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Abstract

We consider the problem of the existence and multiplicity of periodic solutions associated to a class 
of scalar equations of the form x′′ + f (t, x) = 0. The class considered is such that the behaviour of its 
solutions near zero and infinity can be compared two suitable piecewise linear systems. We show how a 
rotation number approach, together with the Poincaré–Birkhoff theorem and the phase-plane analysis of the 
spiral properties, allows to obtain multiplicity results in terms of the gap between the rotation numbers of the 
referred piecewise linear systems at zero and at infinity. These systems may also be resonant. In particular, 
our approach can be used to deal with the problems without both global existence of the Cauchy problems 
associated to the equation and the sign assumption on f . The typical example is a partially superlinear 
second order equation. Our main result generalizes some classical results of Jacobowitz and Hartman, 
among others.
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1. Introduction

We are interested in the existence and multiplicity of periodic solutions of the equation

x′′ + f (t, x) = 0. (1.1)

We assume that f : R × R → R is continuous, 2π-periodic with respect to first variable and 
locally Lipschitz-continuous with respect to the second variable, in order that uniqueness for the 
associated Cauchy problems is guaranteed. Weaker conditions could be assumed as well, see [9,
11].

The second order differential equation (1.1) is the canonical model for the motion of a pe-
riodically forced nonlinear oscillator without friction effects. In this context, the study of the 
existence and multiplicity of periodic solutions has a long history, with methods ranging from 
variational methods [1,2], Poincaré–Birkhoff twist theorem [9,19,20], to Leray–Schauder con-
tinuation method [5,6] or many other techniques based on fixed point theory and topological 
degree.

As a result of the absence of friction and the underlying hamiltonian structure, the Poincaré 
map of (1.1) is an area-preserving homeomorphism. Following a suggestion by Moser, Ja-
cobowitz [20] first applied the celebrated Poincaré–Birkhoff twist theorem to prove the existence 
of infinitely many periodic solutions for superlinear second order equations. His result was 
refined one year later by Hartman [19]. To apply the Poincaré–Birkhoff theorem one needs to es-
timate the rotations of solutions of (1.1) around the origin. If a solution x(t) exists in [t0, t0 + 2π]
and the solution curve (x(t), x′(t)) in the phase plane never passes through the origin, the asso-
ciated rotation number can be defined as

rotf (z0) = θ(2π; z0) − θ(0; z0)

2π
,

where θ(t; z0) is the polar angle function of the solution curve z(t; z0) = (x(t), x′(t)) with the 
initial value condition z(t0; z0) = z0. In the cited classical references, the following sign condi-
tion is assumed to estimate the rotation number

(f0) sgn(x)f (t, x) > 0 for |x| � 1 and t ∈ R.

On the other hand, to assure that Poincaré map is well-defined, it is commonly assumed condi-
tions for the global existence of the solutions.

When (1.1) is of Duffing type,

x′′ + g(x) = p(t), (1.2)

the sign condition reads as

(g0) sgn(x)g(x) > max
t∈R

|p(t)| for |x| � 1.

From (g0) it follows that all the “large” solutions x of the autonomous equation x′′ + g(x) = 0
are periodic and the orbits of the equivalent system define a global center in the phase plane 
R

2 (except for a compact neighbourhood of the origin). Thus, (1.1) is a case of perturbation of 
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a center and the global existence of the solutions of (1.1) is guaranteed by using the Grown-
wall inequality. Moreover, one can use the fundamental periods τg(M) of solutions satisfying 
maxx = M for M → +∞ to estimate the rotations behaviour of solutions of (1.1). Using this 
approach, Ding and Zanolin [9] applied a generalized version of the Poincaré–Birkhoff theorem 
by Ding [8] to prove the existence of infinitely many periodic solutions for the Duffing equations 
with superquadratic potential. We also refer to [13,23–26,28] and the references therein for other 
related papers on this line.

When (1.1) is not of Duffing type, the case is relatively more complex. The continuity of f
and the sign condition are not enough to guarantee the global existence of solutions of (1.1). In 
fact, it was shown in [7] that there are positive continuous 2π-periodic functions q(t) such that 
the differential equation x′′ + q(t)x3 = 0 has a solution which does not exist on [0, 2π]. Thus the 
Poincaré map may not be well defined. To overcome this difficulty, besides assuming the unique-
ness for the initial value problems, Jacobowitz [20] considered the successor map, instead of the 
Poincaré map. However, in order to have this map well defined, he needed to assume a stronger 
sign condition on the nonlinearity, namely (f0) for any x �= 0. One year later, Hartman [19] was 
able to avoid this additional condition. His approach consists in modifying the nonlinearities and 
making use of some a priori estimates for the solutions with a prescribed number of rotations 
in the phase plane. Recently, Fonda and Sfecci [15] develop this idea and use the so-called ad-
missible spiral method, a tool introduced by the same authors in [14], to prove the existence of 
infinitely many periodic solutions for weakly coupled superlinear second order systems by using 
a higher dimensional version of the Poincaré–Birkhoff theorem recently obtained by Fonda and 
Ureña [16]. In [15], a sign condition similar to (f0) is also used to construct admissible spiral 
curves.

In what concerns the use of Poincaré–Birkhoff theorem without the sign condition, one can 
mention the paper of Boscaggin, Ortega and Zanolin [4] for multiplicity of subharmonic solutions 
of the forced pendulum equation. We also refer to [14,22,29] for recent results for planar systems. 
A different line of research considers (1.1) under asymptotically linear conditions. For instance, 
Zanini [30] analyses a relation obtained in [18] between rotation numbers and eigenvalues of 
Hill’s equation and multiplicity results of periodic solutions are obtained using this relation. 
More recently, Margheri, Rebelo and one of the authors [21] consider the equation (1.1) with 
an asymptotically linear property at the origin and at infinity. Then, a rotation number approach 
together with the Poincaré–Birkhoff theorem and a recent variant of it [22], allows to obtain 
multiplicity results in terms of the gap between the Morse indexes of the referred linear systems 
at zero and at infinity. More precisely, consider for i = 0, ∞ the following assumptions

(H0) f : R × R → R is continuous, 2π-periodic with respect to the first variable and locally 
Lipschitz-continuous with respect to the second variable, f (t, 0) ≡ 0.

(H l
i ) there exists a function ai ∈ L1([0, T ]) such that

ai(t) ≤ lim inf
x→i

f (t, x)

x
uniformly a.e. in t ∈ [0, T ].

