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a  b  s  t  r  a  c  t

Assembly  lines  for  mass  manufacturing  incrementally  build  production  items  by  performing  tasks  on
them  while  flowing  between  workstations.  The  configuration  of  an  assembly  line  consists  of assigning
tasks  to  different  workstations  in order to  optimize  its  operation  subject  to  certain  constraints  such  as
the  precedence  relationships  between  the  tasks.  The  operation  of  an  assembly  line  can  be  optimized  by
minimizing  two  conflicting  objectives,  namely  the  number  of  workstations  and  the physical  area  these
require.  This  configuration  problem  is  an instance  of the  TSALBP,  which  is  commonly  found  in the  auto-
motive  industry.  It is a  hard  combinatorial  optimization  problem  to which  finding  the  optimum  solution
might  be infeasible  or even  impossible,  but  finding  a good  solution  is  still  of  great  value  to  managers  con-
figuring  the  line.  We  adapt  eight  different  Multi-Objective  Ant  Colony  Optimization  (MOACO)  algorithms
and  compare  their  performance  on ten  well-known  problem  instances  to  solve  such  a  complex  problem.
Experiments  under  different  modalities  show  that  the commonly  used  heuristic  functions  deteriorate  the
performance  of  the  algorithms  in  time-limited  scenarios  due  to  the  added  computational  cost.  Moreover,
even  neglecting  such  a  cost, the  algorithms  achieve  a better  performance  without  such  heuristic  functions.
The  algorithms  are  ranked  according  to three  multi-objective  indicators  and  the  differences  between  the
top-4 are  further  reviewed  using  statistical  significance  tests.  Additionally,  these  four  best  performing
MOACO  algorithms  are  favourably  compared  with the  Infeasibility  Driven  Evolutionary  Algorithm  (IDEA)
designed  specifically  for industrial  optimization  problems.

©  2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Assembly lines consist of workstations where products are built
after a number of tasks are performed. These tasks are distributed
between the workstations according to time and space require-
ments as well as the respective order of precedence between the
tasks. Thus, products are built incrementally by flowing from work-
station to workstation. These flow-oriented production systems are
commonly found in the mass-production industry. However, its
configuration is a very complex combinatorial optimization prob-
lem known as the Assembly Line Balancing Problem (ALBP) [1].

The first family of problems to model such a configuration was
the Simple Assembly Line Balancing Problem (SALBP) [2,1], which
is a general class of bin-packing problems with additional prece-
dence constraints. In this family, the tasks must be distributed
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between the workstations with the objective of minimizing the
inefficiency of the line (or its total downtime) subject to the con-
straints imposed on the tasks and workstations. However, the
configurations modeled in this family are too general and limit the
representation of cases such as those in the automotive industry
where space constraints must also be considered.

The Time and Space Assembly Line Balancing Problem (TSALBP)
is an extension of SALBP that incorporates the constraints of
time and space into the model [3]. Thus, TSALBP provides a
more accurate representation of real-world problems where three
optimization objectives are to be minimized: the number of work-
stations, the physical area these occupy, and the time required to
finish their respective tasks. From this family, different problems
can be derived according to the combination of these objectives.

One such problems is the TSALBP-m/A1 in which the objectives
to minimize are the number of workstations and their required
physical area according to a known fixed cycle time [4–6]. Thus,

1 Originally, this TSALBP variant is referred as TSALBP-1/3 [3]. This new notation
is  introduced in this work for a better understanding.

1568-4946/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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instead of three objectives, TSALBP-m/A is a bi-objective optimiza-
tion problem with an additional constraint of time. The number
of workstations and their required physical area are conflicting
objectives because the space requirements of the workstations are
determined by the tasks assigned therein. Thus, assigning all tasks
between a few workstations will increase the space requirements,
whereas assigning them between many workstations will reduce
them. The complexity of this problem makes it practically impos-
sible in most cases to perform an exhaustive search to find the
optimum solution. Thus, most of these problems are preferably
approached with metaheuristics in order to find good solutions
within a reasonable amount of time.

Ant Colony Optimization (ACO) is a metaheuristic that models
optimization problems as graphs which artificial ants explore to
build potential solutions to the problem at hand [7]. Once each ant
has built a candidate solution, they lay pheromone trails over the
search space to encourage others to further explore the surround-
ings of the best solutions found. The multi-objective nature of the
TSALBP has encouraged the use of multi-objective ACO (MOACO)
algorithms to tackle these problems [8,9] as well different formu-
lations of the ALBP [10,11].

The overall goal of this article is to provide a comparative study
of state-of-the-art MOACO algorithms and adapt them to tackle
the TSALBP-m/A. Specifically, we will adapt, evaluate, compare and
rank the performance of eight different MOACO algorithms on ten
well-known TSALBP-m/A instances using several multi-objective
performance indicators. Particularly, we are interested in investi-
gating the underlying reasons for such a detriment in performance
when utilizing the heuristic information in our framework. In addi-
tion, the performance of the MOACO algorithms will be compared
with the multi-objective Infeasibility Driven Evolutionary Algo-
rithm (IDEA) which is explicitly designed for industrial constrained
optimization problems [12].

An important component of MOACO algorithms is the use of
heuristic information to improve the quality of the solutions found.
If the heuristic information provides additional insights about the
problem at hand, it can only be expected that algorithms using such
information will provide much better solutions than algorithms
ignoring it. However, a previous work [4] has shown that signif-
icantly better results are obtained in the TSALBP-m/A when such
information is not utilized.

The remainder of this article is structured as follows. Section 2
presents a background on TSALBP, ACO, adapting general MOACO
algorithms to the TSALBP-m/A, and some multi-objective perfor-
mance indicators. Section 3 describes the operation and specific
adaptation of each of the MOACO algorithms considered to the
TSALBP-m/A. Section 4 describes the experimental design for our
research goals. Section 5 presents the results and our respective
discussions. Finally, Section 6 presents the conclusions and sugges-
tions for future research on this topic.

2. Background

2.1. Time and Space Assembly Line Balancing Problem

The Time and Space Assembly Line Balancing Problem (TSALBP)
models the configuration of an assembly line whose tasks required
to build a product must be distributed between a number of work-
stations. Each of these tasks have time and space requirements as
well as precedence relationships with other tasks. For example, a
TSALBP instance problem is presented in Fig. 1 as an acyclic graph
where nodes represent tasks with time and space requirements and
the directed edges represent the precedence constraints.

The TSALBP is modeled as a set V of n tasks which are distributed
into workstations. Each workstation k has a subset Sk ∈ V of tasks

Fig. 1. Example of a TSALBP precedence graph.

to be performed within a cycle time c before passing the product
to the next workstation. The workload time t(Sk) and required area
a(Sk) are respectively defined as the sum of the operation times and
required areas of the tasks in Sk. Thus, the TSALBP is formulated
as the distribution of n tasks, each with positive time and space
requirements, subject to the following constraints:

• Each task j is assigned to one workstation k only, i.e.,

Lj∑
k=Ej

xjk = 1, 1 ≤ j ≤ n (1)

where xjk ∈ {0, 1} determines whether task j is assigned to work-
station k, Ej and Lj are the earliest and latest workstations to which
task j may  be assigned (respectively), and n is the number of tasks.

