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ABSTRACT A novel method for authenticating pollen grains in bright-field microscopic images

is presented in this work. The usage of this new method is clear in many application fields such as
bee-keeping sector, where laboratory experts need to identify fraudulent bee pollen samples
against local known pollen types. Our system is based on image processing and one-class classifica-
tion to reject unknown pollen grain objects. The latter classification technique allows us to tackle
the major difficulty of the problem, the existence of many possible fraudulent pollen types, and the
impossibility of modeling all of them. Different one-class classification paradigms are compared to
study the most suitable technique for solving the problem. In addition, feature selection algorithms
are applied to reduce the complexity and increase the accuracy of the models. For each local pollen
type, a one-class classifier is trained and aggregated into a multiclassifier model. This multiclassifi-
cation scheme combines the output of all the one-class classifiers in a unique final response. The
proposed method is validated by authenticating pollen grains belonging to different Spanish bee
pollen types. The overall accuracy of the system on classifying fraudulent microscopic pollen grain
objects is 92.3%. The system is able to rapidly reject pollen grains, which belong to nonlocal pollen
types, reducing the laboratory work and effort. The number of possible applications of this authen-
tication method in the microscopy research field is unlimited. Microsc. Res. Tech. 75:1475-1485,

2012 © 2012 Wiley Periodicals, Inc.

INTRODUCTION

The bee-keeping sector has a notable socio-economic
relevance in Europe, according to the FAO Agricultural
Statistics Division. Although honey is the most impor-
tant bee product, there are other well-known products
that result from bee-keeping activity, such as pollen or
royal jelly. Bee pollen production, for both domestic
and foreign markets, is considered by many bee-keep-
ers a means of diversification and increasing their
income. Furthermore, bee pollen products are consid-
ered an important food supplement and can be used in
medical treatments, although they are not scientifi-
cally recognized.

Bee-keepers, bee-keeping associations, and laborato-
ries are interested in detecting fraud in pollen and
require tools to standardize and authenticate bee pol-
len origin to guarantee their nutritive and health bene-
fits. Although there are discernment methods for recog-
nizing pollen types (Carrion et al., 2004; Chica and
Campoy, 2012), the microscopic analysis of pollen
grains, which form bee pollen loads, is the most precise
method of identifying origin. This process requires the
laboratory work of melissopalynology experts and is
thus time consuming and costly.

The use of computer vision and classification techni-
ques is not new in microscopy research and has
performed well in many situations (Chen et al.,
2006b; Jalba et al., 2004; Ranzato et al., 2007; Tsai
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et al., 2008; Wu et al., 2008). There have been many
attempts to automate pollen grain identification in
microscopic images by computer algorithms, but there
is no inexpensive, complete, and automated imaging
process. Some systems use scanning electron micros-
copy images (Treloar et al., 2004). There are also sys-
tems based on laser scanning (Ronneberger et al.,
2002). However, one of the requirements of our final
system is to be inexpensive and easy-to-use by bee-
keeping associations. Many of these associations al-
ready have conventional bright-field microscopes
because of their low price and simplicity. This fact
also applies in small laboratories, where expensive
equipment is not available.

In literature, the first works on recognizing pollen
grains by optical microscopes were presented by
France et al. (2000) and Boucher et al. (2002), where
some discriminative features of various pollen taxa
were detected and classified. Then, Li et al. (2004) and
Zhang et al. (2004) extracted more sophisticated infor-
mation from pollen grains such as Gabor wavelets and
moment invariants. They also implemented an artifi-
cial neural network (ANN) for classifying pollen grains.
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Fig. 1.

Rodriguez-Damian et al. (2006) obtained an accuracy
of 89%, while classifying similar species of the Urtica-
ceae family using shape and texture features, ANNs,
and support vector machines. An additional feasibility
study on recognizing the pore and colpi structures of
grass, birch, and mugwort pollen grains is done by
Chen et al. (2006a). Finally, the last work on pollen
grain identification is done by Landsmeer et al. (2009),
where they propose a mechanism to identify pollen
grains on air samples against other microscopic
particles.

Nevertheless, the latter works always identify pollen
grains as one of a fixed number of possible pollen types.
There is no reference in literature, where pollen grains
are authenticated as known or fraudulent types. Devel-
oping a system to authenticate local pollen grains in
bright-field microscopic images is a highly complex
task, requiring a specific solution. The classification of
known local pollen grains must be made against all
other world pollen types. This is an important obstacle
for the designing of an automated system, as micro-
scopic data cannot be collected from all existing pollen
types.