(H r
i ) there exists a function bi ∈ L1([0, T ]) such that

bi(t) ≥ lim sup
x→i

f (t, x)

x
uniformly a.e. in t ∈ [0, T ].
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The main result of [21] gives multiplicity of periodic solutions if either (H l
0) or (Hr

0 ) holds and 
both (H l∞) and (Hr∞) hold. In fact, although for each i only one of the two assumptions (H l

i ), 
(Hr

i ) is used at a time to estimate the rotations of the solutions of (1.1) at zero and at infinity, 
assumptions (H l∞) and (Hr∞) together are needed to guarantee that all solutions of Cauchy prob-
lems associated to (1.1) are defined globally on [0, 2π]. So, it is natural to ask if (H r∞) can be 
removed.

The main aim of this paper is to provide a rotation number approach to deal with the problem 
without both global existence and sign assumption. The model example is a partially superlinear 
second order equation, that is for (1.1) we assume that

(f1) f (t, x)/x ≥ l(t) for |x| � 1 and t ∈ [0, 2π], moreover,

lim|x|→+∞
f (t, x)

x
= +∞, for t ∈ I ⊂ [0,2π],

where l(t) ∈ L1 and I is a set of positive measure. A similar condition was used in [3] (see 
condition (f 2∞) therein).

If compared to [21], we will consider a more general piecewise linear setting, that is we 
assume that

(H l∞)′ there exists functions a± ∈ L1([0, T ]) such that

a±(t) ≤ lim inf
x→±∞

f (t, x)

x
uniformly a.e. in t ∈ [0, T ],

(H r
0 )′ there exists a function b± ∈ L1([0, T ]) such that

b±(t) ≥ lim sup
x→0±

f (t, x)

x
uniformly a.e. in t ∈ [0, T ].

The following is the main result of this paper. The usual notation x+ = max{x, 0}, x− =
max{−x, 0} for the positive and negative part of a number is used.

Theorem 1.1. Suppose that (1.1) satisfies (H0), (Hr
0 )′ and (H l∞)′. Let us define ρ∞, ρ0 the rota-

tion numbers of the piecewise linear equations x′′+a+(t)x+ −a−(t)x− = 0 and x′′ +b+(t)x+ −
b−(t)x− = 0, respectively. If ρ∞ > ρ0, then for any n/m ∈ (ρ0, ρ∞), equation (1.1) has two 
2mπ-periodic solutions. Moreover, such 2mπ-periodic solutions make exactly n turns around the 
origin in the time [0, 2mπ].

This theorem improves the main result of [21]. As a consequence, it is not difficult to prove the 
following result, that generalizes the classical results of Jacobowitz and Hartman, among others.

Corollary 1.1. Suppose that (1.1) satisfies (H0) and (f1), then for any m ∈ N, there exist in-
finitely many 2mπ-periodic solutions for equation (1.1).
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The rest of the paper is organized as follows. In Section 2, the fundamental notion of rotation 
number is introduced together with some auxiliary lemmas. Section 3 is devoted to the proof 
of Theorem 1.1. Finally, some applications and examples are exposed on Section 4, including 
the proof of Corollary 1.1, which is presented as a particular case of a more general result (see 
Corollary 4.1).

2. Definition and properties of the rotation number

Consider the first order planar system

x′ = −y, y′ = f (t, x), (2.1)

associated to (1.1). Let z = (x, y) ∈ R
2 and the solution z(t; t0, z0) of (2.1) such that 

z(t0; t0, z0) = z0. We will write it simply as z(t; z0) when no confusion can arise. Under condi-
tion (H0), from the uniqueness for the associated Cauchy problems we know that z(t; z0) �= 0 if 
z0 �= 0. Passing to polar coordinates

x = r cos θ, y = r sin θ,

we have {
θ ′ = sin2 θ + f (t,x)

r
cos θ,

r ′ = −r sin θ cos θ + f (t,x)
r

sin θ.
(2.2)

If z(t; z0) exists in [0, 2π], we can define the 2π-rotation number associated to z(t; z0) as

rotf (z0) = θ(2π; z0) − θ(0; z0)

2π
,

where θ(t; z0) is the argument function of z(t; z0). Accordingly, rotf (z0) represents the total 
algebraic count of the counterclockwise rotations of the solution z(t; z0) around the origin during 
the time interval [0, 2π]. When (2.1) is a piecewise linear system

x′ = −y, y′ = q+(t)x+ − q−(t)x−, (2.3)

the argument function θ(t; z0) satisfies

θ ′(t) = q+(t)((cos θ)+)2 + q−(t)((cos θ)−)2 + sin2 θ. (2.4)

Thus, θ(t; z0) only depends on the initial time t0 and the argument value θ0 ∈ S
1 = R/(2πZ). 

In this case we can write the 2π-rotation number of z(t; z0) as rotq(w0), where w0 = z0/|z0|. 
Moreover, the function

q+(t)((cos θ)+)2 + q−(t)((cos θ)−)2 + sin2 θ

is 2π-periodic in t and 2π-periodic in θ . In other words, (2.4) is a differential equation on a torus. 
Therefore the rotation number of (2.4)



D. Qian et al. / J. Differential Equations 266 (2019) 4746–4768 4751
ρ(q) = lim
t→∞

θ(t; θ0) − θ0

t
(2.5)

exists and it is independent of (t0, θ0).
In analogy to Propositions 2.1–2.3 in [18], we have the following relations for the rotation 

number ρ(q) and 2π-rotation number rotq(w0) of system (2.3).

Lemma 2.1. Let n ∈ Z, then

(i) ρ(q) > n ⇔ rotq(w0) > n, ∀ w0 ∈ S1;
(ii) ρ(q) < n ⇔ rotq(w0) < n, ∀ w0 ∈ S

1;
(iii) ρ(q) = n if and only if there is at least one nontrivial 2π-periodic solution θ(t; θ0) of (2.4)

with θ(2π; θ0) − θ0 = 2nπ.

Similarly, for m ∈N, we can define

rotmq (w0) = θ(2mπ; θ0) − θ0

2π
.

Then, the following lemma holds.

Lemma 2.2. Let n, m ∈ Z, then

(i) mρ(q) > n ⇔ rotmq (w0) > n, ∀ w0 ∈ S
1;

(ii) mρ(q) < n ⇔ rotmq (w0) < n, ∀ w0 ∈ S
1.

