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a b s t r a c t 

Buildings are an essential part of our social life. People spend a substantial fraction of their time and 

spend a high amount of energy in them. There is a grand variety of systems and services related to 

buildings, in order to better control and monitoring. The prompt taking of decisions may prevent costs 

and contamination. This paper proposes a method for energy consumption forecasting in public buildings, 

and thus, achieve energy savings, in order to improve the energy efficiency, without affecting the com- 

fort and wellness. The prediction of the energy consumption is indispensable for the intelligent systems 

operations and planning. We propose an Elman neural network for forecasting such consumption and we 

use a genetic algorithm to optimize the weight of the models. This paper concludes that the proposed 

method optimizes the energy consumption forecasting and improves results attained in previous studies. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Energy efficiency is an area of increasing importance because of

the rising cost of energy and growing environmental concerns. The

building sector consumes one-third of the global consumption and

records close to 40% of global CO 2 emissions ( International Energy

Agency, 2013 ). The operations of building systems produce approx-

imately 90% of these pollutant gases, in order to maintain a cer-

tain comfort level, closely associated with the heating, cooling and

lighting systems. The worries over energy consumption and related

noise, light pollution and safety problems have motivated the sus-

tainable building facilities by means of construction practices and

context-sensitive design ( Olubunmi et al., 2016 ). 

Due to the increased awareness of environmental issues and en-

ergy security, building regulations and polices related to new and

refurbished building have been established in many countries: USA

with the LEED —Leadership in Energy and Environmental Design—

and BREEAM —Building Research Establishment Environmental As-

sessment Methodology— and Europe with the Energy Performance

of Buildings Directive ( Lord et al., 2016 ). Architects, planners and
Abbreviations: ANN, Artificial Neural Network; ARIMA, Auto-Regressive Inte- 

grated Moving Average; ENN, Elman Neural Network; GA, Genetic Algorithm; LM, 

Levenberg–Marquadt; MA, Memetic Algorithm; MLP, Multilayer Perceptron Model; 

MSE, Mean Squared Error; NAR, Nonlinear Autoregressive Model; NARX, Nonlinear 

Autoregressive Model with Exogenous Inputs; NN, Neural Network; SVR, Support 

Vector Regression; UGR, University of Granada. 
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ngineers are increasingly requiring that consider energy codes for

inimizing environmental impact and resource consumption. 

The most significant decisions linked to sustainable design are

sually made in the early design stages, determining its environ-

ental impact and its energy costs ( Basbagill et al., 2013 ). Com-

only, energy analysis is habitually performed after the architec-

ural design and related documents have been produced. This prac-

ice into the design process leads to an inefficient way of retroac-

ively modifying the design afterwards to achieve a set of perfor-

ance criteria ( Jalaei & Jrade, 2014 ). Energy efficiency is a decisive

uality in order to reach environmentally friendly buildings, and

hat’s more, is an effective strategy for reducing energy consump-

ion and related gas emissions, with the consequent economic sav-

ngs this can represent. 

In more recent years, the new sensing technologies are contin-

ally being developed and integrated in the most diverse environ-

ents ( Ekwevugbe et al., 2013 ). These provide useful and descrip-

ive information of the building if we know how to take advan-

age of the powerful data. Nevertheless, there is a marked diversity

n the data flows, owing to its irregular and varied source, com-

ng from heating, ventilation, air-conditioning and lighting systems

btaining information such as internal and external temperature,

ound level, carbon-dioxide, energy consumed, intensity, maximum

emand, lighting state, wind speed, wind direction, pressure, pre-

ipitation ( Khosravani et al., 2016; Ruiz et al., 2016 ) or even oc-

upancy ( Balaji et al., 2013 ); making its treatment difficult. The

onitoring systems offers a possibility of collecting and storing a

ast quantity of data. Processing all this information is not a triv-

al undertaking, this task frequently requires the combination of

https://doi.org/10.1016/j.eswa.2017.09.059
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
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i  
ifferent datasets that might be not related a priori. The crucial