• All tasks are distributed into m workstations at most, i.e.,

M∑
k=1

max
j=1,2,...,n

xjk ≤ m (2)

where M is the maximum the number of workstations.
• The workload time for any workstation is at most the cycle time

c, i.e.,
n∑
j=1

tjxjk ≤ c, k = 1, 2, . . .,  M (3)

where tj is the operation time of task j.
• The required area for any workstation is at most A, i.e.,

n∑
j=1

ajxjk ≤ A, k = 1, 2, . . .,  M (4)

where aj is the area required for task j.
• The distribution of tasks satisfy the precedence relationships

between them, i.e.,

Li∑
k=Ei

kxij ≤
Lj∑
k=Ej

kxjk, j = 1, 2, . . .n; ∀i ∈ Pj (5)

where Pj is the set of immediate predecessor tasks that must be
completed before task j.

The TSALBP family groups a total of 8 optimization problems
according to the combinations of the different objectives to opti-
mize, namely (1) the number of workstations m,  (2) the cycle time
c, and (3) the maximum physical area A occupied by any given
workstation. As such, the TSALBP-m/A is a problem in which the
objectives to optimize are m and A while satisfying the aforemen-
tioned constraints. Mathematically, these objectives are:

Minimize f s (x) = m =
M∑
k=1

max
j=1,2,...,n

xjk (6)



Author's personal copy

4372 J. Rada-Vilela et al. / Applied Soft Computing 13 (2013) 4370–4382

f a (x) = A = max
k=1,2,...,M

n∑
j=1

ajxjk (7)

2.2. Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic designed by
Dorigo and some other contributors [7] with inspiration on the
behaviour of ants for finding the shortest path from their nest to the
food source. Its design consists of a number of ants that collectively
explore the solution search space and lay pheromone trails in order
to aid other ants into finding better solutions. ACO works by having
ants deposit pheromones over the trails used to find the solutions,
and the amount of pheromones is relative to the quality of the solu-
tions. As such, pheromone trails that lead to better solutions will
be stronger than those leading to worse ones, and ants will be more
likely attracted to follow the trails with more pheromones.

ACO is an iterative algorithm in which the problem is rep-
resented by a connected graph and its solutions by an ordered
sequence of connected nodes. At each iteration, ants explore the
solution search space by probabilistically moving from one node to
another. Such a decision is determined by the transition rule, which
considers the amount of pheromone deposited between the pair
of connected nodes and the heuristic information expressing the
preference between them. Once the ants have built their complete
solutions, i.e. each ant has explore all the nodes, their objective
values are utilized to determine the amount of pheromones to
deposit along the trails. Additionally, at the end of each iteration,
the amount of pheromone over the trails is reduced by a factor
coined evaporation rate in order to prevent stagnation and encour-
age the exploration of new solutions.

The first ACO algorithm proposed in the literature was the (AS)
[13], in which the pheromone �ij deposited between nodes i and j
is determined as follows,

�ij = (1 − �) · �ij +
�∑
k=1

��kij (8)

where � is the evaporation rate, � is the number of ants, and ��k
ij

is the amount of pheromone deposited between i and j by ant k
according to the quality of its solution. The transition rule is deter-
mined by the probability of ant k to visit node j from node i as
follows,

pkij =
�˛
ij

· �ˇ
ij∑

u∈��
˛
iu

· �ˇ
iu

(9)

where �ij is a heuristic function that quantifies the preference of ant
k at node i to visit j,  ̨ and  ̌ are factors that determine the influence
of the pheromone and the heuristic function (respectively), and �
is the set of nodes available from i.

2.3. Multi-Objective Ant Colony Optimization and the Time and
Space Assembly Line Balancing Problem

The TSALBP-m/A is a bi-objective optimization problem in
which the number of workstations and the maximum physical area
any of these occupy must be minimized. However, both objectives
are in conflict as the minimization of the number of workstations
implies that each will have more tasks assigned and hence increase
their physical area. Conversely, minimizing the maximum physical
area implies that less tasks need to be assigned to the workstations
and hence it will increase the number of workstations to be able
to assign all the tasks. Therefore, solutions to this problem must
balance a tradeoff between both objectives.

The multi-objective nature of the TSALBP-m/A, its conflicting
objectives, and its natural representation by means of acyclic
directed graphs, makes it appropriate to utilize MOACO algorithms
to find good solutions to this type of problem. Particularly, we are
interested in the Pareto-based MOACO algorithms as these find a
set of non-dominated solutions (known as a Pareto front) which
provide different tradeoffs between the objectives [14].

Many MOACO algorithms have been proposed in the literature
to address a wide range of optimization problems. However, in
order to address the TSALBP-m/A, we need to adapt them such that
they have the following characteristics: a workstation-oriented
scheme, a heuristic function to each objective, and a Pareto archive
to store the solutions. Each of these characteristics is detailed in the
following sections.

2.3.1. Station-oriented scheme
In the station-oriented scheme [1,3], the pheromone matrix �ij

contains the pheromone trail expressing the preferability of assign-
ing task j to workstation i. At each iteration, ant k starts with an
opened workstation sk1 to which tasks are assigned via the transi-
tion rule. After each assignment, the ant probabilistically decides to
close the current station i and open a new one based on the filling
rate �(sk

i
) and a threshold 	k according to (10),

p(ski+1) =
{

1, if [�(sk
i
) ≥ 	k] ∧ [�(sk

i
) > r]

0, otherwise
(10)

where r ∈ [0, 1] is a random value sampled from a uniform distribu-
tion, and �(si) is the filling rate of the current workstation computed
as the ratio between the time accumulated by every task t and the
cycle time c according to (11),

�(si) =
∑

j∈si tj
c

(11)

This probabilistic method of opening workstations encourages
diversity and hence provides a better the Pareto front [6]. Since the
threshold 	k of each ant determines the probability for the ant to
completely fill its opened workstation, a low threshold will open
more workstations and hence have fewer tasks in each of them,
whereas a high threshold will open less workstations and hence
more tasks in each of them. Therefore, diversity is further increased
by assigning different thresholds to ants.

2.3.2. Heuristic function
The heuristic function provides guidance about the preferability

to assign task j to the currently open workstation i. This informa-
tion is computed for task j based on its required time tj and its
corresponding required area aj [3]. Specifically, the heuristic func-
tion is computed for each objective according to (12) and (13),
respectively,

�sij = tj
c

·
∣∣Fj∣∣ + 1

maxu∈�
∣∣Fu∣∣ + 1

(12)

�aij = aj
A


·
∣∣Fj∣∣ + 1

maxu∈�
∣∣Fu∣∣ + 1

(13)

where A
 is the total area required by all tasks in the problem,
∣∣Fj∣∣

is the number of tasks available from j, and max
u∈�

∣∣Fu∣∣ is the max-

imum number of tasks available from any task following j. In the
case of MOACO algorithms whose design involves a single heuristic
function, we  merge both of them into one as �ij = �s

ij
· �a
ij
.
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2.3.3. Pareto archive
MOACO algorithms usually have a Pareto archive in which only

non-dominated solutions are stored. After each iteration, all the
solutions found by the ants are compared against those stored
in the archive. If a non-dominated solution is found, then it will
be added to the archive and the newly dominated ones will be
removed and discarded. As such, the size of the Pareto archive is
subject to change after each iteration. This might pose a computa-
tional challenge when the range of the objective values is too large
or these are represented with a large number of decimals. In both
cases, strategies to truncate the size of the archive may  be needed.
Nonetheless, the objective values of the solutions to the problem
instances which we will focus on are all integers within a specific
range, and hence no truncation mechanism is required.

2.4. Performance indicators

In single-objective optimization, the performance of two algo-
rithms can be compared directly by just considering the objective
values of the best solutions found. As such, in a minimization prob-
lem, the best-performing algorithm will be the one which finds
the solutions with the lowest objective values. However, in multi-
objective optimization, there is no such thing as a unary indicator to
absolutely distinguish the quality between any two  non-dominated
sets of solutions. Therefore, it is necessary to define a criterion to
differentiate the performance of two algorithms with respect to
the quality of their Pareto fronts. Given that MOACO algorithms
are intrinsically approximation methods, hereafter we refer to their
sets of non-dominated solutions as their approximate Pareto fronts,
and to the optimal set solving the problem as the true Pareto front.
These terms are utilized to define the following performance indi-
cators proposed in the literature.

