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Abstract In this paper we propose a variational method in order to solve
Bratu Problem for two dimension in an adequate space of biquadratic spline
functions. The solution is obtained by resolving a sequence of boundary value
problems. We study some characterizations of the functions of such sequence
and we express them as some linear combination of biquadratic spline bases
functions. We finish by showing some numerical and graphical examples in
order to prove the validity and the effectiveness of our method.
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1 Introduction

The non-linear boundary problems occur in engineering and science, including
of diffusion processes of the chemical reactions and heat transfers. Particu-
larly, Bratu Problem appears in a large variety of applications areas such
as the fuel ignition model of thermal combustion, radiative heat transfer, the
Chandrasekhar model of the expansion of the universe, chemical reactor theory
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and nanotechnology [17], [20], [10] and [11]. It stimulates a thermal reaction
process in a rigid material where the process depends on the balance between
chemically generated heat and heat transfer by conduction [2]. An interested
application of nonlinear Bratus equation in two and three dimensions to elec-
trostatics are studied and solved in [8]. In [10] a summary of the history such
kind of problem is given.

The two-dimensional Bratu Problem is an elliptic partial differential equa-
tion with homogeneous Dirichlet boundary conditions. This problem is given
by {

∆u+ λeu = 0, in Ω = (0, 1)× (0, 1),
u = 0 on ∂Ω,

(1)

where λ > 0 and Ω is a bounded domain with boundary ∂Ω. The problem is
a nonlinear eigenvalue problem that is commonly used as a test problem for
many numerical methods.

In the planar 1D case the problem is reduced to the expression{
uxx + λeu = 0 0 < x < 1,
u(0) = u(1) = 0.

(2)

The exact solution of (2) is given in [3] and [7] as

u(x) = −2 ln

(
cosh((x− 1

2 ) θ2 )

cosh θ
4

)
, (3)

where θ solves

θ =
√

2λ cosh

(
θ

4

)
. (4)

Let λc = 8(α2 − 1), where α is the fixed point of the hyperbolic cotangent
function (λc ' 3.513830719). Then, for 0 < λ < λc the equation (4) has two
solutions, for λ = λc it has only unique solution and for λ > λc there are no
solutions.

Many analytical and numerical methods have been applied to solve Prob-
lem (1) and (2).

For problem (2), the authors in [5] propose a B-spline method for solving
the one-dimensional Bratu’s problem. They computed the numerical approxi-
mations to the exact solution and then compared with other existing methods.
They verified the B-spline method for different values of the parameter, below
its critical value, where two solutions occur.

For Problem (2) some variational iteration methods are applied to obtain
approximate analytical solution without any discretization [4,6]. In [1] the
authors transform this problem into a non-linear initial value problem and then
they solve it by the Lie-group shooting method. In [21] the author present a
framework to determine exact solutions of (2) by the Adomian decomposition
method.
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A Laplace transform decomposition numerical algorithm is introduced in
[12] and a numerical algorithm based on the decomposition technique is pre-
sented in [7] for solving a class on non-linear boundary values problem, includ-
ing Troesch and Bratu one-dimensional problems.

In other hand, in [9] the authors use the Reproducing Kernel Hilbert space
method for solving Problem (2) and the obtained numerical approximations to
the exact solution are computed and compared with other existing methods.

Recently, the authors in [18] have applied a numerical scheme based on
differential quadrature methods to solve nonlinear Bratu problem. The un-
known field quantity and their derivatives are approximated using differential
quadrature approximations.

In the 2D case the solution of problem (1) is not known. Thus an approx-
imation method of a solution is necessary.

For example, in [19] the authors present a method of construction of a near
exact solution based in the expression of the solution of the 1D case.

A function of the form

u(x, y) = 2 ln

 cosh

(
θ

4

)
cosh

((
x− 1

2

)(
y − 1

2

)
θ

)
cosh

((
x− 1

2

)
θ

2

)
cosh

((
y − 1

2

)
θ

2

)
 , ∀(x, y) ∈ Ω. (5)

where θ is a constant to be determined, is carefully chosen and assumed to be
the solution of Problem (1). Substituting (5) in (1), simplifying and collocating
at the point x = 1

2 and y = 1
2 we have

θ2 = λ cosh

(
θ

4

)2

. (6)

Obtaining
dλ

dθ
from equation (6) and equating to zero the critical value λc

satisfies

θ =
λc
4

sinh(
θ

4
) cosh(

θ

4
). (7)

By eliminating λ from equations (6) and (7) we have the value of θc for
the critical λc satisfying

θc
4

= coth(
θc
4

) (8)

and θc = ±4.798714561. From equation (7) λc = 7.027661438. For λ > λc the
equation (6) has not solution, for λ = λc has a unique solution and for λ < λc
has two solutions θ1 < θ2, which determine two functions u1(x, y) and u2(x, y),
given by (5), which are called the lower branch solution and the upper branch
solution near exact solution.