eed for analysing big amount of data has revolutionized the Ma-

hine Learning, Data Mining and Statistics using prediction, classi-

cation, regression, clustering and dimensionality reduction tech-

iques ( Balón-Canedo et al., 2017 ); many tools have been de-

eloped in genomics —enabling inexpensive and high-throughput

easurement of the genome—, neuroscience —important diseases

ave been shown to be related to bran connectivity networks—,

conomics and finance —implementing specialized data analytics

rograms to identify key business insights that can be exploited

o support better decision making—, social network —data analy-

is of data produced by Twitter, Facebook, LinkedIn and YouTube

sing these data to predict influenza epidemic or stock market

rend— ( Fan et al., 2014 ). By extension, to make an efficient use

f energy, in view of achieving remarkable reductions in con-

umption and significant economic saving, becomes an important

nd challenging issue. Lately, specific applications for building effi-

ient energy have been investigated, as is the case of the energy

orecasting ( Andrade & Bessa, 2017 ) and consumption patterns

 Chou & Ngo, 2016 ). 

Forecasting models for energy consumption furnish intelligence

ith in a building for improving energy use, cost saving and reduc-

ng environmental impact without the need to compromise on per-

ormance and comfort. Predictive management of a building sys-

em can reduce peak power demands which translates into energy

avings ( Dhillon et al., 2016 ). 

An energy prediction model represents an essential role in

mart buildings. It has been proven that a small increase in fore-

asting accuracy would save millions of dollars in operation costs

 Bunn & Farmer, 1985 ). The time series prediction is habitually

andled as a hard paradigm because there may be diverse influ-

ncing factors, like weather conditions, social and economic con-

itions. There is an abundant research literature focused on time

eries prediction, the most popular methods are collected by Palli’s

ook ( Pallit & Popovic, 2005 ), some examples are Regressive Mod-

ls, Artificial Neural Network —ANN—, Trees, Fuzzy methods and

upport Vector Regression. 

Kaur and Sachin ( Kaur & Ahuja, 2017 ) predict the electric-

ty consumption using autoregressive moving average model —

RIMA—. Ma and Liu use the grey system —system with par-

ial information known, it has two part: system with completely

nown information and system with completely unknown infor-

ation ( Julong, 1989 )— theory to forecast the natural gas con-

umption of China ( Ma & Liu, 2017 ). Simple and multiple linear

egression is applied by Fumo and Rafe Bismas to predict energy

onsumption in family houses ( Fumo & Rafe Biswas, 2015 ). Davlea

nd Teodorescu present a neuro fuzzy model to develop a middle-

erm load forecaster ( Davlea & Teodorescu, 2016 ). Dhillon et al. em-

loy Support Vector Regression —SVR— for short term load fore-

asting ( Dhillon et al., 2016 ). The ANN is the mostly used machine

earning method and present great results, such as the Adaptive

etwork Based Inference System model to forecast building energy

onsumption in a cold region of Ekici ( Bektas Ekici & Aksoy, 2011 ),

odger’s study which uses the fuzzy logic coupled with regres-

ion, nearest neighbour and artificial neural network to create a

redictive model to make predicting demand for natural gas and

nergy cost savings in public buildings ( Rodger, 2014 ) and many

ther works ( Benedetti et al., 2016; Egrioglu et al., 2016; Kanara-

hos et al., 2017; Pino-Mejías et al., 2017; Rodrigues et al., 2017 ). 

However, the main disadvantage of ANN is its slow convergence

nd easy local minimum stagnation. This leads to the idea of us-

ng a technique to avoid these problems, and those are the Ge-

etic Algorithm —GA— which is a global search and an optimiza-

ion method. GA is widely used for optimizing models in time se-

ies forecasting for building energy consumption ( Bhandari & Gill,

016; Zhang, Deb, Lee, Yang, & Shah, 2016 ). 
This paper is a straight continuation of a previous work

 Ruiz et al., 2016 ), and it proposes a method for predicting energy

onsumption by using ANN and the GA to improve the accuracy

f these models. The main objective of this paper is to provide

 methodology to analyse historical energy consumption, and per-

orm the daily prediction with such models. Furthermore, a com-

arison is made between ANNs and identifies if the energy con-

umption forecasting can improve with external information or it

epends entirely on historical consumption. This research has used

ata of the faculties, centres and schoolrooms of the University of

ranada —UGR—. The energy management systems are relatively

ew in UGR, they have been implemented and introduced in the

ost recent years. However, sufficient data are available to carry

ut this work and analyse building’s behaviours. 