2.4.1. The hyper-volume indicator
The hyper-volume indicator IH [15] measures the coverage of an

approximate Pareto front with respect to the true one. As such, an
algorithm is better than another if its approximate Pareto front has
a greater coverage. For each algorithm, this indicator is computed
as follows,

IH = HV (P)
HV (P∗)

(14)

where HV (P) and HV (P∗) are the hyper-volumes of the approxi-
mate and the true Pareto fronts, respectively. Thus, the higher the
value of IH, the closer the approximate Pareto front is to the true
one, and when IH = 1 both Pareto fronts are equal.

The hyper-volume of a Pareto front is computed with respect to
a reference point zref defined according to the problem. It is nec-
essary that such a reference is dominated by all the solutions in
the front. Thus, the reference point for each objective is set as the
minimum value possible in maximization problems, whereas to
the maximum value in minimization ones. However, these values
must be set within reasonable distance as if set too far it might
compromise the accuracy of the indicator [16]. Fig. 2 shows the
hyper-volume indicator in gray of a Pareto front with respect to a
reference point in both minimization and maximization problems.

2.4.2. The epsilon indicator
The �-indicator [17] measures the factor by which an approxi-

mate Pareto front is worse than the true one with respect to all the
objectives. Specifically, I� (P, P∗) is the minimum factor by which
a solution in P is worse than any solution in P*. It is computed as
follows:

I�(P, P∗) = max
z2∈P∗

min
z1∈P

max
1≤i≤n

z1
i

z2
i

(15)

y

x

zref

z1

z2

z3

Minimization

y

x
zref

z1

z2

z3

Maximization

Fig. 2. Hyper-volume indicator.

where z1 = (z1
1, . . ., z1

n) and z2 = (z2
1, . . .,  z2

n) are the vectors of solu-
tions in sets P and P*, respectively.

2.4.3. The coverage indicator
The coverage indicator IC [15] measures the quality of an approx-

imate Pareto front P with respect to another front Q by the ratio
between the number of solutions in P that dominate a solution in
Q. Specifically, this indicator is computed as follows,

IC (P, Q ) = |{q ∈ Q ; ∃p ∈ P : p ≺ q}|
|Q | (16)

where p ≺ q indicates that solution p ∈ P dominates solution q ∈ Q in
a minimization problem. As such, when IC(P, Q) = 1, all the solutions
in Q are dominated by the solutions in P. Conversely, when IC(P,
Q) = 0 none of the solutions in Q are dominated by a single solution
in P. Notice that this relation does not need to be complementary,
that is, IC(P, Q) = 1 − IC(Q, P) does not necessarily hold.

An indicator derived from IC is the thresholded coverage indi-
cator I	C [18], which is useful for comparing two algorithms with
multiple approximate Pareto fronts obtained in different repeti-
tions. The thresholded coverage indicator is computed as follows,

I	C (Pi, Qi) =
{

1 if IC (Pi, Qi) > 	

0 otherwise
(17)

where 	 ∈ (0.5, 1.0] is the threshold value. Thus, if I	C (Pi, Qi) = 1 the
Pareto front Pi dominates Qi at repetition i, and the average of the
I	C computed from every repetition provides an indicator of quality
between the two algorithms.

3. Multi-Objective Ant Colony Optimization Algorithms

MOACO algorithms are especially designed to tackle multi-
objective optimization problems in which an important number
of constraints should be satisfied. Many different MOACO designs
have been proposed [9] and they have demonstrated an out-
standing performance. Among them, we  are interested in all
Pareto-based approaches that handle multiple objectives by uti-
lizing one or more pheromone matrices and heuristic functions.
Specifically, we adapt the following MOACO algorithms to tackle
the TSALBP-m/A:

• Bi-Criterion Optimization with a Single Colony,
• Bi-Criterion Optimization with Multiple Colonies, updates by ori-

gin,
• Bi-Criterion Optimization with Multiple Colonies, updates by

region,
• Competing Ant Colonies (COMPETants),
• Multiple Ant Colony System (MACS),
• Multi-Objective Ant-Q (MOAQ),
• Multi-Objective Network Ant Colony Optimization (MONACO),

and
• Pareto Ant Colony Optimization (PACO).
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Table  1
Taxonomy of the MOACO algorithms.

Heuristic functions

Single Multiple

Pheromone matrices
Single MACS

MOAQ
Multiple MONACO All Bi-Criterion

PACO COMPETants

These algorithms may  be classified according to the number of
pheromone matrices and heuristic functions as shown in Table 1
[8]. The following subsections are devoted to briefly introduce the
main components of each algorithm as well as the customization
we have made to apply them to the TSALBP-M/A

3.1. Bi-Criterion Optimization with a Single Colony

The Bi-Criterion Optimization with a Single Colony [19] util-
izes one pheromone matrix and one heuristic function for each
objective, thus having two of each to tackle the TSALBP-m/A. The
transition rule in this algorithm is determined by (18) as follows,

pij =
[�s
ij
]�˛[�a

ij
](1−�)˛[�s

ij
]�ˇ[�a

ij
](1−�)ˇ∑

u∈�[�s
iu

]�˛[�a
iu

](1−�)˛[�s
iu

]�ˇ[�a
iu

](1−�)ˇ
(18)

where � = (k − 1)/(� − 1) is computed according to the number of
ants � and the index of ant k ∈ [1, �]. Thus, ants search differ-
ent regions of the Pareto front by utilizing different weights that
determine the relative importance of the optimization criteria.

After each ant k has built its solution Sk, pheromone trails of
both matrices are evaporated by a factor of �, and only those ants
with non-dominated solutions in the current iteration are allowed
to update the pheromone trails. Originally, such an update was
performed according to �ij = �ij + 1/�, where � is the number of
ants allowed to update. However, this kind of update entails that
the two pheromone matrices are updated with the same amount,
thus resulting in two equivalent matrices. In order to avoid such a
redundancy, we utilize the inverse cost of their respective objective
functions as proposed in [8]. Hence, the pheromone update rule is
instead given by (19).

�oij = �oij +
1
f o(S)

(19)

3.2. Bi-Criterion Optimization with Multiple Colonies and Update
by Origin

The Bi-Criterion Optimization with Multiple Colonies and
Update by Origin [19] utilizes one pheromone matrix and one
heuristic function for each objective, thus having two  of each to
tackle the TSALBP-m/A. The transition rule of this algorithm is the
same as the single colony approach (18), but uses instead overlap-
ping �-values amongst colonies.

The pheromone updates by origin are performed by all ants with
a globally non-dominated solution using the same rule as the sin-
gle colony approach (19). As such, this method imposes a strong
selection pressure given that ants have to find a non-dominated
solution not only locally but globally in order to be allowed to
update the pheromone matrices. However, it also favours diver-
sity as it encourages colonies to search in different regions with
less dense areas where ants will be more likely to update the
pheromone matrices.

3.3. Bi-Criterion Optimization with Multiple Colonies and Update
by Region

The Bi-Criterion Optimization with Multiple Colonies and
Update by Region [19] is similar to the previous algorithm except
for the pheromone update method. In this case, the pheromone
update is performed by region as ant colonies are explicitly guided
towards different search regions of the Pareto front. Specifically, the
list of globally non-dominated solutions in the current iteration is
sorted according to either of the objectives, and then it is split up
into p equally-sized parts matching the number of colonies. For
each part i, only those ants that have found a solution update the
pheromone matrices of colony i according to (19).

