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Abstract

Using the only admissible rank-two realisations of the Lie algebra of the
affine group in one dimension in terms of the Lie algebra of Lie symmetries
of the Ermakov-Pinney (EP) equation, some classes of second order nonlinear
ordinary differential equations solvable by reduction method are constructed.
One class includes the standard EP equation as a special case. A new EP
equation with a perturbed potential but admitting the same solution formula
as EP itself arises. The solution of the dissipative EP equation is also discussed.

1 Introduction

Among the most general second order linear differential equations in normal form

ψ′′ + q(x)ψ′ + p(x)ψ = 0, (1.1)

those with q ≡ 0 are especially important in both classical and quantum physics and
will be said to be of Schrödinger type, because the usual Schrödinger equation for
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the determination of stationary states is of this type with a coefficient p given by
p(x) = E−V (x), where V is the potential and E is the energy eigenvalue. Then, the
equation can be written as

ψ′′ + p(x)ψ = 0. (1.2)

Changing variables to t for the independent variable and x for the dependent variable,
and using the dot notation for time derivative, the corresponding equation

ẍ+ p(t)x = 0 (1.3)

is known in a more mathematical context as Hill’s equation [1–3]. It has been shown
in [4] (see also [5]) that there is an infinitesimal point transformation of symmetry of
such a Schrödinger type equation of the form

Xa(t, x) = a(t)
∂

∂t
+
ȧ(t)

2
x
∂

∂x
, (1.4)

where the function a satisfies the following third order linear ODE

M(a) =
...
a + 4p(t)ȧ+ 2ṗ(t)a = 0, (1.5)

which was called in [6] projective vector field equation. Moreover, as the differential
equation (1.3) is linear, all vector fields of the form X = b(t)∂/∂x with b being a
solution of (1.3) are also infinitesimal symmetries of the equation.

Similarly, we can consider the nonlinear Ermakov-Pinney (EP) differential equa-
tion

ẍ+ p(t) x =
k

x3
, x 6= 0, k ∈ R. (1.6)

One can show (see Section 2) that such differential equation is invariant under a 3-
dimensional Lie algebra of Lie symmetries generated by vector fields of the form (1.4)
where a satisfies Eq. (1.5). Let us mention that the differential equation (1.5) is very
related to the theory of higher order Adler-Gelfand-Dikii differential operators [7, 8]
and it plays a key role in the study of projective connections and gl(n,R) current
algebras [6, 9].

The main objective of this paper is to identify families of second order ordinary
differential equations that are invariant under a two-dimensional affine Lie subalgebra
of the Lie algebra associated to the EP equation, i.e., the Lie algebra generated by
vector fields (1.4). One of the identified families of equations will be seen to include
the EP equation (1.6) as a special case. This analysis is performed on Section 3. The
presence of the non-Abelian two-dimensional symmetry Lie algebra, which is solvable,
is sufficient for a second order ODE to be fully integrable by quadratures. In a final
section devoted to conclusions and remarks, we point out that the identified invariant
equations are not only of theoretical interest, but they are related to some recent
models arising in population dynamics. This connection has been explored in more
detail in a separate paper [10].
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2 Preliminaries

In order to show our main motivation we will start with the derivation of the Lie
algebra of infinitesimal point transformations of symmetry of (1.6) using the prolon-
gation algorithm for differential equations (see for example [11,12]). Given the vector
field X ∈ X(R2) with coordinate expression

X = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x
, (2.1)

its second order prolongation X(2) is given by

X(2) = X + η(1)(t, x, ẋ)
∂

∂ẋ
+ η(2)(t, x, ẋ, ẍ)

∂

∂ẍ
, (2.2)

where
η(1) = Dtη − ẋDtξ, η(2) = Dtη

(1) − ẍDtξ.

Here Dt = d/dt is a symbol for the total derivative

d

dt
=

∂

∂t
+ ẋ

∂

∂x
+ ẍ

∂

∂ẋ
+ · · · . (2.3)

More explicitly, the coefficients of two first prolongations of (2.1) are:

η(1) = ηt + (ηx − ξt)ẋ− ξx ẋ
2,

and

Dtη
(1) = ηtt + (2ηtx − ξtt)ẋ+ (ηxx − 2ξxt)ẋ

2 − ξxx ẋ
3 − 2ξx ẋẍ+ (ηx − ξt)ẍ,

and consequently,

η(2) = Dtη
(1) − ẍDtξ = ηtt + (2ηtx − ξtt)ẋ+ (ηxx − 2ξxt)ẋ

2

− ξxx ẋ
3 + (ηx − 2ξt)ẍ− 3ξx ẋẍ.

In the particular case of Ermakov-Pinney equation (1.6) with k 6= 0, the property
characterizing the functions ξ and η such that a vector field, (2.1) is a Lie symmetry
of such equation is given by

(
X(2)(ẍ+ p(t)x− k x−3)

) ∣∣∣
ẍ+p(t)x−k x−3=0

= 0, x > 0, (2.4)

or more explicitly,

(
η(2)

) ∣∣∣
ẍ+p(t)x−k x−3=0

+ ṗ(t)xξ + η
(
p(t) + 3kx−4

)
= 0. (2.5)

The particularly interesting case is when the vector field is a projectable vector
field, i.e. like in (2.1) but with ξx = 0, because its flow is made of bundle map
diffeomophisms φt : R

2 → R
2.
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The coefficients of the different powers of ẋ in (2.5) must be zero, i.e. taking into
account the corresponding form of η(2):

(k x−3 − p(t)x) (ηx − 2ξt − 3ξxẋ) + ηtt + (2ηxt − ξtt)ẋ+ (ηxx − 2ξxt)ẋ
2 − ξxxẋ

3

+ṗ(t)xξ + η(p(t) + 3kx−4) = 0,

and consequently we find the following set of conditions:

ξxx = 0,
ηxx − 2ξtx = 0,
2ηtx − ξtt + 3(p(t)x− k x−3)ξx = 0,
(k x−3 − p(t)x)(ηx − 2ξt) + ηtt + ṗ(t)xξ + (p(t) + 3kx−4)η = 0.