This paper deals with energy efficiency in public and dis-

ributed buildings analysing a new proposed model of ANN with

revious forecasting methods for energy consumption applied. 

The present paper is divided as follows: Section 2 presents the

uggested methodology, the employed artificial neural networks

nd the description of the genetic algorithms. Section 3 describes

he proposed system containing the data processing and noise

reatment. Section 4 introduces experiments performed, the de-

cription of the real data used, parameters, results and discussion

chieved. The paper ends with some practical implications and

oncluding comments. 

. Proposed system 

The bulk of energy time-series modelling is represented in

ig. 1 where input is provided by building automation systems

hich stores all raw information in a database, and the output is

orecasted consumption. The details of each component are out-

ined below. 

A. Building automation system 

Software characterized by a number of digital controllers, pro-

ides an asynchronous communication architecture for interact-

ng with distributed building automation devices. It collects and

resents building data, so that it can be interpreted. 

B. Historical energy consumption database 

The resources database is in charge of the information of the

egistered energy use. Besides, the database includes other extra

nowledge from varying distributed sensors, such as power de-

and and temperature monitored. This constitutes a means for

tudying relations between energy and temperature, if exists. 

C. Data treatment 

Initially, database saves raw data which normally contains

oise, incomplete, unreliable and missing data. It is important at

his stage to transform the data to convert them to a suitable

orm. In this paper the time granularity energy consumption used

s daily according previous works ( Ruiz et al., 2016 ). 

Tangible and solid sensors are the link between the real world

nd digital world. And these devices sometimes present failures

ue to broken device, transmission errors or any other issues

aused by the impairment. To solve this question two method have

een applied: a) Energy time series consumption is filtered with a

oving average filter and a sliding windows technique to elimi-

ate breaks or other irregular patterns in the data ( Smith, 1997 ),

ccording to the next Eq. (1) , b) Linear interpolation based on the

mmediate neighbours values at grid points to fill missing values. 

 ( n ) = 

1 

windowsSize 
·
(

x ( n ) 

+ x ( n − 1 ) + . . . + x ( n − ( windosSize − 1 ) ) 

)
(1) 

Finally, the data are normalized between [0, 1] to standard-

ze variables into same range using Eq. (2) . And guaranteeing that
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Fig. 1. Proposed system flowchart. 
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there are no attributes which are more important than others, and

also eases a stable convergence of network weights and biases. 

y normalized = 

y − y min 

y max − y min 

(2)

D. Train and test 

The dataset is split into two sets, the training set is 70% and the

testing set is the remaining 30%. Both are selected randomly from

the total energy consumption available. 

E. Model and optimization 

To predict the energy consumption at a determined time, we

use three kind of ANN: NAR, NARX and ENN. These models are

trained using LM algorithm and hyperbolic tangent sigmoid trans-

fer function for the hidden layers ( Vogl et al., 1988 ). The learning

stage is an iterative process. At this point, GA is performed to op-

timize ANN, these were all depicted in Section 3.3 (Genetic Algo-

rithm). All parameters are explained in the experiments section. 

F. Validation and model 

The results are validated through comparison test data forecast-

ing with the 30% of the data isolated before training. If the model’s

response is similar to test data, then it is assumed that the learn-

ing has been successful. 

3. Methodology 

The proposed methodology which follows has been developed

in four stages. The first stage is data capture and preparation. Once

the data have been compiled, the second stage is the ANN fore-

casting model. The next stage is genetic optimizing. And the final

phase involves the analysis review and the use of the optimized

ENN, achieving this through experimentation which appears in the

next section. 

The present study derives from previous researches done

( Ruiz et al., 2016 ) utilizing two well-known models for energy

consumption forecasting: the non-linear autoregressive neural net-

works —NAR— for modelling the data process of one dimensional

time series using past values ( Ferlito et al., 2015 ); and the non-

linear autoregressive neural network with exogenous inputs —

NARX including another external series which might provide rele-

vant information ( Cadenas et al., 2016 ). This paper proposed Elman

Neural Network —ENN— and using genetic optimization to enhance

preceding results. There are numerous studies in literature for solv-

ing time series prediction with neural networks ( Benedetti et al.,

2016; Bhandari & Gill, 2016; Egrioglu et al., 2016; Pino-Mejías et al.,

2017 ). 