3.4. Competing Ant Colonies

COMPETants [20] was  originally proposed to deal with bi-
objective transportation problems. It consists of two ant colonies of
variable size with different priority rules over the objectives to opti-
mize. These priority rules are determined according to the heuristic
information. In the case of the TSALBP-m/A, the first colony util-
izes the heuristic information related to time, and the other colony
utilizes that related to the area.

In this algorithm, each ant uses the pheromone and heuristic
information from the colony c it belongs to. Thus, the transition
rule is given by (20).

p(j) =

⎧⎨⎩
[�c
ij
]˛[�c

ij
]ˇ∑

u∈�[�c
iu

]˛[�c
iu

]ˇ
if j ∈ �

0, otherwise

(20)

After each iteration, ants in each colony have a probability
 own/(4 for +  own) to become spies, where  own and  for are the
product of the number of workstations and the maximum area
(m × A) of the best solution found in the own and foreign colony,
respectively. As such, the spy’s transition rule is changed to (21).

p(j) =

⎧⎪⎪⎨⎪⎪⎩
[

0.5�own
ij

+ 0.5�for
ij

]˛[
�own
ij

]ˇ
∑

u∈�
[
0.5�own

iu
+ 0.5�for

iu

]˛[
�own
iu

]ˇ , if j ∈ �

0, otherwise

(21)

Once ants have built their solutions, the pheromone of both
colonies evaporates by �. Then, only the best �-ants of each colony
are allowed to update the pheromone trails of their respective solu-
tions according to (22),

�oij = �oij + 1 − k� − 1
�

, ∀i, j ∈ Sk� (22)

where � is equal to 6.25% of the total size of colony c
(� = 
0.0625 · �c�), and k� ∈ [1, �] is the position of the ant in the
ranked list.

Finally, the size of the colonies is adapted in such a way  that
the colony with the best average �c of solutions has a higher
probability of receiving more ants from the other colony. For the
TSALBP-m/A, the best average of solutions is defined as the average
product of the number of workstations and maximum area. Thus,
ants from both colonies are assigned to the first colony with proba-
bility �for/(�own + �for), and all the remaining ants are assigned to
the second colony, ensuring that at least one ant is present in each
of them.

3.5. Multiple Ant Colony System

MACS [21] is an algorithm based on the Ant Colony System [22],
and it uses a single pheromone matrix and two heuristic functions
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related to the objectives to optimize. The transition rule to move
from node i to j is determined as follows,

j =
{
argmax

j∈�
{�ij[�sij]

�ˇ[�aij]
(1−�)ˇ}, if q ≤ q0

z, otherwise
(23)

where q0 ∈ [0, 1] is a predefined constant, q ∼ U(0, 1) is a random
number sampled from a uniform distribution, z is a node selected
according to the probability distribution in (24), and � is computed
as the ratio of the ants’ position index k ∈ [1, �] with regards to the
size of the colony according to � = (k − 1)/(� − 1).

The transition rule utilized by this algorithm is known as the
pseudo-random-proportional rule, and it is defined according to
(24).

p(j) =

⎧⎨⎩
�ij[�sij]

�ˇ[�a
ij
](1−�)ˇ∑

u∈��iu[�s
iu

]�ˇ[�a
iu

](1−�)ˇ
, if j ∈ �

0, otherwise

(24)

After the transition rule takes place, each ant updates its
pheromone trail as follows,

�ij = (1 − �) �ij + ��0 (25)

where �0 is computed initially as the inverse product of the average
number of workstations and the maximum area of solutions found
heuristically according to (26).

�0 = 1

f̂ s · f̂ a
(26)

Once all ants have built their complete solutions, these are
compared to those in the Pareto archive and the non-dominated
solutions are added while removing the newly dominated ones.
Afterwards, � ′

0 is computed from the Pareto archive according to
(26). Finally, if � ′

0 > �0, the pheromone trails are reinitialized to � ′
0,

otherwise, the pheromone trails associated to each solution S in the
Pareto archive are updated according to (27).

�ij = (1 − �)�ij +
�

f s(S) · f a(S)
(27)

3.6. Multi-Objective Ant-Q

MOAQ [23] was originally proposed to design water distribution
irrigation networks. It is an adaptation of the Ant-Q algorithm [24]
in order to deal with multiple objectives by creating f families of
ants. All families share a single pheromone matrix and each of them
optimizes one objective.

After one family of ants finishes building a solution, the next
family considers the solutions found to constrain its search space.
Thus, solutions are found according to the relative order of impor-
tance of the objectives to optimize. However, this characteristic
is not present in the TSALBP-1/3 because there is not an order of
importance regarding the number of stations and the maximum
area, that is, both objectives are equally important.

In Ant-Q, as well as in MOAQ, the pheromone matrix � contains
Ant-Q values that favour the probability of finding good solutions.
Hence, the transition rule that defines the ant’s behaviour is deter-
mined as follows,

j =
{
argmax

j∈�
{[�ij]˛[�f

ij
]
ˇ}, if q > q0

z, otherwise
(28)

where q ∼ U(0, 1) is a random number sampled from a uni-
form distribution, q0 decreases with each iteration according to
q0(t) = q0(t − 1) · h/qmax (initially q0 = qmax), and qmax and h ∈ [0,
1] are predefined constants. However, computing q0 with this
approach requires h and qmax to be set empirically considering that

higher values of qmax lead to lower values of q0 in fewer iterations,
and thus resulting in an increase of intensification. Now, assuming
h = 0.9 and qmax = 1, in 50 iterations q0 = 0.00515 which means that
ants will be likely to perform a local search with probability 99.84%.
This could potentially lead to a waste of computational resources
when more than 50 iterations are performed because all the ants in
the family will converge to the solution that maximizes the Ant-Q
values and the respective heuristic function. Therefore, we utilize
instead the simplified transition rule proposed in [24], where they
show that better results can be obtained. This rule is determined as
follows,

j =
{
argmax

j∈�
{[�ij]˛[�f

ij
]
ˇ}, if q ≤ q0

z, otherwise
(29)

where q0 is a predefined constant, and z is a node selected according
to the following probability distribution in (30).

p(j) =

⎧⎨⎩
[�ij]

˛[�ij]
ˇ∑

u∈�[�iu]˛[�iu]ˇ
, if j ∈ �

0, otherwise

(30)

After each ant’s transition, the Ant-Q values are learnt as follows,

�ij = (1 − �)�ij + �(��ij + �max
u∈�

{�ju}) (31)

where � is the discount factor (analogous to evaporation), � is the
learning step size, and ��ij starts at zero and then is computed
when the ant has built a complete solution.

Once all ants have built their complete solutions, only those
with a non-dominated solution S in the current iteration will be
rewarded according to (31) using ��ij as follows,

��ij = O∑O
o=1f

o(S)
(32)

where O is the number of objectives.

3.7. Multi-Objective Network Ant Colony Optimization

MONACO [25] was proposed to deal with a multi-objective
network optimization problem where the policy of the network
changes according to the steps of the algorithm, thus dealing with
a dynamic optimization problem. In order to adapt this instance to
the TSALBP-m/A, some modifications must be made. For example,
ants must wait until the cycle ends before updating the pheromone
trails [8].

MONACO uses as many pheromone matrices �o and evaporation
factors �o as the number of objectives to optimize, but just a single
heuristic function �. The transition rule is given by the following
probability distribution,

p(j) =

⎧⎨⎩
[�ij]

ˇ ·
∏O
o=1[�o

ij
]˛o∑

u∈�[�iu]ˇ ·
∏O
o=1[�o

iu
]˛o
, if j ∈ �

0, otherwise

(33)

where O is the number of objectives, and ˛o is the importance of
pheromone matrix �o.