(2.6)

The two first equations lead to the following form for ξ and η

ξ(t, x) = d(t)x+ b(t), η(t, x) = ḋ(t)x2 + c(t) x+ e(t),

and using these expressions in the third equation of the preceding system we find

2(2d̈(t)x+ ċ(t))− (d̈(t) x+ b̈(t)) + 3(p(t)x− k x−3)d(t) = 0. (2.7)

This condition implies, first, that the function d must be zero, because the coefficient
of x−3 is k d(t), and furthermore 2ċ(t) − b̈(t) = 0, and then the expressions of the
functions ξ and η are

ξ(t, x) = b(t), η = c(t)x+ e(t),

which shows that X is a projectable vector field.
Finally, the fourth equation reduces to

(k x−3−p(t)x)(c(t)−2ḃ(t))+ c̈(t)x+ ë(t)+ ṗ(t)xb(t)+(p(t)+3kx−4)(c(t)x+e(t)) = 0,

and for the coefficients of different powers of x to be zero we obtain:

e(t) = 0,

2k (2c(t)− ḃ(t)) = 0,

c̈(t) + 2p(t) ḃ(t) + ṗ(t) b(t) = 0.

(2.8)

The second equation shows that

c(t) =
1

2
ḃ(t), (2.9)

and a substitution in the third equation gives rise to

1

2

...
b (t) + 2p(t) ḃ(t) + ṗ(t) ḃ(t) = 0, (2.10)

i.e. b is a solution of (1.5).
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This means that the symmetry vector fields we are looking for are of the form

Xb(t, x) = b(t)
∂

∂t
+

1

2
ḃ(t) x

∂

∂x
, (2.11)

where b(t) is a solution of (1.5).
The correspondence a 7→ Xa mapping each solution of (1.5) into an infinitesimal

symmetry of the nonlinear Ermakov-Pinney differential equation (1.6) is R-linear,
because Xa1+λ a2 = Xa1 + λXa2 , for each real number λ ∈ R. Consequently, as (1.5)
is a linear third order differential equation, the set of vector fields determined by
solutions a of the differential equation (1.5) is a three-dimensional real linear space.

Note that if we consider Hill’s equation (1.3), it is possible to show that if u1 and
u2 are two linearly independent solutions of (1.3), then the three functions fij = ui uj,
i ≤ j = 1, 2, are solutions of (1.5).

In fact, remark first that taking derivatives we obtain that

...
u i + p(t) u̇i + ṗ(t) ui = 0, i = 1, 2,

and if we make use of these two equations, then the following third-order derivative

D3
t (uiuj) =

...
u iuj + 3üi u̇j + 3u̇iüj + ui

...
u j ,

can be rewritten as follows

D3
t (uiuj) = −(p(t) u̇i + ṗ(t) ui)uj − 3p(t) uiu̇j + 3u̇i(−p(t) uj)− ui(p(t) u̇j + ṗ(t) uj),

that after simplification becomes

D3
t (uiuj) = −[2ṗ(t) uiuj + 4p(t)(u̇iuj + uiu̇j)] .

We have therefore obtained

D3
t (uiuj) + 4p(t)D(uiuj) + 2 ṗ(t) uiuj = 0 ,

what proves that the three functions fij = ui uj, i ≤ j = 1, 2, are solutions of (1.5).
Moreover, as the Wronskian of the three functions fij is

W (u21, u1u2, u
2
2) = 2(u1 u̇2 − u2 u̇1)

3 ,

we see that if {u1, u2} is a fundamental set of solutions of the second-order equation
(1.3), then the functions u21, u1u2 and u22 are linearly independent and they span
the three-dimensional linear space of solutions of (1.5) whose general solution can be
written as a linear combination

a(t) = Au21 + 2Bu1u2 + Cu22, A, B, C ∈ R. (2.12)

We can prove now that the set of vector fields of the form (1.4) that are Lie
symmetries of the Ermakov-Pinney (EP) equation (1.6) is a Lie algebra: such Lie
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symmetries of (1.6) close on the three-dimensional real Lie algebra sl(2,R) spanned
by the vector fields

Xij = fij
∂

∂t
+

1

2
ḟijx

∂

∂x
, i ≤ j = 1, 2. (2.13)

In fact, the set of vector fields as in (1.4) is closed under commutator because

[Xa1 , Xa2 ] = XW (a1,a2), (2.14)

whereW (a1, a2) denotes the WronskianW (a1, a2) = a1 ȧ2−a2 ȧ1, and, moreover, if a1
and a2 are solutions of (1.5), then the function w12(t) = W (a1(t), a2(t)) is a solution
of (1.5) too, because

(W (a1, a2))
˙ = ȧ1 ȧ2 + a1 ä2 − ä1 a2 − ȧ2 ȧ1 = a1 ä2 − ä1 a2,

and then,
ẇ12 = (W (a1, a2))

˙ = a1 ä2 − a2 ä1,

and when taking derivatives in this expression we get

ẅ12 = a1
...
a 2 − a2

...
a 1 + ȧ1 ä2 − ȧ2 ä1,

and therefore, if a1 and a2 are solutions of (1.5), a simple calculation shows that the
preceding relation reduces to

ẅ12 = −4p(t)w12 + ȧ1 ä2 − ȧ2 ä1,

from where we see that

...
w12 = −4p(t)ẇ12 − 4ṗ(t)w12 + ȧ1(−4p(t) ȧ2 − 2ṗ(t) a2)− ȧ2(−4p(t) ȧ1 − 2ṗ(t) a1),

and simplifying terms we arrive at

...
w12 = −4p(t)ẇ12 − 2ṗ(t)w12.