These models can be listed in order of complexity as: 1) NAR. 2)

NARX. 3) ENN. The latter two networks offer the possibility of in-

corporating extra information to enhance the forecasting accuracy.

In the real world, not all buildings are able to stock large quanti-

ties of data or register, sometimes only the energy meter is sav-

ing. On other occasions, management systems handle more infor-

mation such as temperature. The suggested models are appropriate

for both strategies, and the aim of this work is to determine which

model is the better choice for this problem. 
Subsequent sections describe employed models and analyses its

ros and cons to solve the problem of energy consumption fore-

asting. 

.1. NAR and NARX neural network 

Time series are a sequence of data, observations or numeri-

al values usually recorded at uniform time intervals ( Brockwell &

avis, 2013 ). Typically measured every second, minute, hour, day,

eek or even each year; although another time interval is valid:

very 30 seconds, 12 hours, etc. A time series associated to the

ariable Z over the time set T is denoted by: 

 = { Z t : t ∈ T } (3)

here Z t is the value of Z at time t . For example, the energy con-

umption of a building defines a time series, indicating in each in-

tant t the consumption spent by the building. 

In many instances, the data depend not only on the total

mount spent but also on other possible influence factors. In or-

er to tackle this issue, the NAR and NARX neural networks have

roved to be a very helpful tool in time series environments

 Cadenas et al., 2016; Wang et al., 2016 ). These models are a kind

ecurrent system which are able to learn by itself, improving the

pproximation of the ANN by reducing the output error. NAR uses

ast values for the actual time series to predict next values as de-

ermined by the following equation ( Ibrahim et al., 2016 ): 

 ( t ) = h ( y ( t − 1 ) , y ( t − 2 ) , . . . , y ( t − p ) ) + ε( t ) (4)

here h is a nonlinear function which depends on p past values

f the output y as shown in Fig. 2 excluding the exogenous input

 —in grey colour— and ε represents random error sequence and

ndependent distributed ( Wang et al., 2016 ). In much the same way

s NAR, NARX equation is defined as: 

 ( t ) = h 

(
x ( t − 1 ) , x ( t − 2 ) , . . . , x ( t − p x ) , y ( t − 1 ) , 

y ( t − 2 ) , . . . , y ( t − p y ) 

)
+ ε( t ) (5)

hich includes external input x of the neural network. It is zero in

ase of NAR model. 

The basic structure of recurrent neural networks is presented in

ig. 2 . There is an input layer with two time series. A hidden layer

ith p delays. And an output layer with an activation function. The

evenberg-Marquardt —LM— ( Ampazis & Perantonis, 20 0 0 ) method

s used for optimizing the learning rate based on this gradient,

hich combines the local convergence properties of Gauss-Newton

ethod near a minimum with the consistent error decrease pro-

ided by gradient descendent far away from a solution; this error

s a mean squared error based on a learning sample. The LM pro-

edure computes the Jacobian matrix of the error function which

akes great use of memory. Nevertheless this computational cost

s well worth because it increase the rate of convergence of the

lgorithm ( Hagan & Menhaj, 1994 ). 
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Fig. 2. Representation of the structure of non-linear autoregressive neural network —NAR (without grey part)— with exogenous input —NARX (with the grey part)—. 
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The NAR is used with one input —energy consumption at the

revious time { y ( t − 1), …, y ( t − p )}— and one output —the pre-

icted value y ( t )—. Similarly, NARX network models the same en-

rgy consumption { y ( t − 1), …, y ( t − p )} with the external input

temperature— given the p past values. The parameters of the

eurons and delays are set in accordance with the best results

chieved in antecedent studies ( Ruiz et al., 2016 ). In the next sec-

ions, all these parameters are specified. 