Next, we discuss a comparison result associated to the 2π-rotation number for the nonlinear 
system (2.1). Then the behaviour of its solutions near zero and near infinity can be compared 
with two suitable piecewise linear systems, one considered near zero and the other near infinity. 
Similar to that in [11], we can prove the following lemma.

Lemma 2.3. Let f : [0, 2π] × R → R be a Carathéodory function and let q± ∈ L1([0, 2π], R)

be such that

lim inf
x→±∞

f (t, x)

x
≥ q±(t) uniformly a.e. in t ∈ [0,2π].

Then, for each ε > 0, there is Rε > 0 such that, for each solution z(t) of (2.1) with |z(t)| ≥
Rε, ∀t ∈ [0, 2π], it follows that

rotf (z0) ≥ rotq(w0) − ε, for t ∈ [0,2π], with w0 = z0

|z0| .

Respectively, if

lim sup
x→±∞

f (t, x)

x
≤ q±(t) uniformly a.e. in t ∈ [0,2π],

then, for each ε > 0, there is Rε > 0 such that, for each solution z(t) of (2.1) with |z(t)| ≥
Rε, ∀t ∈ [0, 2π], it follows that
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rotf (z0) ≤ rotq(w0) + ε, for t ∈ [0,2π], with w0 = z0

|z0| .

Furthermore, if we assume that

lim inf
x→0±

f (t, x)

x
≥ q±(t) uniformly a.e. in t ∈ [0,2π],

then, for each ε > 0, there is rε > 0 such that, for each solution z(t) of (2.1) with 0 < |z(t)| ≤
rε, ∀t ∈ [0, 2π], it follows that

rotf (z0) ≥ rotq(w0) − ε, for t ∈ [0,2π], with w0 = z0

|z0| .

Respectively, if

lim sup
x→0±

f (t, x)

x
≤ q±(t) uniformly a.e. in t ∈ [0,2π],

then, for each ε > 0, there is rε > 0 such that, for each solution z(t) of (2.1) with 0 < |z(t)| ≤
rε, ∀t ∈ [0, 2π], it follows that

rotf (z0) ≤ rotq(w0) + ε, for t ∈ [0,2π], with w0 = z0

|z0| .

Remark 2.1. As remarked in [11], Lemma 2.3 does not require the global continuability of the 
solutions on [0, 2π] (which may fail, for example, if f (t, x) has superlinear growth in x). Hence, 
the claims of this lemma have to be considered only in regard to those solutions z(t) of (2.1)
defined on [0, 2π] and such that z(t) �= 0 for all t ∈ [0, 2π].

3. Spiral property, modified Hamiltonian systems and the existence of periodic solutions

If there is no global existence of the solutions z(t; z0) in [0, 2π] for the nonlinear sys-
tem (2.1), the 2π-rotation number rotf (z0) is not well-defined. Thus the global existence is 
a crucial requirement for applying Poincaré–Birkhoff twist theorem. Although the assump-
tions (H0), (H l∞), (Hr

0 ) alone are not enough to guarantee the global existence, we will find 
that the solutions of nonlinear system (2.1) have a spiral property under (H0), (H l∞) and 
(Hr

0 ), that is if z(t; t0, z0) is defined in [t0, t1], and �r = |r(t1; t0, θ0, r0) − r0| � 1 then 
�θ = |θ(t1; t0, θ0, r0) − θ0| � 1, where (θ(t; t0, θ0, r0), r(t; t0, θ0, r0)) are the polar coordinates 
of z(t; t0, z0). This idea is similar to that used in [10,12,15], but in our case a more delicate phase 
plane analysis is needed. More precisely, the following lemma is crucial.

Lemma 3.1. Let f (t, x) satisfy (H0) and (H l∞)′. Then, for any fixed m, N0 ∈ N and sufficiently 
large r∗, there are two strictly monotonically increasing functions ξ−

N0
, ξ+

N0
: [r∗, +∞) → R, 

such that

ξ± (r) → +∞ ⇐⇒ r → +∞. (3.1)
N0
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Fig. 1. The spiral property.

Moreover, for any r0 ≥ r∗, the solution (θ(t; θ0, r0), r(t; θ0, r0)) of (2.2) satisfies that either

ξ−
N0

(r0) ≤ r(t) ≤ ξ+
N0

(r0), t ∈ [t0, t0 + 2mπ],

or there exists ̂tN0 ∈ (t0, t0 + 2mπ) such that

θ (̂tN0; θ0, r0) − θ0 = 2N0π.

Proof. For simplicity, we assume m = 1, N0 = 1 and t0 = 0, but in the same manner the con-
clusion can be proved for any t0 ∈ [0, 2π], N0 > 1 and m > 1. The first, second, third and fourth 
quadrant are respectively denoted by D4, D1, D2 and D3 (see Fig. 1).

Let z(t) = (x(t), y(t)) be the solution of (2.1) satisfying (x(0), y(0)) = (0, y0) with y0 = r0
large enough. We will describe the behaviour of the solution in the following steps.

Step 1. We will prove that there exists ξ±
N0(2)(r0), with

ξ±
N0(2)(r0) → +∞ ⇐⇒ r0 → +∞,

such that either

z(t) ∈ D1 ∪ D2, ξ−
N0(2)(r0) ≤ r(t) ≤ ξ+

N0(2)(r0)

for t ∈ [0, 2π], or there exists t2 ∈ (0, 2π) such that the latter inequality holds for t ∈ [0, t2) and, 
moreover,

x(t2) = 0, y(t2) < 0, x′(t2) > 0 and x(t) > 0 for t > t2 and t near t2,

see Fig. 1.

We discuss the estimates of z(t) in the following cases.
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Case 1. Let z(t) ∈ D1 for t ∈ (0, t1), where t1 ≤ 2π. Define an energy function v(x, y) = y2

2
+

GM(x), where

GM(x) =
x∫

0

gM(s)ds, gM(x) = sgn(x)max{|x|, max
t∈[0,2π] |f (t, x)| + 1}.

Then,

GM(x) → +∞ as |x| → ∞.

Moreover,

d

dt
v(x(t), y(t)) = yy′ + gM(x)x′ = (f (t, x) − gM(x))y ≥ 0.

It follows that

v(x(t), y(t)) ≥ v(x(0), y(0)) = r2
0

2
, for t ∈ (0, t1].

Denote by �M0 the curve v(x, y) = r2
0

2
, then

r(t) ≥ ξ−
N0(1)(r0), for t ∈ (0, t1], (3.2)

where ξ−
N0(1)(r0) = min{√x2 + y2 | (x, y) ∈ D1 ∩ �M0} > 0 for r0 sufficiently large.