We note that the same argument with more computational efforts can be used to
show that the Wronskian w12 of any two independent solutions of the general third
order linear PDE

...
a + c2(t)ä+ c1(t)ȧ+ c0(t)a = 0, (2.15)

is also a solution if and only if the coefficients satisfy c2 = 0, ċ1 = 2c0, (a formally
self-adjoint equation).

Having in mind the mentioned property that for any pair of functionally indepen-
dent solutions of (1.3), u1 and u2, the functions u21, u1 u2, and u

2
2 form a basis of the

three-dimensional real linear space of solutions of (1.5), we can consider as a basis of
the three-dimensional real Lie algebra of infinitesimal symmetries of (1.5) the vector
fields Xu2

1
, Xu1 u2

, and Xu2

2
, and as

W (u21, u1 u2) = u21W (u1, u2),
W (u21, u

2
2) = 2u1 u2W (u1 u2),

W (u1 u2, u
2
2) = u22W (u1, u2),
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where W (u1(t), u2(t)) is constant, and we obtain from (2.14) that

[Xu2

1
, Xu1 u2

] = XW (u2

1
,u1 u2) = Xu2

1
W (u1,u2),

[Xu2

1
, Xu2

2
] = XW (u2

1
,u1 u2) = 2Xu1 u2 W (u1,u2),

[Xu1 u2
, Xu2

2
] = XW (u1 u2,u2

2
) = Xu2

2
W (u1,u2).

(2.16)

We can conclude from here that: If u1 and u2 are two functionally independent
solutions of (1.3) such thatW (u1, u2) = 1, then the vector fields Y1 = Xu2

1
, Y2 = Xu1 u2

and Y3 = Xu2

2
generate a Lie algebra of vector fields of infinitesimal Lie symmetries

of (1.5) isomorphic to sl(2,R), because they satisfy the commutation relations

[Y1, Y2] = Y1, [Y1, Y3] = 2Y2, [Y2, Y3] = Y3. (2.17)

This leads to the following result: The set of infinitesimal symmetries of (1.6) is a
three-dimensional real Lie algebra of vector fields like (1.4) where a is solution of
(1.5).

It is also to be remarked that it has been proved in [13] that the Ermakov-Pinney
equation

ẍ = −ω2(t)x+
k

x3
,

when written as a first-order system

ẋ = v, v̇ = −ω2(t)x+
k

x3

is a Lie system with associated Lie algebra sl(2,R), generated by the vector fields

X1 = x
∂

∂v
, X2 = v

∂

∂x
+

k

x3
∂

∂v
, X3 =

1

2

(
x
∂

∂x
− v

∂

∂v

)
,

which satisfy the following commutation relations

[X1, X2] = 2X3, [X1, X3] = −X1, [X2, X3] = X2.

As it happens for each Lie system, the flow of generators of its Vessiot Lie algebra,
the vector fields X1, X2 and X3, transforms each Lie system defined by them into
another one of the same type.

Eq. (1.5) admits the first integral

K =
1

4
(2a ä− ȧ2) + p(t)a2, (2.18)

because multiplying the left hand side of (1.5) by 1
2
a we obtain

1

2
a (

...
a + 4p(t)ȧ + 2ṗ(t)a) =

d

dt

(
1

4
(2a ä− ȧ2) + p(t)a2

)
= 0.

The value of K for the general solution of (1.5) written in terms of two linearly
independent solutions of (1.3) as in (2.12) is specified as K = (AC−B2)w2

12, because
introducing the notation for the bilinear form 〈·, ·〉

a = Au21 + 2Bu1u2 + Cu22 = (u1, u2)

(
A B
B C

)(
u1
u2

)
≡ 〈u,u〉,

7



where u = u1 e1 + u2 e2, with A = 〈e1, e1〉, B = 〈e1, e2〉 and C = 〈e2, e2〉, then

ȧ = 2〈u̇,u〉, ä = −2p(t)〈u,u〉+ 2〈u̇, u̇〉,

and using the expression (2.18) we find

K = 〈u,u〉(〈u̇, u̇〉 − p(t)〈u,u〉 − 〈u̇,u〉2) + p〈u,u〉2 = 〈u̇, u̇〉〈u,u〉 − 〈u̇,u〉2.

The right hand side of the preceding expression reminds that of the square of
exterior product when 〈·, ·〉 is the Euclidean product. We can then define a skew-
symmetric bilinear form F either by this expression for the module when the two
vectors have positive orientation and the opposite if the pair of vectors have the
inverse orientation. This expression K = |F (u, u̇)|2 shows that as for the exterior
product

‖u× u̇‖ = |W (u1, u2)| ‖e1 × e2‖,
and any two skew-symmetric forms are proportional

K = |W (u1, u2)|2 |F (e1, e2)|2,

and as
|F (e1, e2)|2 = 〈e1, e1〉〈e2, e2〉 − 〈e1, e2〉2 = AC − B2,

we find from here the announced result.
We refer the interested readers to [14,15] for solutions and Lie symmetry properties

of EP equation (1.6) and projective vector field equation (1.5). Let us comment that
Eq. (1.3) still has a sl(2,R) Lie algebra of Lie symmetry. In general, the third-order
auxiliary equation (1.5) crops up in symmetry analysis of second and higher order
linear ODEs with the property of being anti-self adjoint or of maximal Lie symmetry
and, as we have seen above, in second order nonlinear ODEs whose solutions are
expressed in terms of (1.3) like EP and also its generalisations [14,16], and it is used
in the derivation of first integrals for time-dependent Hamiltonian systems [17].