V ij represents the weight between exogenous input i and the

idden neuron j, W i is the weight between hidden neuron i and

he output neuron and U ij is the weight for the connection be-

ween input i and the hidden neuron j. p x and p y are the past

alues introduced of the exogenous and input series respectively.

 is the number of neurons in the hidden layer. 

.2. Elman neural network 

Due to the present problem involves working in historical data,

emory is an essential feature to process temporal information.

he Elman Neural Network —ENN— ( Elman, 1990 ) introduces this

oncept of memory . Often, the past contains rich information and

his is why it is stored in memory neurons. In ENN positive feed-

ack is used to build this memory structure, and it is illustrated

n Fig. 3 . These specialized units are called context units or state

nits store preceding outputs of hidden layer by using a positive

eedback mechanism. For each unit in the hidden layer an extra

ontext unit is fully connected with all the hidden neurons in a

orward mode. State neurons are only connected to internal nodes

f the network, and not with the outside world. 

The following equations defines the ENN with n inputs, h hid-

en neurons, and o outputs: 

 j ( t ) = f 

( 

h ∑ 

r=1 

h ∑ 

j=1 

U jr S r ( t − 1 ) + 

n ∑ 

i =1 

h ∑ 

j=1 

V ji X i ( t ) 

) 

(6) 

 k ( t ) = g 

( 

h ∑ 

j=1 

o ∑ 

k =1 

W k j S j ( t ) 

) 

(7) 
ere, S j ( t ) is the output of hidden neuron j ∈ [1, h ], X i ( t ) is the

nput data to neuron i ∈ [1, n ], O k ( t ) is the output k ∈ [1, o ] at time

. U , V , W are matrix with the network’s weights. Thus, V ji is the

eight for the connection between input neuron i and the hidden

euron j. U jr is the weight between the recurrent connection r and

he hidden neuron j . And W kj is the weight between hidden neuron

 and output neuron k. f and g are activation functions. 

x i is the input i , and the previous state in time t − 1 of the hid-

en neuron j is represented by q j ( t −λ) where λ ≥ 1 is the number

f previous hidden states stored. 

The main dissimilarity between ENN and NAR(X) models is the

ecurrent link that appears from hidden layer to Context or State

nits . In ENN, the Context Units store hidden neuron values at pre-

ious time step. However, there is another architecture whose state

tores output neuron values at different past time: this is the Jor-

an networks ( Jordan, 1997 ). The use of ENN in this study is sup-

orted by multiple works ( Bao et al., 2016; Cuéllar et al., 2005;

uéllar et al., 2007; Delgado et al., 2006a; Delgado et al., 2006b;

in et al., 2016 ) adhering excellent results. 

.3. Genetic algorithm 

Genetic Algorithms —GA— have shown outstanding degrees of

uccess in task related to neural network training ( Cuéllar et al.,

005; Cuéllar et al., 2007; Delgado et al., 20 06a a, 20 06b ). And for

his reason, GA are used in this study in order to improve the accu-

acy of ANN prediction, because an improvement of a few percent-

ges in the forecasting accuracy would bring benefits worth large

mounts of money ( Sadat Hosseini & Gandomi, 2012 ). 

In essence, GAs simulate the mechanics of biological evolution.

ollowing the philosophy of the famous naturalist Charles Darwin,

he GA is based on natural selection or best adapted survival. In

ature, individuals must adapt to their environment through a pro-

ess name evolution. This evolving keeps positive aspects of an

ndividual over time, and features that undermine the chromo-

ome was ruled out. The genetic algorithm is a highly parallel math-

matical algorithm that transforms a set —population —of individual

athematical objects, each with an associated fitness value, into a

ew population —i.e., the next generation— using operations pat-
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Fig. 3. Architecture of the Elman Neural Network. 

Fig. 4. General Flowchart of the memetic algorithm —MA— based on binary-coded CHC schema. 
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terned after the Darwinian principle of reproduction and survival of

the fittest and after naturally occurring genetic operations —notably

sexual recombination—. ( Koza, 1992 ) 

This study suggests the adaptation of the binary CHC —Cross

generational elitist selection, Heterogeneous recombination, and

Cataclysmic mutation— algorithm for a real-coded problem ( Blanco

et al., 2001; Cordón et al., 2006 ). The flowchar of the GA is shown

in Fig. 4 . 