To overcome this obstacle, we propose a novel pollen
grain authentication system based on image processing
and a multiclassifier formed by one-class classifiers.
The use of one-class classification was introduced as a
classification paradigm to detect anomalies or outliers
in a data distribution (Chandola et al., 2009; Moya
et al., 1993; Ritter and Gallegos, 1997; Tax, 2001). In
these cases, there is a data absence or limitation in
negative classes. This characteristic is ideal to deal
with our authentication problem as we can model the
local pollen grain types but we cannot do it with all the
possible fraudulent pollen types. The application field
of one-class classification is enormous, from fraud
detection (Phua et al., 2004; Taniguchi et al., 1998) to
image processing (Augusteijn and Folkert 2002; Pokra-
jac et al., 2007).

In this article, we also study the suitability of differ-
ent one-class classification paradigms when solving
this microscopic imaging problem. Thus, a comparison
of five several models is done: a Gaussian estimator, a
support vector data description (SVDD), and three var-
iants of the k-nearest neighbors (kNN) technique. In
addition to the use of one-class classification, we have
applied feature selection methods (Guyon and Eli-
sseeff, 2003; Liu and Motoda, 1998) to reduce the com-
plexity of the initial model. A multiclassifier model is
also designed to aggregate the one-class classifiers
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Bright-field microscopic images of pollen grains belonging to Echium, Cistus, Rubus, Olea,
and Quercus ilex, respectively. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

outputs, given a unique response with a confidence
measure.

The proposed methods are validated for authenticat-
ing five of the most common Spanish pollen types, Cis-
tus ladanifer, Olea, Rubus, Echium, and Quercus ilex,
against non-Spanish pollen types. This work is focus
on Spain because it is one of the most important bee
pollen producer of the European Union (CBI, 2009).
Totally, a dataset of around 1,063 instances were used
to train and validate the system. The classifiers were
validated using receiver operating characteristic
(ROC) analysis and classification accuracy indicators.

MATERIALS AND METHODS
Pollen Types and Microscopic Image Acquisition

The number of possible pollen types in each country
is high. However, there are some types that are
extremely common in bee pollen. The following types,
five of the most common Spanish pollen types, have
been selected for validating our proposal: Echium, Cis-
tus, Rubus, Olea, and Quercus. Depending on the local
region of interest, these types can be others although
the proposal can still be valid. A brief description of the
selected pollen types is given below. Their microscopic
images are shown in Figure 1.

e Echium: small (10-25 pm), heteropolar, prolate
shape, 3-colporate and perforate ornamentation.

e Cistus: medium-sized (26-50 pm), isopolar, and
spheroidal. The aperture type is 3-colporate with
a smooth aperture membrane and reticulate
ornamentation.

e Rubus: medium-sized (26-50 pm), isopolar, spheroi-
dal, 3-colporate and striate ornamentation.

e Olea: small size (10-25 pm), isopolar with a spheroi-
dal shape, and 3-colporate. Its aperture membrane is
ornamented being the ornamentation reticulum cris-
tatum.

e Quercus: medium-sized (26-50 pm), isopolar, sphe-
roidal, 3-colporate and perforate ornamentation.

A bright-field optical microscope, Nikon E200 (40X),
is used. The USB DS-Fil digital camera is also used to
acquire images from the microscope. This camera is
charge-coupled device (CCD) capturing images at a re-
solution of 2560 X 1920 pixels. The preparation of the
pollen slides is also straight-forward and cheap. Typi-
cally, a thin flat piece of glass of 75 X 25mm and about
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Fig. 2. Three microscopic images of Olea in different focal planes, A, B, and C. These images will be the input
of the authentication system and are used to obtain the features required by classification. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 3. Diagram of our proposed method for authenticating pollen grains. From the set of three focal images acquired
by a bright-field microscope, the processing chain conducts the segmented pollen grains to a final authentication pollen
output. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

1 mm thick is used together with a cover slip or cover
glass over the specimen.

A motorized microscope focus stage cannot be avail-
able in our system because of its unattainable cost for
small bee-keeping associations and beekeepers. There-
fore, the final user must manually take three focal
images by focusing on the positive sculpture of the
inner part of the pollen grain (A), the exine (B), and the
negative sculpture of the inner part (C). The user can
use pattern examples of A, B, and C to get an approxi-
mate focus. An example of three focal planes for a
pollen grain is given in Figure 2.

Description of the Proposed Method

An overview of the proposed method can be observed
in the diagram of Figure 3. First, user needs to acquire
a set of three focal images for each pollen grain. Then,
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pollen grain objects are segmented from background.
When pollen grains are extracted, a set of discrimina-
tive features is calculated for each of them. Finally, a
multiclassifier formed by one-class classifiers gives an
output about the authentication of each pollen grain,
classifying them as known local pollen type (Echium,
Rubus, Cistus, Olea, and Quercus) or as nonlocal pollen
type (outlier or fraudulent).