While it is possible to remove the coefficient p from (1.6) by the change of variables
(t, x) → (τ, ξ) defined by

x = ξ(τ)u1, τ = (W (u1, u2))
−1u2
u1
, (2.19)

with u1 and u2 particular solutions of (1.3), we prefer to keep the potential p to serve
our purposes in the current context. Moreover, we can use the orientation-preserving
transformation

t̄ = τ(t), ā(t̄) = τ̇(t)a(t), τ̇ > 0, (2.20)

where τ satisfies the third-order Kummer–Schwarz equation

{τ ; t} = 2 p(t), (2.21)

with {τ ; t} being the Schwarz derivative (see [18] for a short introduction), i.e.

{τ ; t} =

...
τ

τ̇
− 3

2

(
τ̈

τ̇

)2

. (2.22)
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See e.g. [19] and references therein, and [20–22] for related concepts and their physical
applications. Such transformation maps Eq.(1.5) into its Laguerre-Forsyth canonical
form ā′′′(t̄) = 0 [23], where the prime denotes derivative with respect to the new
independent variable t̄ (See for example [24, 25]). As remarked by Kummer [26]
the solutions of (2.21) can be expressed as the quotient of two linearly independent
solutions of (1.3). This implies that transformation (2.20) can be written in the form

t̄ = τ(t) =
αu1 + βu2
γu1 + δu2

, ā(t̄) = −∆W (u1, u2)(γu1 + δu2)
−2a(t), ∆ = αδ − βγ 6= 0.

(2.23)
With the special choice α = 0, β = 1, γ = W (u1, u2), δ = 0 (∆ = −W (u1, u2) 6= 0)
and the relationship x =

√
a between (2.18) and the equation ẍ + px = Kx−3,

transformation (2.19) is recovered.
We can reobtain the general solution (2.12) from (2.23)

a(t) = − 1

∆W (u1, u2)
(γu1 + δu2)

2(c1 + c2τ + c3τ
2) = Au21 +Bu1u2 + Cu22

after a redefinition of the arbitrary constants.
In particular, if we choose p = 0 (u1(t) = t, u2(t) = 1, W = −1) then we obtain

the SL(2,R) subgroup of the symmetry group of the canonical equation
...
a = 0

t̄ =
αt+ β

γt + δ
, ∆ = 1, (2.24)

together with ā = (γt + δ)−2a.
The SL(2,R) symmetry group of the canonical EP equation ẍ = kx−3 is thus

given by (2.24) with x̄ = (γt+ δ)−1x.
In passing, we comment that Eq. (2.15) can be reduced to the canonical form

...
a = 0 by a point transformation if and only if the following singular invariant equation
relative to the general form-preserving transformation τ = τ(t), ā = φ(t)a of (2.15)
is satisfied [27, 28]

9c̈2 + 18ċ2c2 − 27ċ1 + 4c32 − 18c1c2 + 54c0 = 0. (2.25)

The special case c2 = 0 is equivalent to the formal self-adjointness of the equation.

3 Second order ODEs invariant under the two-

dimensional affine algebra

We start this section by looking for the second order differential equations which admit
as a Lie algebra of symmetry a Lie subalgebra of the Lie algebra of symmetries of the
Ermakov-Pinney equation. The only two-dimensional Lie subalgebra is isomorphic
to that of the affine group of transformations of the real line. It is spanned by two
vector fields X1 and X2 such that [X1, X2] = X1. Then, if X1 and X2 are vector fields
of the form

Xa1(t, x) = a1(t)
∂

∂t
+

1

2
ȧ1(t) x

∂

∂x
, Xa2(t, x) = a2(t)

∂

∂t
+

1

2
ȧ2(t) x

∂

∂x
,
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where a1 and a2 are positive solutions of (1.5), then using the relation (2.14) we see
that the functions a1 and a2 must be related by

W (a1, a2) = a1,

and therefore,
a1 ȧ2 − a2 ȧ1 = a1,

then, starting from a solution a1 of (1.5) we obtain that a2 must be a solution of the
inhomogeneous linear differential equation

ȧ2 =
ȧ1
a1
a2 + 1.

As a2 = a1 is a solution of the associated linear homogeneous equation we should
introduce the change of variable a2 = a1 s, and the given equation becomes

a1 ṡ = 1,

which gives

s(t) =

∫ t 1

a1(ζ)
dζ.

Since a2 = a1 s and
d

dt
(a1 s) = ȧ1 s+ a1 ṡ = ȧ1 s+ 1,

this proves that

Xa2 = s(t)Xa1 +
1

2
x
∂

∂x
.

