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Abstract

Interpolation, together with approximation, are two major and ubiquitous prob-
lems in Mathematics, but also in almost every scientific field. Another inter-
esting question is the optimal knots placement when interpolating or approxi-
mating certain functions using splines. In this work, a powerful methodology is
presented for optimal knots placement when interpolating a curve, or a surface,
using cubic or bicubic splines, respectively. For this, a Multi-Objective-Genetic
Algorithm (MOGA) has been developed, in a way that ensures avoiding the
large number of local minima existing in the problem of random knots place-
ment. A new technique is presented to optimize both the number of knots and
its optimal placement for cubic or bicubic interpolating splines. The perfor-
mance of the proposed methodology has been evaluated using functions of one
and two variables, respectively.
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1. Introduction

Interpolation and approximation are very important problems, in Mathemat-
ics and also in many applied fields. For example, they are the key technology in

every reverse engineering procedure, systematic function or data analysis, sig-
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nal processing, data representation, stockage and/or compression, etc. In our
case, the main aim is to obtain a structured and suitable digital representation
of curves and surfaces, related to some environmental and/or natural resources
practical problem, by using cubic or bicubic splines, respectively.

There exist several methodologies for approximating or interpolating a sur-
face or some given data. In any case, multiple authors, like those in [1, 2, 3]
describe the important and significant effect of the placement of the knots in
spline approximation or interpolation on the performance of the final results.

Many methodologies have been presented for the selection and optimization
of parameters within B-splines, using techniques based on selecting some special
knots, called dominant points [4, 5], or by a data selection process as in [6]. Also
the methodology in [7] gave a technique for automatic knots modification using
an elitist clonal selection algorithm. Other procedures using some least squares
methods use uniform knots distributions, in connection with a possible sensitive
parametrization [1]. In this sense it is worth to take into account the works [2]
and [3].

In [8] the authors present a method for selecting the unknown knots by min-
imizing a certain cost function, and this is one of the key ingredients in the
implementation of the so-called Genetic Algorithms (GA). Other methodolo-
gies, as for example that in [9], describe techniques for using a computational
Artificial Immune System (AIS), based on a hierarchical paradigm structure to
determine the number and knots location automatically. AIS are adaptive com-
putational algorithms inspired by theories and models of real biological inmune
systems when applied to mathematical or enginering problem solving. Some

key aspects on the designing of AIS are:
e The chosen internal representation
e Mechanisms to evaluate the immune interactions
e The adaptation processes and mechanisms

Following the ideas of Man et al. in [10] also the computational representation
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of the chromosomes in a GA can also be arranged in more complex hierarchical
structure, to emulate the formation of the biological DNA in living beings. In
this way, the computational chromosomes of these Hierarchical Genetic Algo-
rithms (HGAs) consists of two types of genes, known as control and parametric
genes, that typically are encoded as binary digits and real numbers (or any
other particular adequate representation), respectively. Both types of genes can
be simultaneously optimized using this HGAs but in general are much more
complicated to be implemented.

The authors in [11] pointed out a method for curve and surface fitting by
implicit polynomials. In [12] an algorithm is presented to approximate scat-
tered data with a B-spline surface. But there are many other related works, for
instance the method in [13] optimizes the location and the number of knots in
curve fitting with splines by a sparse optimization model; and in [14], a fast and
computationally efficient methodology for optimal placement of the knots by
using simulated annealing (SA) is also presented. In this stochastic procedure,
a combination of hill-climbing and random walks is followed in order to simulate
a know physical process in tempered metallurgy. So, SA is a descent algorithm
modified by random ascent moves in order to escape local minima which are
not global ones. Other more or less “intelligent” Teaching and Learning Based
Optimization (TLBO) [15] and self-adaptive multi-population based Jaya algo-
rithms [16] for Engineering problems have also been developed more recently,
but we do not find them specially well-suited for our particular problem, taking
also into account the more specialized implementation and applications that
inspired them.

In this paper, a new multi-objective NSGA-II methodology for optimal place-
ment of random knots, when interpolating a function of one or two variables,
using cubic or bicubic splines, is developed. But, we have to emphasize that, al-
though some of the previous more basic evolutionary algorithms presented have
been applied in the existing literature to the knots placement in the fitting or
approximating 1D problem, we have not found references where the interpolat-

ing case is also treated, and neither the 2D approximating or interpolating cases.
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We also have to mention that in most of the cases, the GAs encountered in the
literature were applied to a certain combinatorial binary problem of selecting
the knots among a particular uniform partition of the interval, whereas we are
aplying a more sophisticated NSGA-IT MOGA with real representation of the
chromosomes, in such a way that these interpolation knots/points can freely
move, or even be deleted when necessary, until a certain threshold of errors and
number of knots is accomplished. So, this is the main originality of the present

work, together with the ability to treat with functions of two variables as well.