Different techniques for the construction of a surface have been developed
in recent years, for example, interpolation by spline functions, based on the
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minimization of a certain functional in an adequate Sobolev space [13–15]. Such
a functional may represent a energy measure, or geometric considerations of a
surface as a air measure or a curvature or curvature variation measure or this
surface [13]. These techniques have many applications in CAD, CAGD and
Earth Sciences.

In [16] the authors present a variational approximation method for solving
Troesch Problem. They show the existence and uniqueness of the solution
of the problem and construct a sequence of approximate solutions of such
problem. Under adequate conditions, such sequence converges to the exact
solution of Troesch Problem.

In this paper, we propose a variational method in order to solve Bratu
Problem (1) in a space of biquadratic spline functions. The solution is ob-
tained by resolving a sequence of boundary value problems. We study some
characterizations of the functions of such sequence and we express them as
some linear combination of biquadratic spline bases functions.

The remainder of the manuscript is organized as follows. In section 2 we
formulate the problem. In section 3 we present the numerical solution of the
problem. Section 4 is devoted to study how to compute each approximate
solution of the sequence. The last section is devoted to show some graphical
and numerical examples in order to prove the effectiveness and the useful of
our methods.

2 Formulating the problem

For any n ∈ N, n ≥ 1, let Tn = {t0, . . . , tn} be a subset of n+ 1 distinct points

of [0, 1] such that ti =
i

n
, for all i = 0, . . . , n. We denote by S1

2(Tn) the space

of spline functions of degree 2 and class C1 constructed over the partition Tn.
Let Wn = S1

2(Tn) ⊗ S1
2(Tn) the space of bi-quadratic spline functions of

class C1 constructed over the partition Tn × Tn of Ω = [0, 1]× [0, 1].
Now, Let {Bni , i = 1, . . . n + 2} be the B-spline basis functions of S1

2(Tn)
and, for i = 1, . . . , n+ 2 and j = 1, . . . , n+ 2, we define

Bn(n+2)(i−1)+j(x, y) = Bni (x)Bnj (y), ∀ (x, y) ∈ Ω.

Then, denoted N = (n+ 2)2, the set {Bn1 , . . . , BnN} is a bivariate B-spline
function basis of Wn. Moreover, it is verified that Wn is continuously embedded
in the Sobolev space H1(Ω).

Let F : L2(Ω)→ L2(Ω) be the functional application defined by

Fu(x, y) = λeu(x,y), ∀ (x, y) ∈ Ω, ∀u ∈ L2(Ω).

We consider the problem: Find σ ∈ C1(Ω) such that{
∆σ = −Fσ in Ω,
σ = 0 on ∂Ω.

(9)

Then, Problem (9) is Problem (1). Let H = {u ∈ H1(Ω) : u = 0 on ∂Ω}.
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Proposition 1 Let σ be a solution of Problem (9). Then, σ is a solution of
the following variational problem: Find σ ∈ H such that

(σ, u)1 = (Fσ, u)0, ∀u ∈ H, (10)

where ( · , · )`, for ` = 0, 1, are the usual semi–inner products defined in H1(Ω)
by

(u, v)0 =
∫
Ω
uvdxdy,

(u, v)1 =
∫
Ω
〈∇u,∇v〉2dxdy,

being 〈 · , · 〉2 the Euclidean inner product in R2.

Proof From the Green’s first identity we have∫
Ω

∆σudxdy = −
∫
Ω

〈∇σ,∇u〉2dxdy +

∫
∂Ω

u
∂σ

∂n
dµ, (11)

where
∂σ

∂n
indicates the normal derivative and dµ indicates the line differential

element on ∂Ω.

From (9) we have

∆σu = −Fσu, ∀u ∈ H. (12)

From here, by integration, from (11) and taking into account that u = 0
on ∂Ω, we obtain

−
∫
Ω

〈∇σ,∇u〉2dxdy = −
∫
Ω

Fσudxdy

and thus (10) holds. �

Definition 1 A solution of Problem (10) is called a weak solution of Bratu
Problem.