We are now interested in the most general class of second order ODEs involving
functions expressed in terms of arbitrary solutions of (1.5) for a given p(t) and solvable
by a pair of quadratures. We start by realising the two-dimensional non-Abelian Lie
algebra, generated by two vector fields X1 and X2 such that X1 is of the form (1.4),
i.e. is an infinitesimal point transformation of symmetry of both (1.3) and (1.6), and
X2 is a vector field satisfying the commutation relations [X1, X2] = X1. Such Lie
algebra is generated by

X1 = a(t)
∂

∂t
+
ȧ(t)

2
x
∂

∂x
, X2 = s(t)X1+βX0, X0 = x

∂

∂x
, s(t) =

∫ t dζ

a(ζ)
, (3.1)

with β 6= 0 and where a was assumed to be solution of (1.5) for the given p(t) and
β a real number. This is so because given X1 of the above mentioned form, then we
can write X2 as a linear combination of the form

X2 = c(t)X1 + b(t) x
∂

∂x
= c(t)X1 + b(t)X0,

and then, as [X1, X0] = 0,

[X1, X2] = [X1, c(t)X1] +

[
X1, b(t) x

∂

∂x

]
= X1(c)X1 + a(t) ḃ(t) x

∂

∂x
,
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and therefore, in order to have [X1, X2] = X1, the functions b and c must satisfy

aċ = 1, ḃ = 0,

from where we obtain that b(t) must be constant, b(t) = β, and c(t) must be given
by s(t) as indicated by (3.1). The constant β must be different from zero, otherwise
X2 and X1 would be proportional in each point

The 2-dimensional Lie algebra spanned by X1 and X2 (recall that we assumed
β 6= 0) is isomorphic to the Lie algebra of the affine group in the real line. They
define a transitive action of this Lie algebra on the plane (t, x) (no nontrivial ordinary
invariants exist). Recall that if a is not constant, only in the particular case β = 1/2
the vector field X2 is of the family of vector fields (1.4), in other words we only have
a rank-two realisation of the algebra within the class of vector fields (1.4).

Our aim is to construct the general second order ODE invariant under the realisa-
tion (3.1) of the two-dimensional affine algebra aff(1,R). This is a standard procedure
and requires finding invariants for the second prolongation pr(2) aff(1,R) by solving a
pair of first order linear PDEs by the method of characteristics.

3.1 Invariant equation in the case β = 1/2.

We should look for the most general second order ODE invariant under the realisation
(3.1) with β = 1/2. We start by looking for the invariant functions for the second

prolongation of X1, X
(2)
1 , given by

X
(2)
1 = a(t)

∂

∂t
+
ȧ(t)

2
x
∂

∂x
+

1

2
(äx− ȧẋ)

∂

∂ẋ
+

1

2
(
...
ax− 3ȧẍ)

∂

∂ẍ
.

The can be are computed as characteristic solutions of the partial differential equation
X

(2)
1 H = 0 and we find as solution a function H(J1, J2, J3) where

J1 =
x√
a
, J2 =

√
a

(
ẋ− ȧ

2a
x

)
= aJ̇1, J3 = a3/2(ẍ+ px). (3.2)

In order to impose X2 invariance we first remark that as

X
(2)
2 (J1) =

1

2
J1, X

(2)
2 (J2) = −1

2
J2

and

X
(2)
2 (J3) =

1

2
a3/2(−3ẍ+ px) +

a−1/2

2
(2aä− ȧ2)x,

that using the first integral (2.18) we can rewrite as

X
(2)
2 (J3) = −3

2
J3 + 2KJ1,

the differential invariants of order ≤ 2 of the algebra aff(1,R) are found by solving
the PDE

1

2
J1
∂H

∂J1
− 1

2
J2
∂H

∂J2
+

(
−3

2
J3 + 2KJ1

)
∂H

∂J3
= 0. (3.3)
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Then we consider the associated system

dJ1
J1

= −dJ2
J2

=
dJ3

−3J3 + 4KJ1

and from the first fraction with the second or with the third one we find the invariant
functions

I = J1J2 = xẋ− ȧ

2a
x2, J = J3

1J3 −KJ4
1 = x3(ẍ+ px)− K

a2
x4, (3.4)

such that the general solution of X
(2)
1 H = X

(2)
2 H = 0 is an arbitrary function of I

and J .
The invariant second order ODE are therefore of the form

x3(ẍ+ px) =
K

a2
x4 +G(I), (3.5)

with G an arbitrary smooth function, or written in a different way,

ẍ+
(
p(t)−Ka(t)−2

)
x = x−3G(I). (3.6)

So for a given function p we can produce a class of ODEs integrable by quadratures.
The first integral condition (2.18) gives us

ẍ− 1

4a2
(2aä− ȧ2)x = x−3G

(
xẋ− ȧ

2a
x2
)
, (3.7)

which actually depends on p in a disguise form. The above equation can be written
explicitly with ν = ȧ/a as

ẍ− 1

4
(2ν̇ + ν2)x = x−3G

(
xẋ− 1

2
νx2

)
. (3.8)

It is straightforward to see that Eq. (3.8) allows the following invariant (particular
solutions)

x(t) = C0

√
a(t), G(0) = 0, (3.9)

x(t) = C0

√
s(t)a(t), C0 + 4G

(
C2

0

2

)
= 0. (3.10)

It is useful to find an equivalent form of (3.8) under the transformation x = z1/k,
which takes (3.5) to

z̈ − k

4

(
2ν̇ + ν2

)
z =

k − 1

k

ż2

z
+ kz(k−4)/kG(I), (3.11)

where

I =
1

k
z(2−k)/k

(
ż − k

2
νz

)
, ν =

ȧ

a
.

12



Of course, the constant k multiplying the arbitrary function G can be absorbed into
G. The symmetry algebra is

X1 = a(t)
∂

∂t
+
kȧ(t)

2
z
∂

∂z
, X2 = s(t)X1+

k

2
z
∂

∂z
= a(t)s(t)

∂

∂t
+
k

2
(1+ȧs)z

∂

∂z
. (3.12)

It is more convenient to put k = 4/(1− n) for some real n 6= 1 for which (3.11) takes
the form

z̈ +
1

n− 1
(2ν̇ + ν2)z =

n + 3

4

ż2

z
+ znG(I), (3.13)

where

I =
1− n

4
z−(n+1)/2

(
ż − 2ν

1− n
z

)
, ν =

ȧ

a
.