2. Background material

2.1. Cubic interpolation splines in one variable

In this subsection, just to fix the notation used in the sequel of the article,
the usual cubic splines will be presented for this interpolation problem. In
principle, we define the space of cubic splines of class C? on the partition of
[a,b] in n subintervals, from an increasing sequence of (uniform or non uniform)
points or knots A, = {a = xo < ... < z, = b}, and we define the cubic spline of

class C% on the partition A,, as every function s : [a, b — R such that

i) s €C?a,b]
i) 8 |[z;,2000)€ Pa([zi, wi41]),i = 0,...,n — 1
where P3([x;, x;41]), ¢ = 0,...,n—1, is the space of all restrictions of polynomial

functions of degree less than or equal to three in the interval [z;, ;1]
If now we have:
r3<r o<z <pp=a< - <w,=b< w1 <Tpyo <Tpys,

we can define for each z € [a, D]

1, of zis<z<wio9
BY(z) = i 2 , for i=0,...,n+5
0, otherwise

and BF(z), k=1,2,3, from the recursive relation:

Bf(z) = ——— 18 phel(gyp =27 T phelg) i=0,... n+5 k.

Tipk—3 — Ti—3 Tipk—2 — Ti—2



These functions verify the following properties:

i) They are positive in the interior of their support,
BF(z) >0, Yz € [a, D).

ii) They form a partition of unity,

n+5—=k
> Bf(z) =1, ¥z € [a,b].

i=0
iii) {B{f, e 7B§+571¢} are linearly independent for all k = 0,1,2, 3.

90 Besides, if S3(A,,) represents the set of cubic spline functions of degree less
than or equal to three and class C2, then dimS3(A,) = n + 3 and a basis
of S3(A,) would be {B§,---,B3,,}, called B-spline basis functions of fourth
order, and degree three.

Now, given u; € R (for i = 0,...,n) and {a = x¢ < ... < z,, = b}, we want
to obtain the usual natural cubic spline (with vanishing second derivatives at
the endpoints of the interval [a,b]) interpolating these values at these specified
knots, but using now these B-spline basis functions of S5(A,,), {Bis}z‘:o,...,n+2

instead of the usual piecewise representation on each one of the subintervals.

Thus s : [a,b] — R such that s(z;) = u;,i = 0,...,n can be expressed as

n+2

s(x) = a;iB}(x), x € [a,b], (1)
=0

where @ = (v, . . ., pt2) is the solution of the linear system Ao = B

os obtained under the following conditions

1. s(x;) =i, i=0,...,nm,
2. §"(xg) =0 =5"(x,);

where the matrix A = (%) € RO3)x(+3) and the vector B = (lb)—1> e R*t3
2 2

are composed of two submatrices and subvectors, respectively:

Ay = (B;*(2)) o<i<n € ROFDX(HY)
0<j<(n+2)
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c R2 X (n+3)

= (e

bl = (ui)ogign S Rn+17 bg = (8) R2.

2.2. Bicubic interpolating splines of class C2.

We will also extend the classical cubic univariate B-splines to bicubic B-
splines in two variables. Let R = (a,b) x (¢, d) C R? be a rectangular open set.
We start with two partitions with knot sequences A,, of [a, b] in n subintervals,
and A, of [¢,d] in m subintervals: A, = {a=2z9<z1 <...<z, =0} and
DNy ={c=yo <y1 <...<ym=d}; then, A, x A, is a grid partition of R,
and we define the bicubic spline of class C? on the partition A, x A,, as every

function S : R — R such that
i) SeC3R)

ll) S |[Ii71'i+l]x[ijyj+l]€ P3([xiaxi+1] X [yjayj+1])7 for every

i=0,...,n—1,7=0,....m—1

where P3([z;, zit1] X [Y;,Yj+1]), 1=0,...,n—1,7=0,...,m — 1, is the space
of all restrictions of polynomial functions of two variables and partial degree
less than or equal to three to the sub-rectangle [x;, z;41] X [y;, yj+1]. Given
T_3,T-2,T—1,Tnt1; Tnt2, Tnt3 € R and y_3,¥-2,Y-1,Ym+1, Ym+2, Ym+3 € R,
such that, z_3 < z_9 <z <9 < - <2y < zpt1 < Tpyo < Tpys, and
Y-3 < Y2 < y-1 <Y < < Ynm < Ymtl < Ymt2 < Yms, WE can con-
struct, as presented in the previous subsection, the corresponding cubic splines
of class C? in each one of the variables, z and y, on the partitions A, and A,
respectively.