On the other hand, we have

d

dt
r2 = 2x

dx

dt
+ 2y

dy

dt
= −2xy + 2yf (t, x). (3.3)

From (H l∞)′, there exists ε0 ≤ 1 and Mε0 , such that f (t, x) ≤ (a−(t) − ε0)x for x < −Mε0 , 
where a−(t) ∈ L1([0, 2π]). Using (3.2), for a sufficiently large r0, there exists t ′1 ∈ (0, t1) such 
that x(t ′1) = −Mε0 . Then x(t) ∈ (0, −Mε0) for t ∈ (0, t ′1) and x(t) ≤ −Mε0 for t ∈ [t ′1, t1). When 
t ∈ (0, t ′1), we have

|y′(t)| ≤ Kε0 = max{|f (t, x)| : t ∈ [0,2π ], x ∈ [−Mε0,0]}.

Thus y(t) ≤ y0 + 2Kε0π , which implies r(t) ≤ r0 + 2Kε0π + Mε0 . When t ∈ [t ′1, t1), from (3.3), 
we have

d
r2 ≤ −2xy + 2xy(a−(t) − ε0) ≤ r2(2 + |a−(t)|).
dt
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Taking integrals on both sides of the above inequality gives

t∫
t ′1

1

r2 d(r2) ≤
t∫

t ′1

(2 + |a−(t)|)dt.

It follows that

r(t) ≤ r(t ′1)e
∫ t

0 (1+|a−(t)|/2)dt ≤ (r0 + 2Kε0π + Mε0)e
∫ t

0 (1+|a−(t)|/2)dt , for t ∈ [t ′1, t1). (3.4)

Denote by ξ+
N0(1)(r0) = (r0 + 2Kε0π + Mε0)e

∫ t
0 (1+|a−(t)|/2)dt . Then, combining with (3.2) we 

find

ξ−
N0(1)(r0) ≤ r(t) ≤ ξ+

N0(1)(r0), for t ∈ [0, t1]. (3.5)

If t1 = 2π, the discussion is completed. If t1 < 2π, z(t) will meet y = 0 entering into D2 at 
t = t1.

Note that now we are not assuming the sign condition y′ = f (t, x) < 0 for −x large enough. 
Thus z(t) could eventually return back to D1 again. Without loss of generality, we assume that 
there are t ′2, t2 ∈ (t1, 2π] such that:

(1) z(t) ∈ D1 for t ∈ [0, t1), y(t1) = 0;
(2) z(t) ∈ D1 ∪ D2 for t ∈ [t1, t ′2], y(t ′2) = 0
(3) z(t) ∈ D2 for t ∈ [t ′2, t2), t2 = 2π or x(t2) = 0.

The estimate of (1) has been given in Case 1. Since we can obtain an estimate of z(t) for 
t ∈ [t ′2, t2] only dependent on r(t ′2), we will discuss the estimate of (3) firstly, then give the 
estimates of (2).

Case 2. Let z(t) ∈ D2, t ∈ (t ′2, t2), then x(t) < 0, y(t) < 0. In this case,

d

dt
v(x(t), y(t)) = yy′ + gM(x)x′ = (f (t, x) − gM(x))y ≤ 0.

It follows that

v(x(t), y(t)) ≤ v(x(t ′2), y(t ′2)) = GM(x(t ′2)), for t ∈ [t ′2, t2).
Denote by �M ′

2
the curve v(x, y) = GM(x(t ′2)), then

r(t) ≤ ξ+
t ′2

, for t ∈ [t ′2, t2), (3.6)

where ξ+
t ′2

= max{√x2 + y2 | (x, y) ∈ D2 ∩ �M ′
2
} is dependent on r(t ′2).

On the other hand, we have

d
r2 = 2x

dx + 2y
dy = −2xy + 2yf (t, x).
dt dt dt
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From (H l∞)′, there exist positive constants ε0 ≤ and Mε0 , such that f (t, x) ≤ (a−(t) − ε0)x for 
x ≤ Mε0 . Then

dr2

dt
≥ −2xy + 2xy(a−(t) − ε0) ≥ −r2(2 + |a−(t)|).

Using the Gronwall inequality we have

r(t) ≥ r(t ′2)e
− ∫ t

t ′2
(1+|a−(t)|/2)dt

, for t ∈ [t ′2, t2). (3.7)

If there is t ′′2 > t ′2 such that x(t ′′2 ) = −Mε0 , then y′(t ′′2 ) ≤ −r(t ′′2 ) + x(t ′′2 ) = −r(t ′′2 ) + Mε0 . We 
can prove that if r(t ′′2 ) is sufficiently large then there is t ′′′2 > t ′′2 such that x(t ′′′2 ) = 0 and x′(t) =
−y(t) < 0 for t ∈ [t ′′2 , t ′′′2 ]. In this case z(t) could not return back to D1 again. So we just discuss 
the case when x(t) < −Mε0 for t ∈ [t ′2, t2).

We note that (3.6) and (3.7) give estimates of z(t) for t ∈ [t ′2, t2] dependent on r(t ′2).

Case 3. We proceed to the estimation of z(t) for t ∈ [t1, t ′2]. We will prove that

ξ−
N0(2)(r0) ≤ r(t) ≤ ξ+

N0(2)(r0), for t ∈ [t1, t ′2], (3.8)

where

ξ−
N0(2)(r0) = ξ−

N0(1)(r0)e
−(2π+M)

and

ξ+
N0(2)(r0) = max{

√
x2 + y2|(x, y) ∈ D2 ∩ �M2},

where �M2 is the curve v(x, y) = GM(ξ+
N0(1)(r0)).

From the uniqueness for the associated Cauchy problems and the vector field constraint condi-
tion x′ = −y, the nonzero solutions can never perform clockwise rotations at y-axis. Then there 
is d0 > 0, such that x(t) ≤ −d0 for t ∈ [t1, t ′2]. Let fn(t, x), n = 1, 2, · · · , be analytic functions 
satisfying

lim
n→∞fn(t, x) = f (t, x) uniformly for x ∈ [−ξ+

N0(2)
(r0),−d0/2], t ∈ [0,2π].