This algorithm strikes a balance between diversity and conver-

gence thanks to an elitist selection of individuals, invest prevention

and initialization procedure of the population ( Eshelman, 1991 ).

For a better understanding of the algorithm components, before,

there is a need to describe in detail who is an individual in this

population, and then define fitness function, selection operation

and local search. The hybridization of genetic algorithm and local

search leads to a new kind of evolutionary algorithm commonly

known as memetic algorithm. 

An individual represents the structure of a NN. It would be

made up of all weight which compose the network. Following the

structure presented in Fig. 4 , an ENN with one input, one output

and two hidden neurons storing its previous state t − 1, Fig. 5 illus-

trates an example of NN encoding. 

The algorithm starts creating a first set of individuals in a to-

tally random way. Afterward, it performs a local search to improve

individual characteristics based on LM method. Thereupon, all in-

dividual in the population are evaluated by the fitness function, as-
(

igning everyone a Mean Square Error —MSE— according the net-

ork’s goodness of fit. If ˆ y is a vector of m predictions, and y is

he vector of observed values corresponding to the inputs, then the

SE can be estimated by Eq. (8) : 

SE = 

1 

m 

m ∑ 

i =1 

( ̂  y i − y i ) 
2 

(8)

If the stopping criteria is false, individuals who are going to

ross are selected, usually known as parents. The incest prevention

nables CHC to delay premature convergence: distance between

he original parents must be exceed a certain limit, this limit is

alled as incest threshold. The Hamming distance is used in the

riginal CHC. In this case, it makes no sense for real-coded prob-

ems, because weights of the NN are real values. Euclidean distance

as been adopted instead, due to its widespread use and remark-

ble resolution ( Han et al., 2015 ). 

When the crossover operator was able to build a new popula-

ion, then a new local search is performed for these fresh individ-

als. The recombination of the ANN weights is illustrated in Fig. 6 .

nd the process repeats itself. 

Otherwise, incest threshold is decreased, in favour of further

rossing. At that time, parents are selected once again. A re-

nitialization is performed when the incest limit reaches zero,

ecause the algorithm has fallen into local minimum. To gain

n understanding of CHC algorithm, see the Eshelman’s work

 Eshelman, 1991 ). 



L.G.B. Ruiz et al. / Expert Systems With Applications 92 (2018) 380–389 385 

Fig. 5. Encoding Elman Neural Network architecture for the Genetic Algorithm with one input, two hidden neurons, one output and one delay in the memory state. 

Fig. 6. Example of the crossover procedure for two networks with different sizes. 
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Fig. 7. Example of normalized consumption and temperature recorded during one 

year. 
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The crossover procedure combines two parents and creates two

hildren. If both parents contain that gene, the genetic recombi-

ation of this gene is carried out based on BLX- α operator, which

ombines two parents p 1 and p 2 to generate offspring s by sam-

ling a new value in the range [ min i − I • α, max i + I • α] at each

ene i . Where min i and max i are smaller and larger parent val-

es at position i. I is max i − min i . And α value has been set to 0,2

 Picek et al., 2013 ). The remaining connections of the largest son

re directly inherited from the biggest parent. 

. Experiments 

.1. Dataset 

This work uses collected data from energy consumption of sev-

ral University of Granada’s building (UGR, Granada, Andalucía,

pain), such as classrooms, lecture rooms, laboratories and re-

earch centres. UGR owns a smart management system in its dis-

ributed facilities. It collects and monitored information of the

uilding in real time from diverse sensors, for the purpose of being

nalysed and better understanding buildings behaviours. 

Because of management systems implementation is relatively

ew, not all building dispose the same sensors. Therefore, not all

uildings record the same information. Most of them collect en-

rgy consumption and climatic data. The UGR is made up of five

ampuses: Centro, Cartuja, Fuentenueva, Aynadamar and Ciencias de

a Salud . These campuses are spread around different places of the

ity. Autonomous cities of Melilla and Ceuta also contain UGR’s

entres, placed in separate campus. As a whole, the UGR is assem-

led of 22 faculties, 5 schools, 8 training centres and 5 culture,
port and service centres. Due to Data Protection Act this study

annot reveal details over the facilities, and hence, buildings con-

umptions are labelled with a number. Eight edifices have been

hosen, two representative building from the campuses. 