Meanwhile, if S5(A,, x A,,) represents the set of bicubic spline functions
of degree less than or equal to three and class C? in both variables, then
dim S3(Dy, x Ap,) = (n+3) x (m+3) and if the basis of S3(A,,) and S3(A,;,) are
denoted by {Bj(x),..., B, ,(x)} and {Bj(y), ..., By, 5(y)}, respectively, then



a basis of S3(A,, x A,,) will be
i=0,...,n+2,
B3(z,y) = B3(2)B3(y), i=0....,m+2, % .
{ B = BB, 00
Now, given a function f, well defined and smooth enough (at least of class
Ch); in this section we deal with the following problem: Find another smooth
function (mainly a bivariate polynomial or spline) S : R — R to interpolate

the following N = (n+ 1) x (m + 1) points in 3D:
{(xi,yj,w) :i=0,...,n,7=0,..ml=(n+1)j+i+1}. (2)

o where we will also denote U = {w;= f(z;,y;)},_, 5y CR
In fact here, we want to obtain S € S5(4,, x A,,) such that, we can obtain

forevery i1 =0,...,n—1,j=0,....,m—1

S(ziyyj) =w, l=(Mn+1)j+i+1

Thus, we would write

(n+3)(m+3)
Sxy)= Y. oBilz.y). Y(z,y) €R, (3)
k=1
where a = (a1,...,Q(n43)(m+3)) is the solution of the linear system Aa = B

obtained under the following conditions

%9 0%8 .
125 2) a—yQ(zi,c) —0—6—y2(a:,-7d)7 1=0,..,n,

625 825 ’
3) 5oz (@) =0=5=(by;), j=0,...m,

'S 'S oS 'S

Y G2 = 3220 ) = 32292 ) = e D =0

Ay
A—2),
Ay = (Bi(d), 1=1,...,(n+1)(m+1), k=1,...,(n+3)(m+3), and

dy = (z5,95), i=0,...n, j=0,...,m, l=(n+1)j+i+1,

130 Where A = (
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where [ = 1, wn2n+ 1) 4+2(m+1)+4, k=1,...,(n+3)(m+3),and B = (%)7

br=(w), 1=1,.,(n+1)(m+1), and by = (0) € R¥ with K = (n + 3)(m +
3)— (n+1)(m+1).

2.8. Optimization paradigm for placement of knots in cubic splines interpola-

tion.

At this stage, it is important to define some ideas about multi-objective
optimization problems and describe fundamental issues for GAs in general and
NSGA-IT algorithm in particular (see [17] and the references below for more
details). So, in this subsection we also clarify this methodology of using MOGA
as an optimization strategy for the determination of the knots placement for

bicubic interpolation splines.
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It is well-known that many mathematical and realistic models can be for-
mulated as multi-objective optimization problems and that customized genetic
algorithms (GAs) have been demonstrated to be particularly effective obtaining
very satisfactory solutions to these type of problems, where usually there is not
a unique best solution. The concept of GA was introduced in the last sixties
and fully developed by Holland [18] and many others during several decades
and is fully inspired in the usual selection process of most adapted individuals
in natural evolution of species. GA operates then with a collection (called the
population) of randomly chosen individuals, with their particular chromosomes,
that can be appropriately combined (using the so called crossover operator)
and/or mutated (using the corresponding mutation operator). So the parents
must to be adequately chosen in order that their corresponding chromosomes
would be combined to produce better offsprings (taking into account the objec-
tive/cost functions considered). Also the mutation operator may introduce some
particular random little changes into these chromosomes, although the mutation
rate (probability of changing the properties of a gene) is usually quite small.
In this way, a slow process of change/evolution it is also implemented so that
unsuccessful changes are automatically eliminated by this “natural” selection
process, while good or adapted changes will prevail.

The first GAs were used mainly to optimize single cost (or mono-objective)
function problems; but soon, the necessity of solving also several or many cost
(or multi-objective) optimization ones was completely compulsory, due to the
great, diversity of real-life problems in such situation. In fact, the first multi-
objective GA was proposed by Schaffer [19] called Vector Evaluated Genetic
Algorithm (VEGA). Afterward, several important Multi-Objective Evolutionary
or Genetic Algorithms (MOGA) were developed (see for example [20], Niched
Evolutionary Algorithms [21], Random Weighted Genetic Algorithms (RWGA)
[22] and many others, that can be consulted in the website [23]. But one of the
most reliable and succesful estrategies is the application of the Goldberg’s notion
of nondominated sorting in the GA along with a niche and speciation method

to find multiple Pareto-optimal points simultaneously [24]. Also appropriate
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extensions and improvements are accomplished in the NSGA-II and NSGA-III
versions (see [25] for a performance comparison between these two versions).