Let xn(t) be the solution of x′′ + fn(t, x) = 0 satisfying the initial conditions xn(t1) =
x(t1), x′

n(t1) = 0. Then, by using the theorem for the dependence on initial conditions and pa-
rameters we know that zn(t) = (xn(t), −x′

n(t)) exists for t ∈ [t1, t ′2]. Moreover,

lim
n→∞ zn(t) = z(t) uniformly for t ∈ [t1, t ′2]. (3.9)

Without loss of generality, we let xn(t) ≤ −d0/2 for t ∈ [t1, t ′2].
Next, we will prove that

ξ− (r0) ≤ rn(t) = |zn(t)| ≤ ξ+ (r0), for t ∈ [t1, t ′ ]. (3.10)
N0(2) N0(2) 2
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Fig. 2. A solution turning back to region D1.

Therefore, (3.10) and (3.9) implies (3.8).
Since fn(t, x) is analytic, so is zn(t). Thus yn(t) has only a finite number of zeros in [t1, t ′2]. 

Without loss of generality, we let t ′1, t ′′1 ∈ (t1, t ′2) such that yn(t
′
1) = yn(t

′′
1 ) = 0 and zn(t) ∈ D2

for t ∈ [t1, t ′1], zn(t) ∈ D1 for t ∈ (t ′1, t ′′1 ] (see Fig. 2).
When zn(t) ∈ D2, we use the similar argument as in (3.6) and (3.7) to obtain

rn(t1)e
− ∫ t

t1
(1+|a−(t)|/2)dt ≤ rn(t) ≤ ξ+

t1
, for t ∈ [t1, t ′1], (3.11)

where ξ+
t1

= max{√x2 + y2 | (x, y) ∈ D2 ∩ �M1} and �M1 is the curve v(x, y) = GM(x(t1)). 
Moreover, since x′

n(t) = −yn(t) > 0, we have

−xn(t
′
1) < −xn(t1) = rn(t1). (3.12)

When zn(t) ∈ D1, using the argument in Case 1, and from the analogous estimation of (3.4), 
we find

rn(t) ≤ rn(t
′
1)e

∫ t

t ′1
(1+|a−(t)|/2)dt

, for t ∈ [t ′1, t ′′1 ]. (3.13)

Moreover, since x′
n(t) = −yn(t) < 0, we have −xn(t) > −xn(t

′
1) = rn(t

′
1). Thus,

rn(t) ≥ −xn(t) ≥ rn(t
′
1), for t ∈ [t ′1, t ′′1 ]. (3.14)

In particular, we get the following estimates related to the zeros t ′1, t ′′1 of yn(t):

rn(t1)e
− ∫ t ′1

t1
(1+|a−(t)|/2)dt ≤ |xn(t

′
1)| ≤ rn(t1),

and

rn(t1)e
− ∫ t ′′1

t1
(1+|a−(t)|/2)dt ≤ |xn(t

′′)| ≤ rn(t1)e
∫ t ′′1
t1

(1+|a−(t)|/2)dt
.
1
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In general, assume that t (k)
1 is the k-th zero of yn(t), then it satisfies

rn(t1)e
− ∫ t

(k)
1

t1
(1+|a−(t)|/2)dt ≤ |xn(t

(k))| ≤ rn(t1)e
∫ t

(k)
1

t1
(1+|a−(t)|/2)dt

.

Then for the k +1-th zero t (k+1)
1 , if it exists, we have two possibilities. The first one is zn(t) ∈ D1

for t ∈ (t
(k)
1 , t (k+1)

1 ), then using the similar argument for (3.13) and (3.14) we have

|xn(t
(k)
1 )| < |xn(t

(k+1)
1 )| ≤ rn(t

(k)
1 )e

∫ t
(k+1)
1

t
(k)
1

(1+|a−(t)|/2)dt

. (3.15)

The second option is zn(t) ∈ D2 for t ∈ (t
(k)
1 , t (k+1)

1 ). In this case, using the similar argument for 
(3.11) and (3.12), we have

rn(t
(k)
1 )e

− ∫ t
(k+1)
1

t
(k)
1

(1+|a−(t)|/2)dt

≤ |xn(t
(k+1)
1 )| < |xn(t

(k)
1 )|. (3.16)

Inequalities (3.15) and (3.16) imply that

rn(t1)e
− ∫ t

(k+1)
1

t1
(1+|a−(t)|/2)dt ≤ |xn(t

(k+1)
1 )| ≤ rn(t1)e

∫ t
(k+1)
1

t1
(1+|a−(t)|/2)dt

.

Therefore

rn(t1)e
− ∫ t̃

t1
(1+|a−(t)|/2)dt ≤ |xn(̃t)| ≤ rn(t1)e

∫ t̃
t1

(1+|a−(t)|/2)dt
(3.17)

holds for any ̃t ∈ (t1, t ′2) such that yn(̃t) = 0.
Now we can give the estimate of zn(t) for t ∈ (t1, t ′2). If zn(t) ∈ D1, then there exists ̃t1 ∈

(t1, t ′2) with yn(t̃1) = 0, such that zn(s) ∈ D1 for s ∈ (̃t1, t]. Using the similar argument for (3.13)
and (3.14) we have

|xn(̃t1)| = rn(̃t1) ≤ rn(t) ≤ rn(̃t1)e
∫ t
t̃1

(1+|a−(t)|/2)dt

which recalls (3.17) and (3.4) to get

ξ−
N0(1)(r0)e

− ∫ 2π
0 (1+|a−(t)|/2)dt ≤ rn(t) ≤ rn(t1)e

∫ t
t1

(1+|a−(t)|/2)dt ≤ ξ+
N0(1)(r0). (3.18)

If zn(t) ∈ D2, then there exists ̃t2 ∈ (t1, t ′2) with yn(̃t2) = 0, such that zn(s) ∈ D2 for s ∈ (̃t2, t]. 
Then, reasoning as in (3.11), we have

rn(t̃2)e
− ∫ t

t̃2
(1+|a−(t)|/2)dt ≤ rn(t) ≤ ξ+

t̃2
, (3.19)

where ξ+
t̃2

= max{√x2 + y2 | (x, y) ∈ D2 ∩ �M̃2
} and �M̃2

is the curve v(x, y) = GM(x(̃t2)). 
Note that from (3.4) we have
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|xn(̃t2)| ≤ rn(t1)e
∫ t̃
t1

(1+|a−(t)|/2)dt ≤ r(0)e
∫ t̃

0 (1+|a−(t)|/2)dt ≤ ξ+
N0(1)(r0).