Remark 1 Obviously, if Problem (10) has a unique solution σ and σ is a solu-
tion of (9) then σ is unique and σ = σ.

3 Numerical solution of the Problem

Now, we are going to construct a sequence of approximate solutions of Problem
(10).

For this, we consider the near exact solution σ0 ∈ C2(Ω) (see [19]) given
by (5) for λ <= λc and θ a solution of the equation (6).
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We denote

ai,n =



(ti, 0), i = 1, . . . , n− 1,
(ti−n+1, 1), i = n, . . . , 2n− 2,
(0, ti−2n+1), i = 2n− 1, . . . , 3n− 1,
(1, ti−3n), i = 3n, . . . , 4n,

(
ti−4n−1 + ti−4n

2
, 0), i = 4n+ 1, . . . , 5n,

(
ti−5n−1 + 1 + ti−5n

2
, 1), i = 5n+ 1, . . . , 6n,

(0,
ti−6n−1 + ti−6n

2
), i = 6n+ 1, . . . , 7n,

(1,
ti−7n−1 + ti−7n

2
), i = 7n+ 1, . . . , 8n.

For any n ∈ N, n ≥ 1, we define

Hn = {u ∈Wn : u(ai) = 0, i = 1, . . . , 8n}.

From σ0 we are going to construct a sequence of approximate solutions of
Problem (10) by induction.

Suppose that, for some n ∈ N, n ≥ 1, we have constructed an approxi-
mation function σn−1 ∈ H of the solution of Problem (10). We are going to
construct a new approximation function σn ∈ Hn.

Proposition 2 We assume that the approximation σn−1 ∈ H is constructed.
Then there exists a unique σn ∈ Hn ⊂ H such that

J(σn) ≤ Jn(v), ∀ v ∈ Hn, (13)

being Jn : H1(Ω)→ R the functional defined by

Jn(v) = |v|21 − 2(Fσn−1, v)0, (14)

where | · |1 is the semi-norm in H1(Ω) given by |v|1 = (v, v)
1
2
1 .

Moreover σn verifies

(σn, v)1 = (Fσn−1, v)0, ∀ v ∈ Hn. (15)

Proof Let consider the bilinear form ã : H ×H → R given by

ã(u, v) = 2(u, v)1.

It is obvious that ã is symmetric, continuous and it endows the space H with
a norm defined by ã(v, v)

1
2 = |v|1, which is equivalent to the Sobolev norm

‖v‖ = (|v|20 + |v|21)
1
2 of H ⊂ H1(Ω). Hence, ã is H-elliptic. Moreover, Hn is a

convex non empty subset of H1(Ω) since ω(x, y) = (x− x2)(y − y2) ∈ Hn.
Now, the application defined by

ϕ(v) = 2(Fσn−1, v)0, ∀ v ∈ H,



A variational method for solving two-dimensional Bratu’s problem 7

is linear and continuous. So, by applying the Lax-Milgram Lemma, we deduce
that there exists a unique σn ∈ Hn such that ã(σn, v) = ϕ(v), for all v ∈ Hn.
Then (15) holds.

Furthermore, σn is the function ofHn where the functional Φ(v) =
1

2
ã(v, v)−

ϕ(v) is minimum which, in turn, is equivalent to minimize in Hn the functional
Jn since Jn(v) = Φ(v), for all v ∈ Hn. �

Proposition 3 It exists a unique (σn, λ1, . . . , λ8n) ∈ Hn × R8n such that

(σn, u)1 +

8n∑
i=1

λiu(ai) = (Fσn−1, u)0, ∀u ∈Wn, (16)

where σn is the unique solution of (15).

Proof Let u ∈ Wn and let {ϕ1, . . . , ϕ8n} be the Lagrange basis functions of
Wn associates with the functionals {φ1, . . . , φ8n} given by φi(v) = v(ai), for
i = 1, . . . , 8n and for any v ∈ Wn. Then it is verified that φi(aj) = δij , for all
i, j = 1, . . . , 8n.

Then, the function ω = u−
8n∑
i=1

u(ai)ϕi verifies

ω(aj) = u(aj)−
8n∑
i=1

u(ai)ϕi(aj) = u(aj)−
8n∑
i=1

u(ai)δij = 0, j = 1, . . . , 8n.