After each iteration, the pheromone trails associated to the
nodes visited at least once by any ant will evaporate according to
(1 − �o). Then, all ants update the pheromone trails of their respec-
tive solutions as follows,

��oij = Q

f o(S)
(34)

where fo is the objective function o of solution S, and Q is a constant
related to the amount of pheromone to be deposited by ants. Since
Q was not defined in [25], we  assume Q = 1.
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3.8. Pareto Ant Colony Optimization

PACO [26] was proposed to deal with a multi-objective port-
folio selection problem. It uses one heuristic function and as
many pheromone matrices as objectives. Additionally, for each
pheromone matrix �o there is an associated weight po ∼ U(0, 1)
randomly chosen.

The transition rule is determined as follows,

j =

⎧⎪⎨⎪⎩ argmax
j∈�

{[
O∑
o=1

po�
o
ij

]˛
[�ij]

ˇ

}
, if q ≤ q0

z, otherwise

(35)

where z is a node selected according to the probability distribution
in (36).

p(j) =

⎧⎪⎨⎪⎩
[
∑O

o=1po�
o
ij
]
˛

[�ij]
ˇ∑

u∈�[
∑O

o=1po�
o
iu

]
˛

[�iu]ˇ
, if j ∈ �

0, otherwise

(36)

After each ant performs a move, its pheromone trail is updated
as follows,

�oij = (1 − �)�oij + ��0 (37)

where �0 = 1 because it was shown to find better solutions with this
value rather than using smaller ones [26].

Once all ants have built their respective solution S, all the
pheromone matrices are evaporated � and the ants with the best
first and the best second solution S for each objective o are selected.
Only these ants will update the pheromone trails of their respective
solutions according to (38) as suggested in [8].

�oij = �oij + � · 1
f o(S)

(38)

4. Experimental design

This section is structured as follows: Section 4.1 summarizes the
IDEA for solving the TSALBP, Section 4.2 describes the instances
considered for the experiments, and Section 4.3 reports the exper-
imental setup and the parameters used for each algorithm.

4.1. Infeasibility Driven Evolutionary Algorithm

Besides the MOACO algorithms, we also adapt the Infeasibility
Driven Evolutionary Algorithm (IDEA) proposed in [12] to compare
its performance with the MOACO algorithms. IDEA was  designed
specifically to deal with constrained optimization problems by
searching for optimum solutions near the constraint boundaries,
and maintaining and evolving a small proportion of infeasible solu-
tions. In order to adapt this algorithm to the TSALBP-m/A, we  had
to add a third objective which is calculated based on the relative
amount of constraint cycle time violation amongst the population
members.

The novelty of this algorithm is that solutions in the parent and
offspring population are divided into feasible and infeasible sets.
These sets are ranked separately using non-dominated sorting and
crowding distance, and the solutions for the next generation are
selected from these sets to maintain infeasible solutions. Besides,
a predefined parameter ˛I is used to maintain the set of infeasible
solutions as a fraction of the size of the population.

The representation scheme of solutions in TSALBP explicitly
considers ordered task-station assignments. The assignment of
tasks between workstations is made according to separators within
the genotype, and these will depend on the number of opened

Table 2
Characteristics of the TSALBP instances.

Instance c Tasks OS TV (AV)

arc111-1 5755 111 40.38 568.90
arc111-2 7520 111 40.38 568.90
barthol2 85 148 25.80 83
barthold 805 148 25.80 127.60
lutz2 16 89 77.55 10
lutz3 75 89 77.55 74
mukherje 351 94 44.80 21.38
nissan 180 140 90.16 115 (3)
scholl 1394 297 58.16 277.20
weemag 56 75 22.67 13.50

workstations for the current solution. As such, the algorithm works
with a variable-length coding scheme.

The crossover operator of IDEA is based on the order-based par-
tially mapped crossover operator which generates two  offspring
from any two  given parents as follows [27]. First, two random cut
points are selected and the genes of the first offspring are copied
directly from the task genes of the first parent outside the random
points. Then, the task genes inside the two cut points are copied
according to the order they appeared within the second parent.
Additionally, the mutation operator utilized in the algorithm con-
sists of dividing workstations at random by inserting a separator
gene. If the resulting offsprings obtained from the operators are
infeasible solutions with respect to the cycle time, these are added
to the population of infeasible solutions.

4.2. Problem instances

Ten well-known problem instances available at
http://www.prothius.com/TSALBP/ are used to compare the
performance of the designed algorithms. These instances are:
arc111-1, arc111-2,  barthol2,  barthold,  lutz2,  lutz3,
mukherje,  nissan, scholl, weemag. All of these instances but
nissan belong to the SALBP-1 formulation, and were adapted
to the TSALBP-m/A [3]. The nissan instance corresponds to a
real-world problem from the Nissan factory in Barcelona (Spain).

The characteristics of the problem instances chosen present dif-
ferent challenges to optimization algorithms. These characteristics
are described in Table 2 in terms of the order strength of the prece-
dence graph (OS) in which a higher value indicates a higher number
of precedence restrictions, the time variability (TV) computed as
the ratio between the highest and lowest task operation time, and
the area variability (AV) computed just like TV using the required
area instead.

4.3. Experimental setup

The MOACO algorithms considered in this article utilize the
same parameters regarding the importance  ̨ and  ̌ of the
pheromone matrix and heuristic function, respectively. Addition-
ally, all algorithms utilize the same evaporation rate �, the q0
value for the pseudo-random-proportional rule (when applies), and
the initial value of the pheromone matrices. The complete list of
parameters for the MOACO algorithms and the IDEA is presented
in Table 3.

We  consider two  different variants for each MOACO algo-
rithm. One in which ants utilize the heuristic information and the
pheromone trails to compute the transition rule (heuristic variant),
and another in which ants discard the heuristic information (non-
heuristic variant). We  are interested in experimenting with both
variants to further corroborate the findings in [4], where ants of the
MACS algorithm were able to find better solutions when discarding
the heuristic information.
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Table  3
Parameter values of the MOACO algorithms and IDEA.

Parameter Value

MOACO general parameters
Number of ants � = 10
Thresholds (two ants each) 	 = {0.2, 0.4, 0.6, 0.7, 0.9}
Importance of pheromone  ̨ = 1.0
Importance of heuristic  ̌ = 1.0
Evaporation � = 0.2
Pseudo-random-proportional q0 = 0.2
Initial pheromone (except MACS) �0 = 0.1

Bi-Criterion Optimization (Multiple Colonies)
Number of colonies 10
Number of ants per colony � = 10

COMPETants
Number of ants per colony � = 10

MOAQ
Learning step size � = 0.9

IDEA
Population size 100
Crossover probability pc = 0.8
Mutation probability pm = 0.1
Infeasibility ratio ˛I = 0.2

The experimentation also consists of two modalities. One in
which all the algorithms are given the same amount of time to
operate, and another in which they all perform the same number
of iterations. We refer to these experiments as Experiments A  and
B, respectively. The goal of Experiment A  is to find which MOACO
variant performs better when computational time is limited, thus
comparing all the algorithms (including IDEA) within a convenient
time window. In this case, the algorithms perform 10 repetitions
of 15 min  on each problem instance. Differently, the goal of Experi-
ment B is to find out which variant is better when both perform the
same number of iterations regardless of the computational time
required. In this case, the algorithms perform the same number
of repetitions with the average number of iterations performed by
the heuristic variant in Experiment A  to obtain the results within a
reasonable amount of time.