Then ξ+
t̃2

≤ ξ+
N0(2)(r0) = max{√x2 + y2 | (x, y) ∈ D2 ∩ �M2}, where �M2 is the curve v(x, y) =

GM(ξ+
N0(1)

(r0)). Therefore (3.18) and (3.19) implies (3.10).
For t > t ′2, there are two possibilities. The first one is z(t) ∈ D2 for t ∈ [t ′2, 2π]. In this case, 

the estimate (3.8) holds for t ∈ [t ′2, 2π] by using (3.11). Thus, in view of (3.5), (3.11), estimate 
(3.8) holds for t ∈ [0, 2π]. Otherwise, there exists t2 ∈ (t1, 2π) such that x(t2) = 0 and z(t) ∈ D3
for t ≥ t2. In this case, the estimate (3.8) also holds for t ∈ [0, t2].

Step 2. Similar arguments apply to the cases of z(t) ∈ D3 and D4. For example, when z(t) ∈ D3, 
we have x > 0 and y < 0, then we have

d

dt
v(x(t), y(t)) = yy′ + gM(x)x′ = (f (t, x) − gM(x))y ≥ 0.

On the other hand, there exists ε0, such that f (t, x) ≥ (a+(t) − ε0)x. Then

d

dt
r2 ≤ −2xy + 2xy(a+(t) − ε0) ≤ r2(2 + |a+(t)|).

Thus the argument for z(t) ∈ D3 is similar to that for z(t) ∈ D1.
In conclusion, we can find ξ±

N0(4)(r0) with

ξ±
N0(4)(r0) → +∞ ⇐⇒ r0 → +∞,

such that

ξ−
N0(4)(r0) ≤ r(t) ≤ ξ+

N0(4)(r0), for z(t) ∈ D3 ∪ D4.

Let

ξ−
N0

(r0) = min{ξ−
N0(i)

(r0), i = 2,4}, ξ+
N0

(r0) = max{ξ+
N0(i)

(r0), i = 2,4}.

Then either

ξ−
N0

(r0) ≤ r(t) ≤ ξ+
N0

(r0), for t ∈ [0,2π],

or there exists t̂1 ∈ [0, 2π), such that z(t) intersects x = 0 at t = t̂1 and z(t) completes one 
clockwise turn around the origin when t ∈ [0, ̂t1]. Moreover,

ξ−
N0

(r0) ≤ r(t) ≤ ξ+
N0

(r0), for t ∈ [0, t̂1].

Finally, it is clear that ξ± (r0) can be chosen as strictly increasing functions that satisfy (3.1). �
N0
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The geometric meaning of Lemma 3.1 is that there is an annulus depending on initial values 
such that the solution of (2.1) either is located in this annulus for t ∈ [t0, t0 + 2mπ] or completes 
N0 turns around the origin when t ∈ [0, ̂tN0] with ̂tN0 ∈ (t0, t0 + 2mπ). In other words, there are 
two spiral curves guiding the solutions of (2.1) in the phase plane (see Figs. 1, 2), forcing them 
to rotate around the origin as they increase in norm.

Next, let us define a modified Hamiltonian system. Consider a Hamiltonian function

H = y2

2
+ k(x2 + y2)G(t, x) + [1 − k(x2 + y2)]x2,

where G(t, x) = ∫ x

0 f (t, s)ds, k(x2 + y2) ∈ C∞(R+, R) is a truncating function satisfying that

k(x2 + y2) =

⎧⎪⎨⎪⎩
0, x2 + y2 ≥ r2;
smooth connection, r1 < x2 + y2 < r2;
1, x2 + y2 ≤ r1,

where r1, r2 are positive parameters, whose specific value of will be given in the proof of Theo-
rem 1.1.

For the associated Hamiltonian system⎧⎪⎪⎨⎪⎪⎩
x′ = −∂H

∂y
= −y − 2y

dk

dr2 [G(t, x) − x2];

y′ = ∂H

∂x
= 2x

dk

dr2 [G(t, x) − x2] + k(x2 + y2)[f (t, x) − 2x] + 2x,

(3.20)

it is very easy to check the following lemma.

Lemma 3.2. Assume (H0). The initial value problem associated to (3.20) has a unique solution. 
Moreover, every solution z(t; z0) = (x(t; x0, y0), y(t; x0, y0)) exists for any t ∈ R. If |z(t; z0)| ≤
r1, z(t; z0) is also a solution of (2.1).

If z0 �= (0, 0), then z(t; z0) �= (0, 0) for every t ∈ R. Thus, polar coordinates

x(t;x0, y0) = r(t; z0) cos θ(t; z0), y(t;x0, y0) = r(t; z0) sin θ(t; z0),

are well-defined. Moreover, when x(t; x0, y0) = 0 then x′(t; x0, y0) = −y(t; x0, y0), the solutions 
can never perform clockwise rotations at y-axis. More precisely, for any t2 > t1 > 0 and any 
k ∈ Z, if θ(t1; z0) > kπ + π/2, then

θ(t2; z0) > kπ + π/2.

Proof of Theorem 1.1. We will divide the proof into the following steps.

Step 1. By the continuity of the solutions with respect to the initial value and the fact that z =
(0, 0) is a solution of (3.20), we can find �− = {z : |z| = r̃ε}, such that if z0 ∈ �− then |r(t)| =
|z(t; z0)| ≤ rε , for t ∈ [0, 2mπ], where ε < min{n/m − ρ0, ρ∞ − n/m}. Then, by Lemma 2.3 we 
have
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θ(2mπ, z0) − θ(0, z0) < 2nπ, for z0 ∈ �−. (3.21)

Step 2. Let �+ = {z : |z| = R∞} and choose r1 = R′∞, where

R∞ > (ξ−
n+1)

−1(Rε), R′∞ > ξ+
n+1(R∞)

and Rε is defined in Lemma 2.3. Then, system (3.20) is equivalent to the original system (2.1)
for |z| ≤ r1.

Now, consider the solution of (3.20) starting from z0 ∈ �+ = {z : |z| = R∞}. If Rε ≤ r(t) =
|z(t; z0)| ≤ R′∞ for all t ∈ [0, 2mπ], using Lemma 2.3, we have

θ(2mπ, z0) − θ(0, z0) > 2nπ, for z0 ∈ �+. (3.22)

If there exists t� ∈ (0, 2mπ) such that r(t�) ≥ R′∞ > ξ+
n+1(R∞), then the inequality

ξ−
n+1(|z0|) ≤ r(t) ≤ ξ+

n+1(|z0|)

doesn’t satisfy for all t ∈ [0, 2mπ]. Therefore, by Lemma 3.1, we know that there exists t ′� ∈
(0, t1] such that

θ(t ′�; z0) − θ(0; z0) = 2(n + 1)π.