Now we will examine some particular cases. For p = −λ2/4 we have the possi-
bilities a = 1 (ν = 0, K = −λ2/4), and a = e±λt, λ 6= 0 (ν = ±λ, K = 0) and the
corresponding invariant equations have the form

ẍ = x−3G(xẋ), (3.14)

ẍ− λ2

4
x = x−3G

(
xẋ± λ

2
x2
)
. (3.15)

The corresponding symmetry vector fields are

X1 =
∂

∂t
, X2 = t

∂

∂t
+
x

2

∂

∂x
,

X1 = exp[±λt]
(
∂

∂t
± λ

2
x
∂

∂x

)
, X2 = ±1

λ

∂

∂t
.

(3.16)

For p = λ2/4, we have either a = cos(λt) (and ν = −λ tan(λt), K = −λ2/4) or
a = sin(λt) (and then ν = λ cot(λt),K = −λ2/4). The value ofK is determined either
by direct computation from (2.18) or by making use of the relationK = (AC−B2)W 2.
For example, comparing the relation

a = cos(λt) = cos2
λt

2
− cos2

λt

2
= u21 − u22

with (2.12) implies A = −C = 1, B = 0 and with W (u1, u2) = λ/2 we find K =
−λ2/4. For a = sin(λt), we have A = C = 0, B = 1. The corresponding equation
and symmetries for a = cos(λt) are

ẍ+
λ2

4
(1 + sec2(λt))x = x−3G

(
xẋ+

λ

2
tan(λt) x2

)
, (3.17)

X1 = cos(λt)
∂

∂t
− λ

2
sin(λt)x

∂

∂x
,

X2 =
2

λ
tanh−1

(
tan

(λt)

2

)
cos(λt)

∂

∂t
+

1

2

(
1− 2 tanh−1

(
tan

λt

2

)
sin(λt)

)
x
∂

∂x
.

(3.18)
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3.2 Reduction to quadrature and solutions

We can introduce the new coordinates (r, s) adapted to the vector field X1, i.e. such
that X1r = 0, X1s = 1, which are therefore given by

r =
x√
a
, s =

∫ t dζ

a(ζ)
, (3.19)

so that X1 = ∂/∂s. Then as X2r = r/2 and X2s = s, the rank-two affine algebra is
transformed to the one generated by the vector fields

X1 =
∂

∂s
, X2 = s

∂

∂s
+
r

2

∂

∂r
.

If we note the relations

r
dr

ds
= x

(
ẋ− ȧ

2a
x

)
,

d2r

ds2
= a3/2

(
ẍ− 1

4a2
(2aä− ȧ2)x

)
,

the canonical form of invariant equation (3.6) or (3.7) has the form of the generalised
Ermakov-Pinney equation

d2r

ds2
= r−3G

(
r
dr

ds

)
. (3.20)

The equivalent form (3.13) is reduced to the canonical form

r′′(s) =
n+ 3

4

r′2

r
+ rnG(ω), ω =

(1− n)

4
r−(n+1)/2r′ (3.21)

by means of the coordinate transformation

r = a2/(n−1)z, s =

∫ t dζ

a(ζ)
. (3.22)

Eq. (3.21) is invariant under the Lie algebra spanned by the vector fields

X1 =
∂

∂s
, X2 = s

∂

∂s
+

2

1− n
r
∂

∂r
.

When G is restricted to a constant, say G = 4G0/(1 − n), with G0 a constant, it is
known as a special case of second order Kummer-Schwarz equation (see Eq. (3.40)),
which has a general solution formula so that solution z of (3.13) is given by

z(t) = a2/(1−n)r(s) = (Aa + 2Bas+ Cas2)2/(1−n), AC − B2 = G0. (3.23)

The structure of the canonical equation (3.20) or (3.21) for n = −3 suggests
the special choice G = const. which reduces to the canonical form of the standard
Ermakov-Pinney equation, namely

r′′(s) = G0r
−3. (3.24)
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In this case the affine symmetry algebra (3.1) with β 6= 0 extends to an sl(2,R) algebra
isomorphic to the second type in Lie’s classification list. The additional symmetry
vector field is given by

X3 = s2
∂

∂s
+ sr

∂

∂r
.

We already know that Eq. (3.24) admits a general solution formula given by

r(s) = (A+ 2Bs+ Cs2)1/2, AC − B2 = G0. (3.25)

From this fact we immediately see that the following equation

ẍ+ [p(t)−Ka(t)−2]x = G0x
−3 (3.26)

admits a sl(2,R) symmetry algebra spanned by the vector fields (3.1) and an addi-
tional one

X3 = a(t)s(t)2
∂

∂t
+

1

2
(ȧ(t)s(t)2 + 2s(t))x

∂

∂x
. (3.27)

We note that the realisation of the sl(2,R) Lie algebra is generated by

X1 = a
∂

∂t
+
ȧ

2
x
∂

∂x
, X2 = sX1 +

1

2
X0, X3 = s2X1 + sX0, (3.28)

where the vector field X0 is X0 = x∂/∂x, with commutation relations

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3, (3.29)

which can be derived from the following commutation relations

[X1, X0] = 0, [X1, sX0] = X0, [X1, sX1] = X1, (3.30)

[X1, s
2X1] = 2sX1, [sX1, sX0] = sX0, [sX1, s

2X1] = s2X1, (3.31)

from where we see that the symmetry vector fields X1, X2, X3 of (3.28) satisfy the
commutation relations (3.29) characteristics of sl(2,R) Lie algebra. The general so-
lution of (3.26) is now given by the formula

x(t) =
√
a(t)r(s(t)) =

√
Aa + 2Bas+ Cas2, AC − B2 = G0. (3.32)

This solution is somewhat surprising because as long asK is a non-vanishing constant
we obtain the general solution of the Ermakov-Pinney equation with a considerably
modified potential p̃(t) = p(t)−Ka(t)−2, and only when K = 0 it coincides with the
usual Ermakov-Pinney solution.