The results from both experiments allow us to compare the
algorithms in terms of the quality of the solutions found, and the
efficiency and computational time required to do so. As such, the
quality is determined by the multi-objective performance indica-
tors, the efficiency by comparing the average number of iterations
performed (Experiment A), and the computational time by com-
paring the average number of seconds required (Experiment B).
Additionally, results from both experiments provide better insights
on the quality of the heuristic functions.

The true Pareto front is not known for any of the problem
instances approached. Therefore, we estimate for each problem
a pseudo-optimal Pareto front by merging all the approximations
obtained with the algorithms at every repetition in both Experi-
ments A  and B,  and remove the dominated solutions therein. As
such, the pseudo-optimal Pareto front becomes our best approx-
imation to the optimal one. Henceforth, the hyper-volume and
epsilon indicators are computed for each algorithm as the aver-
age of their respective indicators at every repetition with respect
to the pseudo-optimal Pareto front. Likewise, the coverage indica-
tor is computed utilizing the pseudo-optimal Pareto front and the
threshold described in Section 2.4.3.

5. Results and discussions

The results and discussions are presented as follows. Firstly, we
rank the algorithms according to the results from the performance
indicators. Secondly, we address their differences with respect to
time and iterations according to Experiments A  and B, respectively.

Finally, we perform statistical tests between the performance indi-
cators of the top-4 ranked MOACO algorithms.

Hereafter, we abbreviate and refer to the heuristic variant of the
different MOACO algorithms as follows: (bic-0) Bi-Criterion Opti-
mization with a Single Colony, (bic-1) Bi-Criterion Optimization
with Multiple Colonies and Update by Origin, (bic-2) Bi-Criterion
Optimization with Multiple Colonies and Update by Origin, (comp)
COMPETants, (macs) MACS, (moaq) MOAQ, (mona) MONACO, and
(paco) PACO. Regarding the non-heuristic variants, we  refer to
these by adding a star (*) to the heuristic abbreviations.

5.1. Ranking of the algorithms

The large number of results obtained from the experimen-
tal design led us to present an overall summary rather than the
detailed set of results for the sake of comprehensibility. Even so,
the detailed results are available upon request. The overall pic-
ture obtained from the experimentation is presented in Table 4,
where all the algorithms are ranked according to the different per-
formance indicators in each of the experiments performed (values
on the left-hand side of the table). Their average rank is also com-
puted to provide a more robust ranking between the algorithms
(values on the right-hand side).

The best-performing algorithms are those whose ranking is
within the top-4 according to either of the performance indica-
tors or experiment modalities. These algorithms are the heuristic
and non-heuristic variants of bic-1 and bic-2,  moaq*, and comp*.
The absolute worst-performing algorithm under Experiment A
was IDEA, and given such results we  decided not to include it
in Experiment B. The average values obtained from its perfor-
mance indicators were ĪH = 0.65, Ī� = 1.36, and Ī	C = 0.01, when
the same indicators for the worst performing MOACO algorithm
were ĪH = 0.90 (macs), Ī� = 1.24 (macs), and Ī	C = 0.17 (paco).

Furthermore, the ranking of the algorithms in Experiment A
shows that the non-heuristic variants always rank higher than their
heuristic counterparts regardless of the performance indicators.
These findings confirm those in [4], where the experimental design
had the algorithms perform as many iterations as possible within
a time-limited setup. However, the ranking of the algorithms in
Experiment B shows cases in IC where the heuristic variants rank
higher than their respective non-heuristic counterparts (such as
bic-1 and paco in IH, bic-2 in I�, and mona and paco). Besides,
notice that the ranking differences between the heuristic and non-
heuristic variants in Experiment B are much more reduced than
those in Experiment A. Consequently, in the next section, we fur-
ther explore the number of iterations and computational time
required by the different variants according to Experiments A  and
B, respectively.

5.2. Analysis of the MOACO algorithms according to time and
iterations

The algorithms in Experiment A  iterate for 15 min  in each rep-
etition, whereas those in Experiment B perform a certain number
of iterations regardless of the computational time they require to
finish. The number of iterations each algorithm performs in Exper-
iment B corresponds to the average number performed by the
heuristic variants in Experiment A. Thus, Experiment A  evaluates
the performance of the algorithms according to their computa-
tional efficiency, whereas Experiment B determines whether their
computational complexity is worthwhile.

In Experiment A, the non-heuristic variants significantly out-
performed the heuristic ones in every problem instance. However,
a decisive factor to such a performance is the expensive compu-
tational cost involved in computing the heuristic functions. Within
15 min, the non-heuristic variants were able to perform about twice
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Table  4
Ranking of the algorithms according to their performance indicators.

r IH I� IC A  B A, B

A  B A  B A  B moaco r̄ moaco r̄ moaco r̄

Top
1 bic-1* bic-1 moaq* moaq* bic-1* bic-1 bic-1* 1.7 bic-1 1.7 bic-1* 1.8
2  bic-2* bic-1* macs* bic-1* bic-2* bic-1* bic-2* 2.7 bic-1* 2.0 bic-2* 3.2
3  comp* bic-2* bic-1* bic-1 comp* bic-2* moaq* 3.7 bic-2* 3.7 bic-1 3.8
4  bic-1 bic-2 bic-2* bic-2 macs* bic-2 comp* 4.0 bic-2 4.0 moaq* 4.3

Middle
5  moaq* comp* mona* bic-2* moaq* comp* macs* 4.3 moaq* 5.0 comp* 4.8
6  bic-2 comp comp* mona* bic-1 comp bic-1 6.0 comp* 5.7 bic-2 5.3
7  macs* moaq* bic-2 comp* bic-2 moaq* bic-2 6.7 comp 7.0 macs* 6.3
8  mona* bic-0* bic-1 macs* comp macs* mona* 7.3 macs* 8.3 mona* 8.0
9  bic-0* macs* bic-0* comp mona* mona bic-0* 9.7 mona* 8.7 comp 8.3

10  comp mona* mona mona mona mona* comp 9.7 bic-0* 10.0 bic-0* 9.8
11  paco* bic-0 comp bic-0* bic-0* bic-0* mona 10.7 mona 10.3 mona 10.5
12  mona mona paco* paco* macs macs paco* 12.3 bic-0 13.0 bic-0 13.3
Bottom
13  bic-0 paco paco paco bic-0 bic-0 bic-0 13.7 paco 13.7 paco* 13.3
14  paco moaq moaq moaq paco* moaq paco 14.3 moaq 14.0 paco 14.0
15  moaq paco* bic-0 bic-0 moaq paco macs 14.7 paco* 14.3 moaq 14.3
16  macs macs macs macs paco paco* moaq 14.7 macs 14.7 macs 14.7
17  idea idea idea idea 17.0 idea 17.0

r̄: Average ranking.

the number of iterations that the heuristic variants did. This can
be observed in Table 5, which shows the number of iterations
performed by the heuristic variants next to the inverse ratio indi-
cating the factors by which these were outnumbered using the
non-heuristic ones. While such a difference in iterations depends
on the implementation, computing the heuristic functions does
indeed involve an additional computational cost which will reduce
the number of iterations to be performed.