Preprocessing and Segmentation of
Pollen Grains

A contrast-limited adaptive histogram equalization
is applied to enhance the contrast of the three focal
gray scale images. Also, images are filtered by using a
median filter to remove noise, preserving edges.

The choice of the focal plane has a considerable effect
on the quality of the segmentation (Tscherepanow
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Fig. 4. On the left hand, the original microscopic image is shown. A mask showing the contours of
the segmented pollen grains over the original image can be seen in the right figure. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

et al., 2008). Focal plane A is used to segment pollen
grains. The reason is that the exine is more distinctive
in A than in other planes as B or C.

As a bee pollen specimen does not usually contain dirt,
fungal spores, and other nonpollen objects, the following
steps are enough to segment isolated pollen grains:

1. Application of a thresholding method to the gray
scale image. The threshold is automatically found
by Otsu method (Otsu, 1979).

2. A hole filling algorithm using 4-connected back-
ground neighbors is applied to the binary thresh-
olded image to fill the holes of the inner part of some
pollen grains.

3. Opening and closing operations are also performed
on the segmented image. The goal of this image
processing technique is to remove small objects from
the image, while preserving the shape and size of
the real pollen grains.

Segmentation results are shown in Figure 4 when
extracting pollen grains in a given microscopic image.

Discriminative Pollen Grain Features

In this section, the processes to extract and select the
most discriminative features of the pollen grains are,
respectively, described.

Feature Extraction. After the segmentation pro-
cess, a number of well-defined and discriminative fea-
tures have to be processed for each segmented pollen
grain. As already stated, the input of the extraction
process is a set of three focal planes (A, B, and C).
Some features such as those related to shape do not
vary because of the focal plane. Then, these features
are just calculated once. However, others suffer from
focal variations. In these cases, we will extract three
feature values, one per focal plane, not to loose impor-
tant information.

The total number of features for each pollen grain is
28. We can split up them in three groups: (a) shape-
related, (b) textural and color information of the inner
part, and (c), exine descriptors. The description of the
shape features are summarized below:

e f; (area): number of pixels representing the pollen
grain area.

e f5 (perimeter): number of pixels which form the pol-
len grain boundary.

e f3 (diameter): largest distance between any two
points of the pollen grain boundary.

o 4 (dmay): maximum distance between the center of
the pollen grain and any point of its boundary.

o f5 (dmin): minimum distance between the center of
the pollen grain and any point of its boundary.

e fg (radius dispersion): variability of the distances
between the center and all the boundary points of
the pollen grain.

e f7 (dmean): average distance between the center of the
grain and all the points of the boundary of the pollen
grain.

o f5 (dmax/dmin): Tatio between the maximum and mini-
mum distance of the boundary points of the grain
and the center.

o fy (dmax/dmean): Tatio between the maximum and av-
erage distance of the boundary points of the grain
and the center.

o 1o (dmin/dmean): Tatio between the minimum and av-
erage distance of the boundary points of the grain
and the center.

The inner part of the pollen grain is calculated by
extracting an internal circle of radius the half of the
complete pollen grain object. Each of the following color
and textural features are calculated for the inner part
of the three focal planes (A, B, and C):

e fiq, fi0, fi3 (mean,, meang , and meanc): mean value
of the gray scale histogram.

o fi4, f15, f15 (stda, stdp , and stdc): standard deviation
of the gray scale histogram.

o f17, fig, fig (entropya, entropyg , and entropyc):
entropy value of the gray scale histogram; — > P
logo(P), being P the probability of each gray scale
value.

o f59, fo1, foo (Ha, Hg, and H¢): H component value of
the HSV color space.

o fo3, fou, fo5 (Sa, S, and S¢): S component value of
the HSV color space.

Finally, three more features, fyg, fo7, and fyg, are cal-
culated to represent the information of the exine of the
pollen grain. Obtaining the exact number of pores and
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colpi is not useful for the problem as many pollen
grains have the same number of pores and, depending
on the view, few of them (or maybe none) can be
observed. However, representing the morphological
features of the exine is useful as it contains informa-
tion about how the pores and colpi are arranged. This
information is highly discriminative to authenticate
the pollen types.

Just the central focal image B of the pollen grain is
used to extract the exine descriptors because it is
where exine is clearer. Before extracting the features,
the focal image is transformed into polar coordinates
being the most external pixels those involved in the
feature extraction process. These three exine descrip-
tors are detailed below:

o fy6 (Meangyine): mean of the gray scale histogram of
the most external 15 pixels of the focal image B in po-
lar coordinates.

o fy7 (stdeyine): standard deviation of the gray scale his-
togram of the most external 15 pixels of the focal
image B in polar coordinates.

o fo5 (entropyexine): entropy of the gray scale histogram
of the most external 15 pixels of the focal image B in
polar coordinates.