Thus ω ∈ Hn and from (15) we obtain that

(σn, ω)1 = (Fσn−1, ω)0

and, from here,

(σn, u)1 −
8n∑
i=1

(σn, ϕi)1u(ai) = (Fσn−1, u)0 −
8n∑
i=1

(Fσn−1, ϕi)0u(ai). (17)

Now, let

λi = −(σn, ϕi)1 + (Fσn−1, ϕi)0, i = 1, . . . , 8n.

Then, from (17), we obtain (16). The uniqueness is immediate. �
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4 Computation

Now, we are going to show how to calculate in practice the sequence (σn).
By induction, a sequence {σn}n≥1 ⊂ H1(Ω) has been obtained such that

σn ∈Wn, for all n ≥ 1.
Then, for any n ≥ 1, there exist c1, . . . , cN ∈ R such that

σn(x, y) =

N∑
i=1

ciBi(x, y), ∀ (x, y) ∈ Ω,

σn(ai) = 0, i = 1, . . . , 8n.

(18)

Thus, by linearity, from (16) and (17) we obtain a linear system with
unknowns c1, . . . , cN , λ1, . . . λ8n, that, in matrix form, it can be expressed by(

An Dtn
Dn 0

)(
Ct
Λt

)
=

(
Bn
0

)
,

being

An = ((Bi, Bj)1)1≤i,j≤N ,

Dn = (Bj(ai)) 1≤i≤8n,
1≤j≤N

,

C = (c1, . . . , cN ),

Λ = (λ1, . . . , λ8n)

and

Bn = ((Fσn−1, Bi)0)1≤i≤N .

5 Numerical and graphical examples

The objective of this section is the application of our method in order to
compute some approximation of the solution of Bratu’s problem. To this end,
we consider the Bratu’s problem:

∆u+ λeu = 0, in Ω = (0, 1)× (0, 1),

with boundary conditions

u(x, 0) = u(x, 1) = 0,∀x ∈ [0, 1],

u(0, y) = u(1, y) = 0,∀y ∈ [0, 1].

By applying the method studied in section 3, we construct a sequence of
biquadratic spline functions σn, with n ∈ N, depending on the number of the
knots n× n. We take λ = 1 < λc.
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Fig. 1 Graphs of the approximate solutions σ0 defined in (10) with λ = 1 and θ the
solutions of the equation (6), that is the lower branch solution, on the left, and the upper
branch solution, on the right.

Furthermore, to test the goodness of the approximation σn, we compute
an error estimate by the expression

Errorn =

√√√√ 1

5000

5000∑
i=1

(
∆σn(ai) + λeσn(ai)

)2
, (19)

where {a1, . . . , a5000} is a set of scattered points of [0, 1]× [0, 1].
Observe that this error estimate measures how close the function σn is to

verifying the differential equation of Problem (1). In fact, if this error estimate
tends to zero, the function σn tends to be a solution of the differential equation.

For λ = 1, the solutions of the equation (6) has two solution θ1 = 1.03356946
and θ2 = 13.038239297 and thus there exists two near exact solution σ0, the
lower branch solution and the upper branch solution. The error estimates of
these functions are 3.31045 × 10−1 and 15.2532 and its maximum values are
0.066036 and 5.13577, respectively. To start with a good approximation we
take σ0 as the lower branch solution.

Figure 1 shows the graphs of the lower and the upper branch solutions,
from left to right.

Taken σ0 equals the lower branch solution, we apply the method and cal-
culate the sequence of the weak solutions of Bratu problem.

Figures 2 and 3 show the graphs of the functions σn, for n = 3, 5, 9, 17,
and Table 1 shows the error estimates Errorn and the maximum values of the
functions σn, (σn)max, for n = 3, 5, 9, 17, 33.

Observe that this error estimate decreases when the number of the knots
increases.

Conclusion: From Figures 2 and 3 and Table 1, one can observe that the
numerical results are compatible with the theory presented in this work, since
the computation of the error estimate diminishes when the number of the knots
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Fig. 2 Graphs of the weak solutions σ3 from 3 × 3 equidistant knots, on the left, and σ5
from 5 × 5 equidistant knots, on the right.

Fig. 3 Graphs of the weak solutions σ9 from 9 × 9 equidistant knots, on the left, and σ17
from 17 × 17 equidistant knots, on the right.

n× n Errorn (σn)max

3 × 3 2.3150 × 10−1 0.0811496
5 × 5 5.7886 × 10−2 0.0783703
9 × 9 1.4579 × 10−2 0.0781169
17 × 17 3.6283 × 10−3 0.0781021
33 × 33 9.1233 × 10−4 0.0781012

Table 1 Table of some values of the error estimate Errorn and the maximum value of σn
((σn)max) from n× n equidistant knots.

increases (meaning n tends to the infinite). Furthermore, with only a very small
data set provides improvement in terms of the degree of approximation. Hence,
we can conclude that our proposal is valid as a numerical method to solve the
Bratu problem.