The key points concerning these two new versions of the original one are:

e A fast nondominated sorting procedure where he population is sorted into
a hierarchy of sub-populations based on the ordering of Pareto dominance.
Similarity between members of each sub-group is evaluated on the Pareto
front, and the resulting groups and similarity measures are used to pro-

mote a diverse front of non-dominated solutions.

e The appropriate consideration of the elitism approach in order to enhance

the convergence properties of the algorithm.

e A parameterless niching operator, in order to maintain certain level of

multiple solutions.

More recently, a unified approach for single, multiple and many objective op-
timization algorithm have been proposed and analyzed in [26]. In this uni-
fied version of these algorithms the authors also show how it works with usual
Evolutionary Algorithms (EAs) parameters and no additional tunable ones are
needed. They also emphasize that certain MOGA procedures, as the NSGA-II,
runs very well for bi-objective problems but does not scale up to solve many-
objective optimization problems efficiently, although they can work quite well
solving mono-objective ones. On the other hand, for three and many-objective
problems, the more recent NSGA-III algorithm is preferred, but they propose
a single unified efficient procedure capable of handling one to many-objective
problems without having to reimplement or change the optimization algorithm
if we have to deal with different objective dimensions of the original problem.
In order to verify the ability of generalization of the new multi-objective
strategy for the determination of the knots placement for the proposed in-
terpolating bicubic splines, a test data set (T'DS) is used and denoted by
XTest = [(wy,y1)T, o (Tntests Yntest) - <*t], composed of the nodes and its cor-

responding output data set: TDS = [XT¢st; ZT¢st] With the data of TDS,

10
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it is possible to obtain the output data approximation using the presented in-
terpolating bicubic splines methodology. This output set is termed as ZT“t,
being ZTest = [gTest | 3Test] with ntest being the number of nodes in the set
x Test.

There are some important parameters that should be defined before running
any MOGA algorithm. The most important parameters for the evolutionary
strategy are presented in Table 1 | but usually are problem-dependent and have

to be chosen empirically.

Table 1: Parameters and functions used by MOGA in the simulations.

Parameters of the MOGA Value
Number of generations 20
Population size 40
Crossover function Binary crossover
Selection function Binary tournament
Crossover fraction 0.9
Pareto fraction 0.4
Mutation function polynomial mutation
Mutation rate 0.01
Fitnes functions E, and E,
Knots’ deletion tolerance 0.3%10 2

Different forms of fitness, or objective functions, can be used in a NSGA-II
procedure, but the main goal is to minimize some of the usual errors between
the original function and the interpolating bicubic spline constructed from each
population of random knots. We consider two approximation error estimations
that are appropriate normalizations of the discrete version of the usual norms
in C(R) and £2?(R), and are given by the expressions:

mas [f(a;) — S(a;)

=1,

max | f(a:)]

E, = (4)

11
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E= |= (5)

Z(f(az‘))Q

i=1
where f € C*(R) is a given function, S € S3(A,, x A,,) is the interpolating
bicubic spline associated with the given data set (2), and {a1,...,apn} C R is
a given scattered random point set where the errors are computed. In the case
of functions of only one variable, the expressions are totally equivalent, but the
points will be chosen inside the corresponding interval.

Also, in this case of interpolation, we need to consider some deleting or col-
liding procedure, in order to can remove some of the interpolation knots when
they come too close to each other, making instable the associated interpola-
tion procedure (because the matrix of the corresponding linear system become
almost singular). So, a certain tolerance parameter is also introduced, in this
interpolation case, in order to avoid the possible instabilities and/or bad con-
ditioning of the matrices involved in this problem. This issue could also be
avoided if we choose the interpolation points independently of the knots, but
this is not the case here, and could be the subject of a much more general pro-
cedure, where some Shoenberg-Whitney conditions would also must be taken

into consideration [27].

3. Simulation results

To study the behavior of the approximation for the presented methodology,
performed by optimization of the knots placement of bicubic spline functions by
MOGA, different experiments have been carried out. In order to perform the
interpolation, using the proposed methodology, we present the most important
parameters for the evolutionary strategy in Table 1, and the following functions
are used:

Example 1:  F:[0,7] — R

12
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Fy(z) = 0.12 4 .25 exp~ 47~ 5" cos(2z) sin(27) -

We can see clearly in Figure 1 that the evolution of the distribution of knots
is located where the function Fj(z) change the most within its domain, and
shows the results of the approximating function compared with the original one
using B-spline function interpolation. The corresponding Pareto front, taking
also into account the error in the interpolation vs. the number of knots used is
shown in Figure 2. Similar results (see Figures 4 and 3) are obtained for the

second example F5(z) below.