Feature Selection. Unfortunately, although the set
of 28 features explained in the previous section was
chosen after a complete expert and literature review
study, it is usual to have irrelevant features and use-
less information that degrade the performance of the
models both in speed, due to the high dimensionality,
and accuracy, due to irrelevant information (Guyon
and Elisseeff, 2003). Feature selection has the aim of
choosing the smallest possible subset of features P nec-
essary to describe a problem with an initial set of N fea-
tures, being P < N. In other words, feature selection
can be defined as a search process for removing irrele-
vant and/or redundant features and to obtain a simpler
classification system. In some problems, feature selec-
tion ensues not only in faster performance but also in
more accurate classification than using the whole set
(Liu and Motoda, 1998).

The specific goal is trying to reduce the initial pool of
28 features in just the most important, without affect-
ing the overall performance of the classification model.
To achieve this objective, we have applied feature selec-
tion algorithms to rank the most important features for
authenticating pollen grains. We have experimented
with two evaluation measures:

e Relief (Kira and Rendell, 1992): The general idea of
this method is to choose the features that can be
most distinguished between classes. These are
known as the relevant features. At each step of an
iterative process, an instance is chosen at random
from the dataset and the weight for each feature is
updated according to the distance to its nearmiss
and nearhit.

e Gain Ratio: It evaluates the worth of a feature by
measuring the information gain ratio with respect to
the class. It is a feature selection algorithm based on
information theory and information gain (a variation
of the MIFS algorithm of Battiti (1994)).
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The results of applying the latter feature selection
algorithms are described in the experiments and dis-
cussion sections.

One-Class Classification

The most outstanding property in pollen grain
authentication is the limited data to model the nonlocal
pollen types (negative classes or outliers). Although it
is possible to model the local pollen types, we cannot do
the same with all the possible existing fraudulent pol-
len types from around the world. One-class classifica-
tion has been selected as an appropriate paradigm to
deal with this problem circumstances.

One-class classification problem is different from the
conventional binary or multiclass classification prob-
lem. This distinction lies in the absence of the negative
class (normally called outlier) or in the vagueness of its
definition and sampling (Chandola et al., 2009; Tax,
2001). Originally, the term was given by Moya et al.
(1993) and some authors refer to this problem as out-
lier detection (Ritter and Gallegos, 1997), novelty
detection (Bishop, 1994), or concept learning (Japko-
wicz et al., 1995).

This absence or data limitation of the negative data
makes the problem harder to solve than conventional
classification problems. The goal of one-class classifica-
tion is to define a classification boundary around the
positive class (also called target), which maximizes the
number of accepted true positive instances and mini-
mizes the number of rejected true negative instances.

The one-class classification techniques used for
anomaly or outlier detection can primarily be grouped
in two categories: density-based and boundary-based
classifiers (Tax, 2001). Within the first group are Gaus-
sian models or Bayesian networks (Barbara et al.,
2001; Siaterlis and Maglaris, 2004). One of the bound-
ary-based classifiers is the well-known kNN, modified
for the case of one-class classification (Byers and Raf-
tery, 1998; Eskin et al., 2002) or SVDD (Ratsch et al.,
2002; Tax and Duin, 2004).

We have used three different approaches of the latter
groups: the Gaussian classifier, which could be consid-
ered as density-based classifiers. And also, SVDD and
kNN which can be seen as the most representative
algorithm of the boundary-based classifiers:

Gaussian Model. The training dataset being a set
of p-dimensional instances x;, i = 1, ..., n, this model
simply calculates a Gaussian one-class classifier by
estimating the mean X and the covariance matrix S,, of
the dataset distribution. The classifier uses the Maha-
lanobis distance (x — p,,)T S™1(x — p,) to estimate the
fitness of each instance to the target class. In addition,
a threshold 0,,,, needs to be defined during the training
phase by means of a target acceptance rate, which is
normally given as a parameter.

Each new testing instance z will be evaluated for ac-
ceptance or rejection as target by the following Eq. (1):

z is accepted as target if (x —p,)" S7'x —p,) <0, (1)

SVDD. The main idea of SVDD is to obtain a spheri-
cal-shaped boundary around the training dataset x,
which can enclose as many samples as possible while
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Fig. 5. Plot with the targets and outliers in a one-class classification problem on the right. On the
left, a multiclass classification based anomaly detection problem (Chandola et al. (2009)).

having the minimum volume. The sphere is character-
ized by its center ¢ and radius R > 0. Minimization of
the sphere volume is achieved by minimizing its square
radius R2 To improve the generality of the model,
some samples are located outside the sphere, but larger
distances from the center should be penalized. Thus,
slack variables are included in the optimization of the
variables, which will determine the hypersphere. For
the mathematical details, please refer to seminal paper
of Tax and Duin (2004).