Furthermore, Table 5 shows that the most computationally
expensive algorithms are bic-1 and bic-2,  followed at a distance
by comp, all of which manage to perform the least number of iter-
ations. Such a difference is expected due to the larger number
of ants utilized by bic-1 and bic-2 (� = 100) and comp (� = 20)
with respect to the remaining algorithms (� = 10). Nonetheless,
the quality of the results provided by the non-heuristic variants
of these algorithms ranked them within the top-5, and the heuris-
tic ones ranked at least on the upper-middle part except for comp.
Thus, their additional computational cost does actually improve the
quality of results. Differently, the most computationally efficient
algorithms are mona, macs and paco, from which the non-heuristic
variants rank within the upper-middle part (except for paco in
bottom-4), but their heuristic ones rank in the bottom-4 (except
for mona in lower-middle).

In Experiment B, Table 6 shows that the non-heuristic variants
generally outperformed the heuristic ones as well, but the differ-
ences were much more reduced up to the point of having the heuris-
tic variants of bic-1 and bic-2 within the top-4, and the comp one
right after its non-heuristic variant. Even more, the bic-1 ranked

higher than its non-heuristic one. Hence, it can be seen that incor-
porating the heuristic functions does improve the performance of
the algorithms to a certain extent. However, the heuristic variants
are often not better than their counterparts and, more importantly,
their computational cost is twice as much. Therefore, the additional
guidance provided by the heuristic functions in TSALBP-m/A is gen-
erally not worthwhile in terms of quality of results and much less in
computational complexity. Nonetheless, statistical tests between
the results will help consolidating these findings.

5.3. Statistical significance tests between the top-4 algorithms

Statistical significance tests are performed on the performance
indicators of the average top-4 algorithms in both (heuristic and
non-heuristic) variants under Experiments A  and B. The goal is to
determine whether the differences between the best-performing
algorithms are statistically significant regardless of the optimiza-
tion problem. To this end, we utilize the pairwise Wilcoxon
signed-rank test at a significance level  ̨ = 0.05 between every pair
of algorithms matching their performance indicators at each repeti-
tion on all problem instances. We prefer the Wilcoxon test because
it does not assume the normality of the samples and has shown to
be helpful to analysing the performance of metaheuristics [28].

The results of these tests on the hyper-volume indicators for
Experiments A  and B are presented in Tables 7 and 8, respectively,
those on the epsilon indicators in Tables 9 and 10,
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Table  6
Average time required by the non-heuristic variants and corresponding ratios to the heuristic ones (Experiment B).

moaco arc111-1 arc111-2 barthol2 barthold lutz2 lutz3 mukherje nissan scholl weemag

s* r s* r s* r s* r s* r s* r s* r s* r s* r s* r

bic-0* 4.6 1.9 4.5 1.9 4.2 2.1 4.1 2.2 6.5 1.4 6.2 1.4 3.1 2.8 5.2 1.7 4.3 2.1 4.8 1.8
bic-1* 4.6 1.9 4.5 2.0 3.8 2.3 3.6 2.4 6.5 1.4 6.1 1.5 2.9 3.1 4.7 1.9 3.6 2.5 5.0 1.7
bic-2* 4.5 1.9 4.6 1.9 3.7 2.4 3.6 2.5 6.7 1.3 6.4 1.4 2.7 3.3 4.7 1.9 3.5 2.5 4.8 1.8
comp* 4.8 1.9 4.7 1.9 3.9 2.3 4.1 2.2 6.9 1.3 6.5 1.4 3.0 3.0 6.2 1.4 3.6 2.4 4.8 1.8
macs* 4.7 1.9 4.5 1.9 3.4 2.6 3.2 2.7 6.6 1.4 5.9 1.5 2.5 3.6 5.7 1.5 3.2 2.7 4.0 2.1
moaq* 4.5 2.0 4.4 2.0 3.6 2.5 3.5 2.5 6.9 1.3 6.5 1.4 2.9 3.0 5.6 1.6 3.1 2.8 4.4 1.9
mona* 7.0 1.3 6.4 1.3 3.5 2.5 3.4 2.5 7.3 1.2 5.8 1.6 2.5 3.5 5.2 1.7 5.0 1.7 3.8 2.2
paco* 4.1 2.1 3.9 2.4 3.7 2.4 3.0 2.9 6.8 1.3 6.2 1.5 2.2 4.2 5.3 1.7 3.2 2.7 2.6 3.4

Number of seconds: s* × 100. Ratio: r = s/s*.

Table 7
Significance tests on the hyper-volume indicator for both variants of the average
top-4 MOACO algorithms (Experiment A).

moaco r c A A* B B* C C* D D* ¯IH

bic-1 4 A • − + − + + 0.93
1  A* + • + + + + + 0.94

bic-2 6 B − − • − + + 0.92
2  B* + + • + + + + 0.94

comp 7 C − − − − • + 0.91
3  C* + − − • + 0.93

moaq 8 D − − − − − − • − 0.89
5  D* − − − − − + • 0.93

r: ranking in terms of ¯IH . c: code for MOACOs. * non-heuristic variant.

Table 8
Significance tests on the hyper-volume indicator for both variants of the average
top-4 MOACO algorithms (Experiment B).

moaco r c A A* B B* C C* D D* ¯IH

bic-1 1 A • + + + 0.94
2  A* • + + + 0.94

bic-2 4 B • + + + 0.94
3  B* • + + + 0.94

comp 6 C − − − − • + 0.92
5  C* • + + 0.93

moaq 8 D − − − − − − • − 0.90
7  D* − − − − − + • 0.92

r: ranking in terms of ¯IH . c: code for MOACOs. * non-heuristic variant.

Table 9
Significance tests on the epsilon indicator for both variants of the average top-4
MOACO algorithms (Experiment A).

moaco r c A A* B B* C C* D D* Ī�

bic-1 6 A • − − + − 1.11
2  A* + • + + + 1.10

bic-2 5 B − • − + − 1.11
3  B* + + • + + 1.10

comp 7 C − − • + − 1.12
4  C* • + 1.11

moaq 8 D − − − − − − • − 1.14
1  D* + + + + • 1.10

r: ranking in terms of Ī� . c: code for MOACOs. * non-heuristic variant.

Table 10
Significance tests on the epsilon indicator for both variants of the average top-4
MOACO algorithms (Experiment B).

moaco r c A A* B B* C C* D D* Ī�

bic-1 3 A • + 1.11
2  A* • + 1.11

bic-2 4 B • + 1.12
5  B* • + 1.12

comp 7 C • + 1.12
6  C* • + 1.12

moaq 8 D − − − − − − • − 1.14
1  D* + • 1.11

r: ranking in terms of Ī� . c: code for MOACOs. * non-heuristic variant.

Table 11
Significance tests on the thresholded coverage indicator for both variants of the
average top-4 MOACO algorithms (Experiment A).

moaco r c A A* B B* C C* D D* ¯̄
I	
C

bic-1 5 A • − − + 0.54
1  A* + • + + + + 0.69

bic-2 6 B − • − + 0.52
2  B* + + • + 0.67

comp 7 C − • + 0.46
3  C* • + 0.59

moaq 8 D − − − − − − • − 0.20
4  D* − + • 0.55

r: ranking in terms of ¯̄
I	
C
. c: code for MOACOs. * non-heuristic variant.

own column. A similar performance between x and y is shown as
blank. For all the indicators, a significantly better performance of x
with respect to y is shown as ‘+’ in the table whereas a significantly
worse performance is shown as ‘−’.

The statistical significance on the different performance indica-
tors show the following two patterns. On the one hand, the top-3
algorithms under Experiment A  are all composed of non-heuristic
variants whose performance differences are generally not signif-
icant between them. However, such algorithms are surely better
than the remaining ones. On the other hand, the top-3 algorithms
under Experiment B all show non-significant differences, and in
cases such as the epsilon indicator, the differences are not even
significant between the top-6 algorithms. These results show that
the heuristic information does indeed provide useful guidance to
the algorithms, but at a very high computational cost that is just
not worth it when considering that similar or even better results
can be obtained with the non-heuristic algorithms at about half of
their computational cost.