As an example we consider a case where K = −λ2/4 6= 0, p = λ2/4, a = cos(λt):

ẍ+
λ2

4
(1 + sec2(λt))x = G0x

−3. (3.33)

The general solution of (3.33), despite being too complicated, is given exactly by the
formula (3.32) with s(t) being

s(t) =
1

λ
log

[
1 + tan λt

2

1− tan λt
2

]
.
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The choice p = 1, a = 1 + α cos(2t), |α| < 1 (K = 1− α2) leads to the EP equation

ẍ+

(
1 +

α2 − 1

(1 + α cos(2t))2

)
x = G0x

−3, |α| < 1. (3.34)

The π-periodic general solution of (3.34) is given by (3.32) with s(t) being

s(t) =
1√

1− α2
arctan

(
1− α

1 + α
tan t

)
.

The linear version of (3.34) with G0 = 0 belongs to a one-parameter family of Hill’s
equations with coefficients periodic of period π (also a subclass of the so-called four-
parameter Ince equations [29]).

On the other hand, the special choice G(I) = 4G0/(1 − n) in (3.13) produces
the following important form of a sl(2,R)-invariant equation that frequently arises in
many applications

z̈ +
4

1− n

(
p−Ka−2

)
z =

n+ 3

4

ż2

z
+

4G0

1− n
zn. (3.35)

A basis of the symmetry algebra is given by

X1 = a
∂

∂t
+
kȧ

2
x
∂

∂x
, X2 = sX1 +

k

2
X0, X3 = s2X1 + ksX0, X0 = x

∂

∂x
, (3.36)

where k = 4/(1− n). The general solution of (3.35) is given by (see solution (3.23))

z(t) = (Aa+ 2Bas + Cas2)2/(1−n), AC − B2 = G0. (3.37)

This equation can be regarded as a generalisation of the second order Kummer-
Schwarz (2KS) equation provided that K 6= 0.

The following dissipative form of (3.35) for K = 0 can also be of some interest

ẅ+r(t)ẇ+
4p(t)

1− n
w = σ

ẇ2

w
+

4q

1− n
exp

[
−2

∫ t

r(ζ)dζ

]
wn, n 6= 1, q ∈ R, σ =

n+ 3

4
.

(3.38)
We call (3.38) dissipative second order Kummer-Schwarz (d2KS) equation. The linear
transformation

w(t) = φ(t)z(t), φ(t) = exp

[
1

2(σ − 1)

∫ t

r(ζ)dζ

]
, 2(σ − 1) =

n− 1

2
, (3.39)

transforms (3.38) into

z̈ +
4

1− n
I(t)z = σ

ż2

z
+

4q

1− n
zn, (3.40)

where

I(t) = p− 1

4
(r2 + 2ṙ).
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We already know that Eq. (3.40) has the general solution

z = (Au21 + 2Bu1u2 + Cu22)
2/(1−n), (AC − B2)W 2(u1, u2) = q, (3.41)

where u1, u2 are two linearly independent solutions of the equation

z̈ + I(t)z = z̈ +

(
p− 1

4
(r2 + 2ṙ)

)
z = 0. (3.42)

The general solution of (3.38) is given by

w(t) = exp

[
2

n− 1

∫ t

r(ζ)dζ

]
(Au21+2Bu1u2+Cu

2
2)

2/(1−n), (AC−B2)W 2(u1, u2) = q.

(3.43)
The d2KS equation (3.38) is invariant under the real Lie algebra of vector fields

Xa = a
∂

∂t
+

2

1− n
(ȧ− ar)w

∂

∂w
,

where the function a is in the real linear space spanned by the functions u21, u1u2, u
2
2,

where u1, u2 are solutions of

ẅ + [p− 1

4
(r2 + 2ṙ)]w = 0.

The commutation relations between the three components of the algebra satisfy those
of the sl(2,R) algebra in (2.17).

We note that a Lagrangian L of the 2KS equation (3.40) is provided by

L(t, z, ż) =

(
1− n

4

)2

z−(n+3)/2ż2 − I(t)z(1−n)/2 − qz(n−1)/2. (3.44)

3.3 Reduction to quadratures of Eq. (3.21)

We now turn to perform reduction to quadratures of the differential equation (3.21).
To this end, we let R = dr/ds and exchange the roles of (r, s). This gives the first
order equation

dR

dr
=
n+ 3

4

R

r
+
rn

R
G(ω), ω =

1− n

4
r−(n+1)/2R.

Invariance of this equation under the dilational symmetry generated by the vector
field r∂/∂r + (n+1)

2
R∂/∂R implies reduction to the separable form

dω

dξ
=

1− n

4
ω +

(1− n)2

16ω
G(ω), (3.45)

which is achieved by changing coordinates to (ω, ξ = ln r) and r, s defined by (3.22).
Once a solution ω = Φ(ξ, C1) to (3.45) has been found, the general solution is obtained
by integrating another separable first order ODE

dr

ds
= R =

4

(1− n)
r(n+1)/2Φ(ln r, C1).
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More conveniently, one can use the change of coordinates s̄ = r(1−n)/2, r̄ = s +
r(1−n)/2 to transform (3.21) into

s̄
d2r̄

ds̄2
= Ĝ

(
dr̄

ds̄

)
(3.46)

with symmetry Lie algebra generated by 〈∂/∂r̄, s̄∂/∂s̄ + r̄∂/∂r̄〉 and a new arbitrary

function Ĝ. Integration of (3.46) is straightforward.