Given a new sample z, we compare its distance to the
center of the sphere with the radius of the sphere R. If
z is inside the hypersphere, it belongs to the target
class. Otherwise, it is an outlier.

One-Class ENN. Distance-based one-class classi-
fiers are based on the assumption that normal data
instances occur in dense neighborhoods, while anoma-
lies occur far from their closest neighbors. kNN, origi-
nally provided by Dasarathy (1991), is the best-known
distance classifier. The basics of the algorithm for one-
class classification is that the anomaly score of a data
instance is defined as the distance with its kth nearest
neighbor in a given dataset.

Nearest neighbor classifiers always require the defi-
nition of distance or similarity measures defined
between two data instances. For continuous features,
the Euclidean distance is the most popular choice. For
our problem, we have chosen and compared three dif-
ferent values for £ = 1, 3, and 5. Each new instance z
will be considered as target or outlier depending
depending on the majority vote of its one, three, or five
closest neighbors in the training data.

Fusion of the Classifiers

Normally, as the possible local pollen types are more
than just one, the authentication problem can be con-
sidered as a multiclass anomaly detection problem. An
incoming pollen grain is considered anomalous if it is
not classified as local by any of the one-class classifiers
(see plots of Fig. 5). A confidence score with the predic-
tion made by each particular classifier is normally pro-
vided. If none of the classifiers are confident in classify-
ing the test instance, the instance is declared to be
anomalous (Chandola et al., 2009). We have followed

this approach to aggregate the trained one-class classi-
fiers.

Being C a set of known local bee pollen types, the
training data will contain instances belonging to |C|
classes. To use one-class classifiers and be able to reject
unknown pollen grains, the system in |C| binary sub-
problems must be decomposed. Thus, |C| one-class
classifiers fy, f5, .. .f|¢| based on densities or distances
must be trained, and an ensemble scheme has to be
built to fuse them in a multiclass prediction.

Therefore, for each pollen grain instance x we first map
each one-class classifier output f(x) to a posterior proba-
bility P(y = c¢lx). These probabilities are also normalized
in the range [0, 1]. The posterior probability of the each
classifier’s target can be considered as the confidence
CF,(y = clx) that one instance x belongs to the class c.

To classify an incoming pollen grain as one of the
ICl possible pollen types a multiclassifier is con-
structed. It compares the confidence CF,.(ylx) of all
the one-class classifiers and provides a global predic-
tion from the most reliable one-class classifier. The
multiclassifier prediction o is given by:

0= maxlgcngFoc(dx) (2)
However, it is also necessary to estimate the confidence

of the multiclassifier prediction. To do this, we first
introduce two parameters as done in Goh et al. (2005):

3)
(4)

Toc = CFoc(m]x)

Tm = doc— maxlch\C\.c#wCFoc(dx)

Although T,. is the highest confidence factor from
the |C| binary one-class classifiers and determines the
multiclassifier prediction class o, T, might not be suffi-
cient to estimate the global confidence of the multiclas-
sifier prediction. For this reason, we introduce the use
of the multiclass margin T',,. Wrong predictions could
have high T,. but small T, but correct predictions
must have higher multiclass margin values T',.

There is a better separation of correct from errone-
ous predictions if the multiclass margin variable is
used (Goh et al., 2001; Schapire and Singer, 1999).
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Fig. 6. Software prototype built in MATLAB to generate the datasets, test the algorithms, and vali-
date the complete framework. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

After preliminary experimentation, we set both param-
eters T,. and T', to 0.5 and 0.01, respectively, for all the
paper experimentation, to be used in the final decision
of the multiclassifier as in Eq. (5).

o is accepted, T > 0.5 and T, > 0.01,

5
outlier, )

otherwise

RESULTS
Validation Data and Performance Indicators

A software prototype was developed to manage data
acquisition from microscopic images, process the train-
ing database, train, adjust the models, and validate the
whole system (see Fig. 6). This software was pro-
grammed in MATLAB using some functions of the dd
tools library (Tax, 2011).

Using this framework to process the bright-field micro-
scopic images, 1,063 pollen grain samples were created.
Each pollen grain sample consists of 28 input features in
conjunction with its class. This class could be one of the
five pollen types (i.e., Echium, Rubus, Cistus, Olea, and
Quercus) or an outlier class (nonlocal pollen type).

