtii genome lacks a typi-
cal NOS.

Nitrate reductase and ARC synthesize nitric oxide

Many different pathways have been suggested for nitric oxide 
production in plants (reviewed in Lamattina et al., 2003; Yu 
et al., 2014). Depending on the nitric oxide precursors, two 

pathways can be distinguished: the oxidative and the reduc-
tive routes. The oxidative route involves the production of 
nitric oxide from arginine, polyamines, or hydroxylamines. 
The reductive route uses nitrite as a substrate for nitric oxide 
production and includes NR, the plasma membrane-bound 
nitrite:NO reductase, or mitochondrial nitrite reduction. 
However, evidence from different organisms, including plants 
(reviewed in Lamattina et  al., 2003), the fungi Aspergillus 
nidulans (Marcos et al., 2016), and the alga Chlamydomonas 
reinhardtii (Sakihama et al., 2002) suggests that NR is a key 
enzyme in nitric oxide production. This role for NR has been 
debated on the basis that nitric oxide production in vitro by 
plant NR is inefficient, with only 1% of the normal nitrate 
reduction capability, and that this reaction occurs only in the 
absence of nitrate (an efficient inhibitor), a non-physiological 
condition for the plant cell (Rockel et al., 2002; Planchet and 
Kaiser, 2006).

In humans, a novel type of molybdoenzyme, mitochon-
drial amidoxime-reducing component (mARC) has recently 
been shown to produce nitric oxide via a reductive route from 
nitrite and NADH and in anoxic conditions (Sparacino-
Watkins et  al., 2014). mARC requires cytochrome b5 and 
Cytb5-R to form an electron transfer chain from NADH to 
the substrate. Still, the physiological functions of ARC are not 
well known and a role in detoxifying N-hydroxylated bases 
has been suggested (reviewed in Tejada-Jiménez et al., 2013). 
As in humans, Chlamydomonas also has this three-component 
complex (ARCO), which is able to reduce toxic compounds 
such as hydroxylamino-purine and artificial compounds such 
as benzamidoxime (Chamizo-Ampudia et al., 2011). ARC is 
present in plant genomes, both monocotyledons and dicoty-
ledons (Tejada-Jiménez et  al., 2013), and Arabidopsis ARC 
also produces in vitro nitric oxide from nitrite using dithionite 
as the electron donor (Yang et al., 2015).

Interestingly, a significant conservation of structural organ-
ization and sequence homology with the three-component 
system complex ARCO can be observed in the molecular 
structure of the different domains in NR (Sparacino-Watkins 
et al., 2014; Chamizo-Ampudia et al., 2016, Fig. 3). This obser-
vation led to investigations in Chlamydomonas as to whether 
NR, the ARCO complex separately, or NR together with 
ARC were able to produce nitric oxide (Chamizo-Ampudia 
et al., 2016).

Fig. 3. Structural domains similarity of NR and the three 
components of the ARC complex. The ARC complex, named ARCO, 
comprises three proteins, two of which (Cytb5-R and Cytb5-1) have a high 
degree of conservation with the corresponding domains of NR. 

2598 | Calatrava et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jxb/article/68/10/2593/2990205 by U
niversidad de G

ranada - Biblioteca user on 17 January 2025



The CrNR alone is able to produce NO in anaerobiosis from 
nitrite, though inefficiently, as previously reported (Yamasaki 
and Sakihama, 2000; Rockel et al., 2002). The complex ARCO 
alone also inefficiently produces nitric oxide. However, the 
combination of NR and ARC results in an efficient machinery 
to synthesize nitric oxide under more physiological conditions: 
aerobiosis and the presence of both nitrate and nitrite (Fig. 4). 
In vivo experiments show that the dual system of NR and ARC 
is a major player in the production of nitric oxide in the cyto-
plasm in Chlamydomonas, and that the diaphorase-NR activity 
is required for supplying NAD(P)H electrons to nitrite.

Nitrate reductase and the nitric oxide cycle

Investigating the Chlamydomonas system, as a model of 
plants, has demonstrated the complete cycle of NO3

− → 
NO2

− → NO → NO3
−, in which NR plays a central role. NR 

is required not only in the reduction step of NO3
− → NO2

− to 
allow for its assimilation, but also for the nitric oxide produc-
tion step of NO2

− → NO with ARC as a partner, and NO → 
NO3

− with THB1 as a partner (Fig. 5). These new findings 
provide a novel function for a well-known enzyme, NR. This 
cycle allows for the control of nitric oxide metabolism and 
also for fine-tuning of nitrogen homeostasis by converting a 
positive signal, nitrate, for induction of nitrate assimilation 
genes (NIA1, NRT2.1 etc.) into a negative signal, nitric oxide, 
that transcriptionally and post-transcriptionally inhibits NR 
and nitrate transport (de Montaigu et al., 2010, Sanz-Luque 
et al., 2013).

Concluding remarks and future prospects

Chlamydomonas, a plant model system, has provided insights 
into a new role of the well-known enzyme NR. In addition to 
reducing nitrate to nitrite, NR can also synthetize nitric oxide 
from nitrite when partnered with the molybdoenzyme ARC, 
and convert nitric oxide back into nitrate when partnered with 
the truncated haemoglobin THB1. These new properties seem 
to be derived from NRs diaphorase activity, which allows it 
to transfer electrons from NAD(P)H to is N-terminal domain 
or to other proteins like ARC or THB1. In addition to total 
NR activity, the diaphorase and terminal NR activities have 
been widely known for many years in plants, and the alga 
Chlamydomonas, several mutants of the alga, and Nicotiana 
plumbaginifolia all show in vivo and in vitro complementa-
tion, suggesting that electrons can be transferred from one 
NR-subunit to the other (Fernández and Cárdenas, 1982; 
Fernández and Matagne, 1986; Pelsy and Gonneau, 1991). 
Validation of this nitric oxide cycle in plants, as described in 
Chlamydomonas, is important to advance the study of nitric 
oxide metabolism and plant biology. A  future direction for 
study will be to investigate the molecular mechanisms by which 
NR changes its partner and where the electron flow shunt-
ing occurs. Phosphorylation, sumoylation, and nitrosylation 
could be mechanisms to explore. In tobacco NR, the change 
of a phosphorylatable Ser 521 to Asp results in a permanently 
active enzyme, nitrite excretion, and nitric oxide emission in 
the dark (Lillo et al., 2003; Lea et al., 2004). In Arabidopsis, 
NIA1 and NIA2 are stimulated by the E3 sumo ligase AtSIZ1, 
and a conserved sumoylation site YKPE has been proposed 
(Park et al., 2011). The mutant siz1 results in low NR activity, 
low nitric oxide production, and high nitrate content. 

Nitrate transporters constitute a complex network of 
different proteins families. An interesting characteristic of 
some transporters (AtNRT1.1/NPF6.3 and AtNRT2.1 or 
CrNRT2.1) is their role in nitrate sensing and signalling 
(O’Brien et al., 2016). While the molecular transport mecha-
nism for AtNRT1.1 was recently unravelled, a future task is to 
understand the role of NRT1 in organisms with a single copy 
of this gene, such as Chlamydomonas. Another question to 
be answered is whether cytosolic nitrate/nitrite is involved in 
sensing the nitrogen status in situations where the influx/efflux 
transporters have to play a role. This is of interest because 
changes in the nitrate/nitrite supply can result in changes in 
the concentration of nitric oxide signalling molecules.
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