Example 2:  F5:[0,1] — R

Fo(z) = (2 + ¢~ 0(20-025))-1
For experiments with two independent variables, we will use some very well
known functions, as the Franke’s one in Example 3, and just a paraboloid in
Example 4. We can see their graphics in the Figures 5 and 6.
Example 3:  F3:[0,1] x [0,1] — R
Fi(z,y) := %e—((9x—2)2+<9y—2)2)/4 + Ze—((9z+1)2/49—(9y+1)/10)

+Lem (0= HOU=8))/1 _ Le=(Or=0+(0y=7)%)

Example 4:  F,:[-1,1] x [-1,1] — R
Fy(z,y) = 22492 .

In order to analyze the behavior of the bicubic spline interpolation procedure, a
TDS with a large number of knots is not necessary. In Figures 7 and 10 we can
see the evolution of interpolating knots in both cases, whereas Figures 8 and 9

show the Pareto fronts for the functions F3(x,y) and Fy(x,y), respectively.

4. Conclusions

In this paper, a novel methodology is presented for knots placement for cubic
and bicubic splines interpolation of functions of one or two variables, respec-

tively, showing the effectiveness of the strategy for different types of functions.

13
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Figure 1: We can see in the left colum the cubic interpolating splines corresponding to the

last knots’ distribution, whose evolution is also showed in the right column, with increasing

number of interior knots for the function Fi(x).
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Figure 3: Pareto front of Ej error vs. number of knots for F»(x).
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Figure 4: We can see in the left colum the cubic interpolating splines corresponding to the

last knots’ distribution, whose evolution is also showed in the right column, with increasing

number of interior knots for the function F>(x).



Figure 5: 3D graphic and iso-lines of the Franke’s function F3(z,vy).

So, the goal of using a MOGA for placement of the knots in such case of

interpolating functions can be summarized as follows:

(1) Tt has been sufficiently proven that the placement of the knots in spline
interpolation has an important and considerable effect on the behavior of
265 the final results, but the optimal placement or location of knots is not

known a priori.

(2) The number of knots to be used in classical MOGA approaches, should
be selected a priori by the designer; but using our procedure, a Pareto
front for different or variable number of knots used can also be directly

270 optimized when less knots are necessary to obtain the same level of ap-

proximation.

As can be seen, in all the examples the mean square error (MSE) with

17
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Figure 6: 3D graphic and iso-lines of the Fy(z,y) function.

the MOGA tends to be reduced when the number of knots to construct the
interpolating B-spline increase, but after the appropriate evolution of the inter-
polating knots, not too many of these points are needed to obtain acceptable,
or even good, results. In our particular case, we are seeking to minimize at the
same time only two normalized discrete versions of some approximate errors,
obtained from the usual norms in C(R) (4) and £2(R) (5), that are not opposite
convex functions of the involved variables of the MOGA; so the framework of
the NSGA-II setting is the more convenient. In fact our main goal minimizing
at the same time these discretized errors with our interpolation procedure is not

only solve this interpolation issue, but also obtain a good fitting between the

18
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Figure 7: From left to right and top to down we show the evolution of the distribution of 11

points on each axis for F5(z,y).
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Figure 8: Pareto Front of Ej error vs. number of knots for F3(x).

original and the interpolated curve or surface ir order to capture the maximum
information of it with the representation of the obtained interpolating curve or

surface.
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*Response to Reviewers

Following the suggestions of the editors and referees, we have highlight
in red color all the revised and changed parts of the article, correcting
all the little errata and explaining in more detail the concepts and
procedures that were not sufficiently clear before; making also an effort
to place the work with regards to the related literature.

Concerning the comments of the Reviewer 1:

- We have explained with much more detail how MOGA works in general and
what it does for this particular problem.

- We do not have explicit comparison time and errors with other methods
in the literature, because they do not solve the same problem of
interpolation, just the approximation case, and only in one variable. We
focus our procedure in two variables as well, and only present the one
variable case for sake of completeness.

Concerning the comments of the Reviewer 2:

- We have corrected all the little erratas encountered

- Higlight the originality and differences between our procedure and the
rest of methods in the literature

- Explained in more detail and more clearly the AIS and the NSGA
procedures, - Answered in the text, other little questions and comments
made for this reviewer.