To validate the algorithms in a convenient manner,
we have split up the local pollen samples into training
(80% of the data) and test (20% of the data). Just train-
ing positive samples are used to train the one-class
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TABLE 1. Details of the training and test data partitions
grouped by pollen type. These sets are created at random for
each of the 10 runs of the algorithms

No. of Training Test samples
Pollen type samples samples (80%) (20%)
Echium 156 125 31
Rubus 113 90 23
Cistus 101 81 20
Olea 106 85 21
Quercus 141 113 28
Outliers 446 0 446
Total 1063 494 569

classifiers, while test instances are formed by a diverse
pool of outliers (fraudulent samples) and test positive
samples (local samples). These test instances were not
used during the training phase, being totally classified
by the trained methods in the testing stage. In addition
and to avoid randomness in the data partition process,
the algorithms were trained and tested 10 times by
forming 10 different random data partitions. The corre-
sponding figures of the training and test data parti-
tions are detailed in Table 1.

The performance of the classifiers is evaluated by the
classification accuracy, false negative (FN) and positive
rates, and the confusion matrix. A FN occurs when
the outcome of the classifier is incorrectly predicted as
outlier when it is actually a target. While a false posi-
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tive (FP) occurs when the outcome is incorrectly pre-
dicted as target when it is actually an outlier. The FN
rate measures the number of FNs on the total number
of negatives or outliers, and the FP rate calculates the
fraction of FPs divided by the total number of positives
or target instances (Witten and Frank, 2005).

We have also used the ROC curve analysis and the
area under the curve (AUC) (Provost and Fawcett,

TABLE 2. AUC indicator values of the five one-class classifiers
grouped by the five local pollentypes

Echium Olea Quercus
Classifier 1 0.99784 (0.006)  0.97698 (0.024)  0.96745 (0.018)
—Gaussian
Classifier 2 0.9972 (0.006)  0.97367 (0.022)  0.97118 (0.02)
—SVDD
Classifier 3 0.99763 (0.006)  0.97969 (0.022)  0.96802 (0.020)
—I1NN
Classifier 4 0.99796 (0.006)  0.97538 (0.023)  0.96846 (0.019)
—3NN
Classifier 5 0.99798 (0.006) 0.9743(0.023)  0.97118 (0.019)
—5NN
Rubus Cistus
Classifier 1
—Gaussian  0.98122 (0.03) 0.96111 (0.045)
Classifier 2 0.98145 (0.03) 0.95426 (0.049)
—SVDD
Classifier 3 0.98156 (0.03) 0.95403 (0.049)
—I1INN
Classifier 4 0.98081 (0.03) 0.95454 (0.049)
—3NN
Classifier 5 0.98074 (0.03) 0.95469 (0.049)
—5NN

The higher the value, the better the classifier performance. The given values are
the mean (x) and standard deviation (o) obtained from runs on 10 independent
test datasets.

Pollen type ECHIUM

Pollen type OLEA

M. CHICA

1997). The ROC analysis allows us to understand the
performance of the classifiers without taking into
account the rejection threshold of the targets consid-
ered as outliers. It represents the trade-off between the
false and true positives for different values of the rejec-
tion threshold in anomaly detection and one-class clas-
sification problems (Bradley, 1997). Also, the AUC
summarizes the classification performance of the clas-
sifier in the entire range [0, 1] of the FP rate and can
be interpreted as the probability of authenticating pol-
len load outliers higher than local pollen load types. It
is calculated from the ROC curve.

Experiments

First, the performance indicator values for the five
one-class classification techniques, Gaussian classifier,
SVDD, 1NN, 3NN, and 5NN, are obtained by classify-
ing the test dataset (formed by positive and outliers
samples) in 10 different runs. In Table 2, the mean and
standard deviation of the AUC values generated by the
one-class classifiers can be observed. Also, the ROC
curves of the one-class classifiers are presented in
Figure 7. These ROC curves are grouped by the five
target pollen types.