3.4 Linearizable subclasses by Lie’s test

In this subsection, we reconsider the canonical equation (3.20) for r(s)

r′′ = f(r, r′) = r−3G(rr′) = r−3G(I) (3.47)

and apply the Lie’s test for a second order ODE in normal form r′′ = f(s, r, p),
p = r′, which determines the necessary and sufficient conditions for transformability
to a linear equation by a point transformation. Such conditions are expressed by the
vanishing of the following fourth order relative invariants [31]

I1 = fpppp = 0, I2 = D̂2
sfpp − 4D̂sfrp − fpD̂sfpp +6frr − 3frfpp +4fpfrp = 0, (3.48)

where D̂s = ∂/∂s + p∂/∂r + f∂/∂p. The first condition requires that G must be a
cubic polynomial of I, G(I) = G0I

3+G1I
2+G2I+G3. The second condition restricts

the coefficients in two possible forms

G2 = G3 = 0, (3.49)

G0 =
G2

27G3
3

(G2
2 − 18G3), G1 =

G2
2 − 5G3

3G3
, G3 6= 0. (3.50)

The first choice gives the equation r′′ = G0r
′3 + G1s

−1r′2, which is equivalent to the
linear equation s′′(r)+G1r

−1s′(r)+G0 = 0 by an exchange of the coordinates s↔ r.
The other possibility gives the linearizable equation

r′′(s) =
G2

6G3

(
G2

2

18G3
− 1

)
r′3

r3
+ 3

(
1− G2

2

18G3

)
r′2

r
+G2rr

′ − 2G3r
3. (3.51)

Reverting (s, r) back to (t, x) gives us a more general form of a linearizable second
order ODE.

The special choice G3 = G2
2/18, G2 = −3ℓ of the coefficients singles out a well-

known second member of the Riccati chain (the modified Emden equation) [32, 33]

r′′ + 3ℓrr′ + ℓ2r3 = 0, (3.52)

which is generated by the second iteration of the Riccati operator D = Ds + ℓr:

D
2r = (Ds + ℓr)(Ds + ℓr)r = 0. (3.53)
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Eq. (3.53) is also recognised as a spacial case of the second order Riccati equation in
the sense of Vessiot and Wallenberg [34]. This sl(3,R) invariant equation can also be
obtained from (3.11) by choosing k = −2, a = 1 (s(t) = t) andG(I) = 3I2−3ℓI+ℓ2/2.
By scaling r → ℓr we can put ℓ = 1.

Just like the ordinary first order Riccati equation, the Hopf–Cole transformation
r = ρ′/ρ linearizes (3.52) to the third order linear equation ρ′′′ = 0. Moreover, a
point transformation linearizing (3.52) to R′′(S) = 0 is provided by (see Example 5.5
of [12])

S = s− 1

r
, R =

s2

2
− s

r
. (3.54)

We comment that though the more general form

r′′ + arr′ + br3 = 0 (3.55)

does not pass Lie test unless b = a2/9, it was shown to be linearizable to

d2r̄

ds̄2
+ a

dr̄

ds̄
+ 2br̄ = 0

by the nonlocal transformation s̄ =

∫ s

r(ζ) dζ , r̄ = r2 [35].

Finally, we mention that it was shown in [36] using an ansatz that a special case
of second-order Riccati equation, in particular (3.52) with ℓ = 1, admits the (non-
natural) Lagrangian

L =
1

r′ + r2
. (3.56)

We can recover L by transforming the Lagrangian L0 = R′2 of the free particle
equation R′′ = 0 by (3.54). The transformed Lagrangian L̄ is obtained as

L̄ =
[s(r′ + r2)− r]2

(r′ + r2)2
DsS =

1

r′ + r2
+ s2 +

s2r′

r2
− 2s

r
= L+Ds

[
s3

3
− s2

r

]
.

Remark that as the Lagrangians L̄ and L differ by a total derivative they give rise
to the same Euler-Lagrange equation (3.52). In other words, L and L̄ are gauge
equivalent Lagrangians [37].

4 Conclusions and outlook

In this paper we have analysed the invariance of second order ODEs under a 2-
dimensional affine Lie algebras realised by vector fields (3.1) as extensions of the
EP-symmetry vector field (1.4). By construction, these type of equations can be
integrated by Lie’s standard reduction procedure. It is also possible to give some
particular (invariant) solutions. In the rank two case, for a constant choice of the
arbitrary function G appearing in the ODE, we have produced an equation of EP type
(see (1.6)) but with potential p(t) replaced by p(t)−Ka−2(t), K being some constant
fixed by choice of a. The general solution formula for (1.6) remains unchanged. We
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have introduced a dissipative (damped) version of EP equation and presented its
general solution (nonlinear superposition). Linearisable subclasses of the canonical
ODEs are obtained by Lie’s test.

As a final remark, let us mention that the presented study is not merely academic,
for some equations treated here arise in different applications. For example, in the
recent paper [38], the authors investigated solutions and first integrals of a second
order ODE falling within the class (3.38), based on symmetry approach. This ODE
is obtained from elimination of a dynamical system modeling the total population
of Easter island [39]. Solutions can be readily recovered from our general results.
A separate article [10] has recently been devoted to study integrability properties of
a variable coefficient variant of the above-mentioned model by using results of the
present work.
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