The design of these statistical tests may  disregard special aspects
of the algorithms that might have been better suited to approach
problems with certain characteristics. However, the advantage
is that these statistical tests indicate that the best-performing
algorithms are the non-heuristic variants of bic-1 and bic-2

Table 12
Significance tests on the thresholded coverage indicator for both variants of the
average top-4 MOACO algorithms (Experiment B).

moaco r c A A* B B* C C* D D* ¯̄
I	
C

bic-1 1 A • + + + 0.66
2  A* • + + 0.63

bic-2 4 B • + + 0.62
3  B* • + + + 0.62

comp 6 C • + 0.50
5  C* − − • + 0.54

moaq 8 D − − − − − − • − 0.23
7  D* − − − − + • 0.46

r: ranking in terms of ¯̄
I	
C
. c: code for MOACOs. * non-heuristic variant.
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Fig. 3. Pareto fronts obtained with the non-heuristic variants of the average top-4 algorithms and IDEA in Experiment A. The vertical axis indicates the physical area required,
while  the horizontal axis indicates the number of workstations. The pseudo-optimal Pareto front is depicted by PF*.

regardless of the problem instance we approached. As stated before,
these two algorithms have a much larger number of ants than the
others in consideration, and it provides them with a greater diver-
sity of solutions which ultimately leads to better results than those
of the other algorithms. Furthermore, these results also hint that
the other algorithms may  be reaching early convergence and hence
wasting a significant amount of computational processing. How-
ever, this is a conjecture that needs to be supported on a further
analysis of the convergence properties for the different algorithms.

5.4. Global analysis. Advantages and disadvantages of the
algorithms

Lastly, we present a final analysis and a list of advantages and
disadvantages of all the considered algorithms. This global analysis
results from the performance indicators of the study and it is further
supported in Fig. 3, where the Pareto front approximations obtained
by IDEA in some of the problem instances significantly contrast
with those obtained with the average top-4 MOACO algorithms.

The main characteristics that contribute to the superior perfor-
mance of the top-4 algorithms (i.e. bic-1,  bic-2,  moaq*, and comp*)
are having a larger number of ants to increase the diversity of the
colony and therefore the chances to find better solutions, and hav-
ing a different pheromone matrix for each objective to prevent the
loss of information incurred when mixing different pheromones
into just one matrix. The best-performing algorithms were the non-
heuristic variants of bic-1 and bic-2.  Specifically, we attribute
the performance of the these two variants to the larger number
of ants (� = 100) which are either implicitly or explicitly directed
towards different regions of the Pareto fronts. Moreover, we also
consider important to have different pheromone matrices for the
objectives in order to prevent the loss of information about them
when aggregating preferabilities into a single pheromone matrix.

Another trait that contributed to improve the performance of
moaq was to reinforce the pheromone matrix utilizing the heuris-
tic functions. Similarly, we attribute the performance of comp* to
the use of a larger number of ants � = 20 than the other algorithms.
Lastly, the aspect of moaq* which we  consider important towards
its performance is
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with the heuristic functions of those ants with non-dominated solu-
tions according to (32).

Taking into account the global performance of the algorithms
according to all the phases of the experimentation we  can also
remark the main disadvantages of the inferior algorithms. The
main disadvantage of paco is that the pheromone matrices are
only updated by the best two ants for each objective. Thus, the
pheromone matrices will not contain enough information and
we expect ants to reach stagnation rather early due to the lack
of diversity. Regarding macs and moaq, the deterioration of their
performance is directly related to the usage of the heuristic infor-
mation because their non-heuristic variants are either within the
top-4 (moaq*) or upper-middle part of the ranking (macs*). The main
disadvantage of macs is that it utilizes two heuristic matrices and
just a single pheromone one, thus relying too much on the heuris-
tic functions and presenting a certain loss of information about the
objectives in the pheromone matrix.

Generally and in view of the Pareto fronts of Fig. 3, IDEA is able
to find dominant solutions favouring the reduction of the required
physical area at the cost of having more workstations, and such
solutions make up the right-most part of the pseudo-optimal Pareto
fronts of all the problem instances except nissan. Still, even with
such a presence within the pseudo-optimal Pareto front, the per-
formance indicators rank IDEA as the worst-performing algorithm.
The main disadvantage we find in IDEA is its higher computational
cost due to the addition of the third objective and the addi-
tional population of infeasible solutions which is maintained and
evolved throughout the search. Certainly, the MOACO algorithms
are not only conceptually simpler, but also more computationally
efficient.

6. Conclusions and future work

The configuration of an assembly line is a hard combinato-
rial optimization problem to which finding the optimum solution
might be infeasible or even impossible. However, finding good
solutions is still of great value to managers configuring the line.
To this end, we have adapted eight MOACO algorithms to solve
the TSALBP-m/A by optimizing their operation with respect to the
number of workstations and the maximum physical area these
require, and compared their performance on ten well-known prob-
lem instances. The comparison was performed in terms of the
quality of results found by two variants of the algorithms. One in
which ants utilize the commonly used heuristic functions within
their transition rules, and another in which such functions are just
excluded. We  refer to these as the heuristic and non-heuristic vari-
ants, respectively.

The non-heuristic variants always outperformed the heuristic
ones in a time-limited setup where both had the same computa-
tional resources and time to perform as many iterations as possible
(Experiment A). However, such an outcome defeats the purpose
of utilizing the heuristic functions because these are supposed
to aid the optimization process towards finding better solutions
and not otherwise. The underlying reason for such a performance
was partly because the heuristic variants required more computa-
tional time to iterate, and hence they were only able to perform
about half the number of iterations that the non-heuristic vari-
ants did. Notwithstanding, we prepared an additional experiment
in which the variants of all the algorithms performed the same
number of iterations regardless of the computational time required
(Experiment B). The quality of the results obtained with the heuris-
tic variant was certainly improved under this experiment, but it
was still worse than the quality obtained with the non-heuristic
variant. Therefore, we conclude that incorporating the heuristic
functions into the MOACO algorithms deteriorate their perfor-
mance in TSALBP-m/A time-limited scenarios, and even neglecting

such a cost, they provide no additional value to the algorithms in
consideration.

The best-performing algorithms were the non-heuristic variants
of Bi-Criterion Optimization with Multiple Colonies and Updates
by either Origin or Region (bic-1 and bic-2), followed by the
non-heuristic ones of Competing Ant Colonies (comp) and Multi-
Objective Ant-Q (moaq). Despite that the heuristic variants of bic-1
and bic-2 appeared in the top-4 under Experiment B, their results
were not significantly different from those obtained with their non-
heuristic counterparts. The worst-performing MOACO algorithms
are the heuristic and non-heuristic variants of paco, moaq, macs,
and bic-0.

Additionally, the MOACO algorithms were compared against
IDEA, an evolutionary algorithm specifically design for industrial
constrained optimization problems. However, the results from
IDEA were significantly worse than the worst-performing MOACO
algorithm. The main disadvantage of IDEA is that it has a computa-
tional cost higher than any of the MOACO algorithms. Such a cost
is mainly due to having a third objective artificially created while
also maintaining and evolving a population of infeasible solutions
throughout the search.

Future research on this topic may  consider addressing the fol-
lowing goals: (i) optimize the computational requirements for the
heuristic functions and quantify the improvements in terms of the
quality of results, (ii) experiment with different coding schemes
for the TSALBP based on the bin-packing proposal of [29], and (iii)
design and evaluate different heuristic functions to the TSALBP-
m/A  having in mind the computational cost involved.
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