The results of applying feature selection algorithms
to pollen grains data are also discussed. Table 3
presents a ranking of the different features, classified
in order of importance, according to the Relief and
Gain Ratio measurements. These two algorithms have
been used to select the most discriminative features
from the initial pool of 28 features, used in the previous
experimentation. Then, it is possible to compare the
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Fig. 7. ROC curves of the one-class classifiers for the five local pollen types. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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TABLE 3. Ranking output of the two feature selection algorithms
used in this study

Relief Gain ratio
Value Feature description Value Feature description
0.259 f15 stdp 0.729 f7 dmean
0.248 f16 stdc 0.725 fy perimeter
0.245 f3 diameter 0.724 f3 diameter
0.217 f14 stda 0.724 f, area
0.211 f, area 0.697 fi5 stdg
0.184 fs perimeter 0.647 f16 stdc
0.158 fo3 Sa 0.642 f14 stdp
0.157 f7 dmean 0.632 5 Amin
0.144 for Stdexine 0.553 f15 entropys
0.144 5 Qmin 0.547 f17 entropya
0.143 foe meangyine 0.547 f19 entropyc
0.121 fou Sp 0.532 4 Amax
0.109 fos Sc 0.508 fo4 Sy
0.094 f19 entropyc 0.488 fa3 SaA
0.092 foo Ha 0.479 f11 meany
0.092 f17 entropya 0.454 fos5 Sc
0.09 4 Amax 0.407 f26 meaNexine
0.087 fll meanpa 0.402 f27 Stdexine
0.074 flg entropyB 0.389 fz() HA
0.071 foo He 0.366 f13 meang
0.063 f55 entropyexine 0.354 fs radiusdispersion
0.054 flg meang 0.35 f21 HB
0.053 fo1 Hp 0.328 foo He
0.041 f13 meang 0.317 f13 meang
0.026 9 Umax/Umean 0.282 f28 entrOPYexine
0.026 f10 ‘min/ “mean 0.241 10 dmin mean
0.015 fs radiusdispersion 0.238 fs dmax /dmin
0.001 fs dmax/dmin 0.199 f9 dmax Amean

Pollen grain features are ordered by the importance given by the algorithms.
The horizontal line divides the final 19 selected features from the whole pool of
28 features.

behavior of the system with and without a feature
selection process.

As can be seen, the last nine features are ranked as
the least discriminative by both algorithms. Conse-
quently, we have created new one-class classification
models just composed of the 19 most discriminative,
selected features. The AUC indicator values obtained
by these reduced one-class classifiers are shown in
Table 4.

The last step of the experimentation is the selection
and training of the best one-class classification para-
digm for each pollen type. The best results are obtained
by the 5NN classifier trained with the reduced set of 19
features. After a preliminary study of the previous
ROC curves, a fraction rejection of 25% positive instan-
ces is used to train the final 5NN classifiers.

Five 5NN classifiers (one per pollen type) are fused
in a single model by using the multiclassifier approach
previously described. Thus, we can obtain the total ac-
curacy and confusion matrices of the multiclassifier by
classifying the test datasets in 10 different runs. The
evaluation indicator values are given in Table 5, while
the confusion matrix is presented in Table 6.

DISCUSSION

In this study, we have proposed a global method to
authenticate pollen grains from bright-field micro-
scopic images. Results were promising in the Spanish
case of authenticating five well-known pollen types
against outliers. The final accuracy of the multiclassifi-
cation system is about 92.3% with low FP and negative
rates (0.123 and 0.064, respectively).
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TABLE 4. AUC indicator values for five different classification
paradigms authenticating the five local pollen types after the feature

selection procedure
Echium Olea Quercus
Classifier 1 0.99807 (0.006)  0.97675(0.024)  0.97528 (0.019)
—Gaussian
Classifier 2 0.99778 (0.004) 0.97807 (0.022)  0.96082 (0.022)
—SVDD
Classifier 3 0.99793 (0.004)  0.97926 (0.021)  0.97632 (0.02)
—1INN
Classifier 4 0.99877 (0.004) 0.98038 (0.022)  0.97326 (0.019)
—3NN
Classifier 5 0.99878 (0.004)  0.98054 (0.022) 0.97371(0.019)
—5NN
Rubus Cistus
Classifier 1
—Gaussian  0.98122(0.029)  0.96555 (0.033)
Classifier 2 0.98085 (0.03) 0.96559 (0.040)
—SVDD
Classifier 3 0.98201 (0.03) 0.97099 (0.035)
—I1INN
Classifier 4 0.98218 (0.03) 0.95888 (0.045)
—3NN
Classifier 5 0.98208 (0.03) 0.95807 (0.045)
—5NN

The classification is made by just using 19 features. The higher the value, the
better the classifier performance. The given values are the mean (x) and stand-
ard deviation (o) obtained from runs on 10 independent test datasets.

TABLE 5. FP and FN rate values of the final multiclassifier formed
by 5NN one-class classifiers

Performance measures Mean Standard deviation
Accuracy (%): 92.373 1.12
FP rate 0.123 0.02
FN rate 0.064 0.02

The given values are the mean (¥) and standard deviation (o) obtained from runs
on 10 independent test datasets.