Fig. 7 presents the temperature and consumption pattern dur-

ng 1 year. Both series have been normalized because they have

istinct units. Energy consumption is recorded in kW, and temper-

ture is in degrees Celsius. This picture gives evidence of a pecu-

iar behaviours, for example, highest consumption is performed at

owest temperatures, securely caused by air conditioners and heat-

ng. For this reason, it is interesting to include temperature in our

redictive models. But on the other hand, incorporating too many

ariables, makes the model much more complicated and inserts

ncertainty into the system because it would depend on known

ariables. The temperature is a sustainable dependence thanks to

ts smooth and regular behaviour. 
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Fig. 8. Two examples of Mean Square Error of each individual of a population once GA have finished. 
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We study models without temperature too, in order to have a

possible alternative and how good it was compared to previous

predictors and the new proposed. 

4.2. Parameters 

This section summarizes the parameters used for each model,

and may safely be skipped by readers who are easily bored. 

The number of neurons for NAR and NARX models have

been gathered from the best results obtained in preceding study

( Ruiz et al., 2016 ). In summary: 14 neurons for the buildings 1 and

4; 12 neurons for the buildings 2, 3 and 7; 9 neurons for build-

ings 5, 6 and 8. These parameters have been taken to allow the

comparison between outcomes with the same structure. 

In the ENN case, it is not necessary establish the same number

of neurons as NAR(X) because it does not follow the same archi-

tecture as NAR and NARX networks. The best number of neurons

and delay have been set by testing experimentally different sizes

and using cross-validation: 10 hidden neurons have been set and

it has a memory of 5 past values. 

The training function used in all cases is the LM backpropaga-

tion optimization. Minimum gradient is 10 − 7 , the training gain, μ,

is a parameter which measures the adapting and learning rate of

the model, its range is [10 − 3 , 10 10 ] and the μ decrease and in-

crease ratio are 0.1 and 10 respectively. The nets stop training at

many different epochs and use validation sets to select the best

model. There is an important aspect which should be considered

with the ANN: a low number of hidden neurons was used to avoid

overfitting to obtain a model as simple as possible, but too few

neurons may lead to a negligent and ineffective learning. Further-

more, cross validation is performed in order to deal with this issue.

The population size has been set to 25 individuals. The error

of each individual is illustrated in Fig. 8 , it shows the correspond-

ing error curves for two executions, and in both cases the differ-

ence between the best and the worst individual is more than dou-

ble. Therefore, to increase the population size makes the GA works

with worse models and to decelerate the optimization process. The

interval value for a gene is [ −10, 10], stop criteria is set in 100

generations, crossover and mutation probability are 90% and 10%,

respectively. 

4.3. Results and discussion 

The proposed method was programmed in Matlab software run

on Intel® Core TM i7-6700 CPU @ 3.40 GHz. In order to confirm the

robustness of the achieved results, for each experimental the sim-

ulation was run 5 times. Table 1 gathers the outcomes achieved by

using GA and previous ones. The first column lists the buildings

by id, remember that each building has been selected as speci-

fied in Section 4.1 Dataset. Second column relates to the MSE ob-

tained with NAR models optimized by GA + LM. The next column

illustrates the errors of NARX models —with temperature— and im-

proved by GA + LM. In the last two columns, the table indicate the
esults of the new suggested networks, without and with temper-

ture respectively. 

In all buildings, previous results are worse than new ones. In-

eed, in each of these cases, they are well above the worst of

he proposed model, ENN. This table illustrates the excellent per-

ormance of the GA + LM. This provides an optimization for both

odels, non-autoregressive and Elman. Thus, after considering the

esults, it may be concluded that the adapted CHC algorithm is a

ood method for neural network optimization. 