Moreover, by using Lemma 3.2, we have

θ(2mπ, z0) − θ(0, z0) = (θ(2mπ, z0) − θ(t ′�; z0)) + (θ(t ′�; z0) − θ(0, z0))

≥ −π + 2(n + 1)π > 2nπ.

Finally, if there exists t ′′� ∈ (0, 2mπ) such that r(t ′′� ) ≤ Rε < ξ−
n+1(R∞), then the inequality

ξ−
n+1(|z0|) ≤ r(t) ≤ ξ+

n+1(|z0|)

doesn’t satisfy for all t ∈ [0, 2mπ], the same argument as above proves that (3.22) holds.

Step 3. Denote by A the annulus bounded by �− and �+. Consider the Poincaré map

P : R2 →R
2, z0 �→ z(2mπ; z0).

Using Lemma 3.2, we know that P is a homeomorphism. In fact, since (3.20) is a Hamiltonian 
system P is area-preserving homeomorphism. Moreover, (3.21) and (3.22) imply that P satis-
fies the boundary twist condition on A. Applying the Poincaré–Birkhoff twist theorem (see the 
generalized versions exposed in [27], [8], [17] and [26]), we conclude that P has at least two 
geometrically distinct fixed points zi, i = 1, 2, which correspond to two 2mπ-periodic solutions 
z(t; zi), i = 1, 2 of system (3.20) with

θ(2mπ; zi) − θ(0; zi) = 2nπ, i = 1,2. (3.23)
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Step 4. We will show that z(t; zi), i = 1, 2 are in fact 2mπ-periodic solutions of (2.1). Note that 
0 < |z1|, |z2| < R∞. If there exists t1 ∈ (0, 2mπ) such that |z(t1; z1)| ≥ R′∞ and |z(t; z1)| ≤ R′∞
for t ∈ [0, t1], then by using Lemma 3.1 we have

θ(t1; z1) − θ(0; z1) = 2(n + 1)π.

Moreover, by means of Lemma 3.2, we have

θ(2mπ, z1) − θ(0, z1) = (θ(2mπ, z1) − θ(t1; z1)) + (θ(t1; z1) − θ(0, z1))

≥ −π + 2(n + 1)π > 2nπ,

which contradicts (3.23). Therefore, |z(t; z1)| ≤ R′∞ for t ∈ [0, 2mπ], and z(t; z1) is a 
2mπ-periodic solution of (2.1). The same arguments are valid for z(t; z2). Besides, (3.23) and 
Lemma 3.2 show that x(t; , zi), i = 1, 2 are 2mπ-periodic solutions of (1.1) with 2n zeros in 
[0, 2mπ). Theorem 1.1 is thus proved. �
4. Some examples

We begin with some discussions for the estimation of the rotation number of the asymmetric 
oscillator

x′′ + q+(t)x+ − q−(t)x− = 0. (4.1)

By the arguments of Section 2, the rotation number ρ(q) exists with the definition (2.5), and it is 
sufficient to consider to just consider the limit

ρ(q) = lim
n→∞

θ(2nπ; t0, θ0)

2nπ
,

where t0, θ0 can be selected arbitrarily.
The following simple lemmas will be useful.

Lemma 4.1. Let θ(t; t0, θ0) a nonzero solution of (2.4) and assume that θ(t1; t0, θ0) ≥ kπ + π/2
for some k ∈ Z. Then θ(t; t0, θ0) > kπ + π/2 for any t > t1.

Lemma 4.2. Let θ(t; t0, θ0) and θ(t; t0, θ1) be two solutions of (2.4) with the initial values 
θ(t0; t0, θ0) = θ0 > θ1 = θ(t0; t0, θ1). Then

θ(t; t0, θ0) > θ(t; t0, θ1), for t > t0.

Lemma 4.3. Let θ(t; t0, θ0) be the solutions of (2.4) with the initial values θ(t0; t0, θ0) = θ0 and 
ρ(q) the rotation number of (2.4). Then

|θ(2mπ + t0; t0, θ0) − θ0 − ρ(q)m| < 2π, for m ∈ Z.
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The proof of Lemma 4.1 relies on the fact that a nonzero solution of (2.3) can never perform 
clockwise rotations at y-axis. The proof of Lemma 4.2 uses the uniqueness of the solution of 
(2.4) with respect to the initial value, then since the equation is scalar the solutions are ordered. 
Finally, the proof of Lemma 4.3 uses Lemma 4.2 and the definition of rotation number.

With these basic tools, the rotation number can be estimated in some particular cases.

Proposition 1. The following statements hold

(i) If q±(t) ≥ a2 for all t ∈ [0, 2π], then ρ(q) ≥ a

(ii) Assume that q±(t) ≥ a2 > 0 for t ∈ [t0, t0 + α] and q±(t) takes other values for t ∈ (t0 +
α, t0 + 2π]. Then,

ρ(q) ≥
[aα

2π

]
.

(iii) ρ(q) > 0 if and only if there exists a solution x(t; t0, x0, x′
0) of (4.1) such that x(t; t0, x0, x′

0)

has at least three zeros. In particular, if there exists a solution x(t; t0, x0, x′
0) of (4.1) such 

that x(t; t0, x0, x′
0) has at least three zeros in [0, 2π) then ρ(q) ≥ 1.

Proof. Let us begin by proving (i). By using the hypothesis,

2kπ∫
0

dθ

q+(t)((cos θ)+)2 + q−(t)((cos θ)−)2 + sin2 θ
≤ 2kπ

a
.

Then �θ [t0, t] = θ(t, t0, θ0) − θ0 ≥ 2kπ for �t = t − t0 = 2kπ/a. From (2.5) we have

ρ(q) ≥ lim
t→+∞

�θ [t0, t]
�t

≥ a.

To prove (ii), we consider the solution θ(t; t0, π/2). Let k ∈ Z
+ such that 2kπ ≤ aα < (2k +

1)π. Then θ(t0 + α; t0, π/2) ≥ 2kπ + π/2. Moreover,

θ(t; t0,π/2) > 2kπ + π/2, for t ∈ (t0 + α, t0 + 2π]

by using Lemma 4.1.
Next, denote by θ1 = θ(t0 + 2π; t0, π/2). From Lemma 4.2 we have

θ(t0 + 4π; t0 + 2π, θ1) > θ(t0 + 4π; t0 + 2π,2kπ + π/2) = θ(t0 + 4π; t0 + 2π,π/2) + 2kπ.