A comparison between different one-class classifica-
tion paradigms was performed. The validation of the
one-class classifiers showed that the most interesting
pollen types are Cistus and Quercus ilex because they
are the most complicated pollen types from the authen-
tication point of view. In the case of Quercus ilex, kNN
approaches and the Gaussian model are the best mod-
els. Even though the Gaussian model outperforms the
rest of the algorithms authenticating the Cistus pollen
type.

According to the graphs of Figure 7, Echium is the
easiest pollen type to be authenticated, where all the
classifiers perform correctly. Rubus and Olea are also
well authenticated against outlier instances, although
there are higher differences. kNN approaches seem to
obtain better ROC curves than the rest of the
approaches (see Fig. 7). In addition and by observing
the AUC values of Table 2, we can also arise the follow-
ing conclusions:

e kNN approaches obtain the best results in all the
runs and in all the pollen types apart from Cistus. In
this case, the Gaussian classifier outperforms the
rest of the paradigms.

e Best values for kNN are £ = 1 and 5 according to the
results.

e AUC values suggest that all the Spanish pollen types
are correctly authenticated by all the one-class clas-
sifiers without being a high difference between them.
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TABLE 6. Confusion matrix of the multiclassification system formed by the five one-class 5NN classifiers

Predicted pollen type
Echium Olea Quercus Rubus Cistus Outlier
Real pollen type Echium 23.3 (2.63) 0(0) 0(0) 0(0) 0(0) 7.7(2.63)
Olea 0(0) 15.7 (2.16) 0.2(0.42) 0(0) 0(0) 5.1(2.18)
Quercus 0(0) 0(0) 21.7(2.58) 0(0) 0(0) 6.3 (2.58)
Rubus 0(0) 0(0) 0(0) 17.3 (2.63) 0(0) 5.7(2.63)
Cistus 0(0) 0(0) 0(0) 0(0) 14.8 (2.39) 5.2(2.39)
Outlier 0(0) 3.9(0.32) 9(2.67) 0.3(0.48) 0(0) 432.8 (2.78)

The values represented here are the mean and standard deviation from the 10 different partitions of the training and test datasets.

An additional experimentation was performed by
applying feature selection algorithms to reduce and
improve the robustness and accuracy of the multiclas-
sification system. From the results of Table 3, we can
see how the applied algorithms returned similar rank-
ing values for the initial pool of features. Then, the
least discriminative nine features were removed. These
features were fg, f, fo, and 1y, which are related to the
A max, Amin, and dpyean values. Therefore, this fact arises
that the information of the latter four features are
given by more elemental shape features, and they do
not influence the classification. Also, features f;s, i3,
fy1, and fy5 were removed. They are features based on
the processing of focal planes B and C. The entropy of
the histogram of the exine (fy3) was also removed as it
did not favor the classification process.

The feature selection process obtained a data reduc-
tion of 32.14% with respect to the original 28 features.
But, it can be seen how the reduction made by the algo-
rithms in the feature space did not result in a loss of ac-
curacy; it even increased the overall performance
according to the AUC indicator (compare values of
Tables 2 and 4). Moreover, the feature selection did not
alter the ranking performance of the different classifi-
cation methods. kNN methods were still the best classi-
fication paradigm, outperforming the rest of the classi-
fiers when solving the problem. Although all the kNN
methods showed similar results, the 5NN was globally
the best technique.

The multiclassification system yielded a high accu-
racy on the validation data, 92.373%. The FP and FN
rates were also low and show the good response of the
authentication system. The FP rate was higher than
the FN rate but still low. In the confusion matrix of Ta-
ble 6, the miss-classifications can be observed. Only
some nonlocal instances were classified as Olea, Quer-
cus, and Rubus. The real local pollen instances classi-
fied as outliers was very low. Also, it is important to
notice that there was almost no miss-classification
between the local pollen types; just a mean of 0.2
instances were miss-classified as Quercus being Olea.

In conclusion, we have shown that the authentica-
tion of pollen grains by using bright-field microscopic
images is possible when developing an appropriate sys-
tem formed by image processing and one-class classifi-
cation techniques. The main novelty of the proposed
model was the classification scheme, which allows the
user to detect outlier pollen grains. Although the major
interest of this work is the identification of fraudulent
bee pollen samples, the results should be applicable to
other investigators and fields such as detecting specific
pollen types in air samples or detecting allergic pollen
grains in food quality testing. Future work will be

devoted to use an advanced multifocus mechanism to
enrich the pollen grain information such as multifocal
image fusion (Redondo et al., 2009). Also, this work
may be extended by using more sophisticated segmen-
tation methods such as level sets or deformable models
(Malladi et al., 1995; Xu et al., 2000).
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