Besides, in order to facilitate comprehension and clarity, Fig. 9 ,

llustrates a comparison between all models. The graphic views

rovide a quick overview of the improvements. The proposed

ethod achieves a significant enhancement whichever model. In

ll but one case, the models are ranked as follows: 1) the ENN with

emperature, 2) ENN without temperature, 3) NAR network and

) NARX network with temperature. On the one hand, consider-

ng NAR and NARX networks only, the results are satisfactory, opti-

ized networks are much better than previous one. These models

orrespond to an average of 35% improvement, with a 16% in the

orst case and a 52% in the best case, acquired with NAR model

nd building 6. On the other and, the new proposed network, ENN,

s able to obtain an even better fit. With an average of 61% im-

rovement, 51% in the worst case and up to 82% in the best one.

he propounded method with ENN provides much better results

or all probe sets and considerably higher average score, compared

o all other models. 

Fig. 10 depicts an example of the forecasted consumption with

ll model used. The blue series is the original data normalized,

o it is the desired value which models should be adjusted. The

rey sequence is the response of the best models reached in previ-

us work. Yellow and orange series concern to optimized NAR and

ARX respectively thanks to GA + LM. And the green crosses are

he Elman forecasting. This figure does not show two different se-

ies with and without temperature ENN because the variations are

mperceptible and would make it difficult for the graph display. As

hown in that picture all forecasted models follows the trend of

he data quite well. However, the most faithful of the real data

s Elman series which accurately predicts future values. And the

orst is the non-optimized model with GA + LM of the preceding

tudy where there are a few values which are more separated from

he original data, for example in the days 25, 35, 60 and 77. The

AR and NARX models offer similar behaviour. Indeed, Fig. 9 de-

ails how optimized NAR models achieve better MSE than NARX

ith temperature. This is not the case of ENN where the predictor

sing temperature enhance a bit closer. 

. Conclusion 

In this paper, we have introduced a new methodology to energy

onsumption forecasting and achieve optimum models. The GA has

roven to be a useful and a key factor for optimizing ANN, and it

elps to significantly enhance in NAR and NARX models too, used

n previous works. Besides, the ENN have been very effective and
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Table 1 

Results of 8 buildings including results of previous works and the present method. Best results in bold. 

Building Previous results NAR NARX temperature Elman Elman temperature 

1 0.018200 0.012060 0.011442 0.007585 0.005288 

2 0.014200 0.007681 0.008305 0.005203 0.004698 

3 0.0130 0 0 0.009608 0.010558 0.005706 0.005439 

4 0.0170 0 0 0.009736 0.010079 0.006966 0.006604 

5 0.0 0670 0 0.005173 0.005598 0.003266 0.002627 

6 0.0 0620 0 0.002953 0.003324 0.001376 0.001059 

7 0.013500 0.007535 0.007998 0.006258 0.005660 

8 0.0 0930 0 0.006830 0.007162 0.004320 0.003929 

Fig. 9. Comparative evaluation between preceding outcomes and new optimized models by using MA. 

Fig. 10. Forecasted and original values for energy time series consumption for 100 days. The first 50 days in the above graphic and the 50 last days in the chart below. 
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t has demonstrated to be the best network in all test performed,

btaining an average improvement of 61%. 

The main advantage in using NAR and NARX networks is their

implicity. However, this advantage limits its accuracy. Likewise,

he major problem of the ENN lies in its complexity, because in-

reasing components of a neural network —that is to say: includ-

ng memory layer— implies increasing the number of connections,

nd the results is a much more complex model. This problem is

nown as the «curse of dimensionality», a kwell-know problem in

tatistical learning, this expression is used in phenomena that ap-

ear with high-dimensional data, and that have most often unfor-

unate consequences on the behaviour and performances of learn-

ng algorithms ( Korn et al., 2001 ). In this respect, it is better to
eek a compromise between predictor model complexity and an

cceptable level of error in the results. Although, a complex model

aybe is not an important variable to consider if it can save a lot

f money. 

In our approach, we assume that each building has a device in-

egrated to capture energy consumption and store it. Sometimes,

xternal data, such as temperature, is not available, because it

epends on the sensors implemented and the building’s budget.

hus, this study works this two approaches which lend support

o both cases, achieving a good degree of MSE: 0.005085 and

.004413 for models without temperature and including temper-

ture respectively. Given the importance of relationship between

urrent and past data, further studies will focus upon developing a
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system to find time relations in the building consumption by using

clustering methods. 
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