Most of the articles that have studied the Bratu problem only do so by cal-
culating the solutions numerically, while in this paper we present not only the
numerical calculation but also we add mathematical techniques, see Proposi-
tions 1, 2 and 3. Also, in our opinion, we believe that for the first time, we
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can highlight our article with respect to others, by the study of the theory of
variational approximation for the obtention of the approximate solutions of
Bratu problem for dimension two.

References

1. Abbasbandy, S., Hashemi, M.S., Liu, C.S.: The Lie-group shoting method for solving the
Bratu equation. Commun Nonlinear Sci. Numer. Simulat. 16, 4238–4249 (2011).

2. Aregbesola, Y.A.S.: Numerical solution of Bratu Problem using the method of weighted
residual. Electronic Journal of Southern African Mathematical Sciences Association 3(1),
1–7 (2003).

3. Ascher, U.M., Matheij, R.M.M., Russel, R.D.: Numerical solution of boundary value
problems for ordinary differential equations. Society for Industrual and Applied Mathe-
matics, Philadelphia, P.A. (1995).

4. Batiha, B.: Numerical solution of Bratu-type equation by the variational iteration
method. Journal of Mathematics and Statistics 39(1), 23–29 (2010).

5. Cagler, H., Cagler, N., Ozer, M., Valaristos, A., Anagnostopoulos, A.N.: B-spline method
for solving Bratu’s problem. Int. J. Comput. Math. 87(8), 1885–1891 (2010).

6. Das, N., Sing, N., Wazwaz, A.M., Kumar, J.: An algorithm based on the variational
iteration technique for the Bratu-type and the Lane-Emden problems. J. Math. Chem.
54, 527–551 (2016).

7. Deeba, E., Khuri, S.A., Xie, S.: An algorithm for solving boundary value problem. Journal
of Computational Physics 159, 125–138 (2000).

8. Hichar, S., Guerfi, A.: Application of nonlinear Bratu’s equation in two and three dimen-
sions to electrostatics. Reports on Mathematical Physics 76(3), 283–290 (2015).

9. Inc, M., Akgül, A., Geng, F.: Reproducing kernel Hilbert space method for solving Bratu’s
problem. Bull. Malays. Math. Sci. Soc. 38(1), 271–287 (2015).

10. Jacobsen, J., Schmit, K.: The Liouville.Bratu.Gelfang problem for radial operators. J.
Differential Equations 184, 283–298 (2002).

11. Jalilian, R.: Non polynomial spline method for solving Bratu’s problem. Comput. Phys.
Comm. 181, 1868-1872 (2010).

12. Khuri, S.A.: A new approach to Bratu’s problem. Applied Mathematics and Computa-
tion 147, 131–136 (2004).

13. Kouibia, A., Pasadas, M.: Approximation by discrete splines. J. Comput. Appl. Math.
116, 145–156 (2000).

14. Kouibia, A., Pasadas, M.: Approximation of surfaces by fairness bicubic splines. Adv.
Comput. Math. 20, 87–103 (2004).

15. Kouibia, A., Pasadas, M.: Approximation by interpolating variational splines. J. Comut.
Appl. Math. 218, 342–349 (2008).

16. Kouibia, A., Pasadas, M., Belhaj, Z., Hananel, A.: The variational spline method for
solving Troesch’s problem. Journal of Mathematical Chemistry 53, 868–879 (2014).

17. Mohsen, A.: A simple solution of the Bratu problem. Computers and Mathematics with
applications 67, 16–33 (2014).

18. Ragb, O., Seddek, L.F., Matbuly, M.S.: Iterative differential quadrature solutions for
Bratu problem. Computers and Mathematics with applications 74, 249–257 (2017).

19. Odegide, S.A., Aregbesola, A.S.: A note on two dimensional Bratu Problem. Kragujevac
J. Math. 29, 49–56 (2006).

20. Wan, Y.Q., Gou, Q., Pan, N.: Thermo.electro.hydrodynamic model for electrospinning
process. Int. J. Nonlinear Sci. Numer. Simul. 5, 5–8 (2004).

21. Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Bratu-
type equations. Applied Mathematic and Computation 166, 652–663 (2005).