Thus θ(t0 + 4π; t0, π/2) = θ(t0 + 4π; t0 + 2π, θ1) > θ(t0 + 2π; t0, π/2) + 2kπ > 4kπ + π/2.
Similarly, we have

θ(t0 + 2mπ; t0,π/2) > 2mkπ + π/2, for m ∈ N.

Therefore, we have
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ρ(q) = lim
m→∞

θ(t0 + 2mπ; t0,π/2)

2mπ
≥ k =

[aα

2π

]
.

Finally, we proceed to prove (iii). Indeed, let us assume that x(t) = x(t; t0, x0, x′
0) has three 

adjacent zeros

x(t1) = x(t2) = x(t3) = 0.

Denote by θ(t) the argument value of (x(t), x′(t)), then

cos θ(ti) = 0, | sin θ(ti)| = 1, i = 1,2,3,

which implies that θ ′(ti) > 0, i = 1, 2, 3, so in consequence θ(t3) − θ(t1) = 2π. Suppose that 
t3 − t1 ≤ 2mπ and θ(t1) = kπ +π/2 for some k ∈ Z, then θ(t1 +2mπ) ≥ (2 + k)π +π/2 by using 
Lemma 4.1, that is

|θ(t1 + 2mπ) − θ(t1)| ≥ 2π.

As a result of Lemma 4.2, we conclude that ρ(q) > 0.
On the other hand, if ρ(q) > 0 we have a sufficiently large m ∈N such that

|θ(t0 + 2mπ) − θ(t0)| ≥ mρ(q) − 2π ≥ 4π.

Then, there are at least three times t1, t2, t3 ∈ [t0, t0 + 2mπ] such that θ(ti) = (k + i)π + π/2 for 
k ∈ Z, which follows that

x(t1) = x(t2) = x(t3) = 0.

Moreover, if x(t) = x(t; t0, x0, x′
0) has three adjacent zeros in [t0, t0 + 2π), that is, there are 

three times t1, t2, t3 ∈ [t0, t0 + 2π) such that θ(ti) = (k + i)π + π/2 for some k ∈ Z, then we 
find θ(t1 + 2π) − θ(t1) > 2π by using Lemma 4.1, and θ(t1 + 2nπ) − θ(t1) > 2nπ for n ∈ Z by 
Lemma 4.2. Therefore, we obtain ρ(q) ≥ 1. �

Now, we can prove the following corollary for a partially superlinear differential equation.

Corollary 4.1. Suppose that (H0) holds and

(f2) There are rk and ak(t) ∈ L1, k = 1, 2, · · · , such that

f (t, x)

x
≥ ak(t)x, for |x| ≥ rk and t ∈ [0,2π],

where the rotation number ρ(ak) of x′′ +ak(t)x = 0 satisfies that ρ(ak) → +∞ as k → ∞.

Then for any m ∈N, there exists nmN such that equation (1.1) has two 2mπ-periodic solutions 
xi,m,n(t), i = 1, 2, for any n > nm, such that xi,m,n(t), i = 1, 2 makes exactly n turns around 
the origin in the interval time [0, 2mπ].
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Proof. From (H0), we have L, δ > 0 such that |f (t, x) − f (t, 0)| ≤ L|x| for |x| ≤ δ, which 
implies (H r

0 ) if we let b0(t) = L. Moreover, ρ(b0) =
√

L. On the other hand, taking a∞(t) =
ak(t), condition (H l∞) is satisfied. Thus Theorem 1.1 shows that, for any n/m ∈ (ρ(b0), ρ(ak)), 
equation (1.1) has two 2mπ-periodic solutions xi,m,n(t), i = 1, 2. Moreover, these 2mπ-periodic 
solutions make exactly n turns around the origin in the time [0, 2mπ]. �

As it is seen below, it is not difficult to check that Corollary 1.1 is a particular case of the latter 
result.

Proof of Corollary 1.1. It is enough to prove that (f1) implies (f2) and apply Corollary 4.1. If 
(f1) holds, then for any k > 0, we have rk > 0 such that f (t, x)/x ≥ k for |x| ≥ rk and t ∈ I . 
Denote by

ak(t) = k, for t ∈ I and ak(t) = l(t), for t ∈ [0,2π]\I.

Then from the argument used in the proof of Proposition 1 (ii), one has ρ(ak) ≥
[

kα
2π

]
where 

α = mes(I ), which implies ρ(ak) → +∞ as k → ∞. The conclusion of Corollary 1.1 is thus 
proved. �
Example 4.1. The typical example of a differential equation with a partially superlinear nonlin-
earity, where Corollary 1.1 applies, is

x′′ + l(t)x3 = 0,

with l(t) ≥ 0 for any t ∈ [0, 2π] and 
∫ 2π

0 l(t)dt > 0.

Nevertheless, it is possible to deal with other examples. To this purpose, it is sometimes help-
ful to use the general polar coordinates

x = u cosϕ, x′ = βu sinϕ, (4.2)

where β > 0. Then

ϕ′
β(t) = 1

β
(q+(t)((cosϕβ)+)2 + q−(t)((cosϕβ)−)2 + β2 sin2 ϕβ).

Moreover,

|ϕβ(t; t0, θ0) − θ(t; t0, θ0)| < π/2, for t ∈ R,

which follows that

ρ(q) = lim
n→∞

ϕβ(2nπ; t0, ϕβ(t0))

2nπ
,

where t0, ϕβ(t0) can be selected arbitrarily. In this way, we can estimate ρ(q) via ϕβ . This ap-
proach is particularly appropriate in the following example.
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Example 4.2. For any sufficiently large m ∈N, the equation

x′′ + 4 sin t
(x+)3

1 + x2 + 4 cos tx− = 0 (4.3)

has two 2mπ-periodic solutions.

Proof. The key point is to compute the rotation numbers ρ∞, ρ0 of the equations

x′′ + a+(t)x+ − a−(t)x− = 0

and

x′′ + b+(t)x+ − b−(t)x− = 0,

respectively, where a+(t) = 4 sin t, a−(t) = −4 cos t, b+(t) = 0, b−(t) = −4 cos t . Considering 
the argument function ϕ2(t; 0, π/2) via the general polar coordinates (4.2), we have

ϕ′
2(t;0,π/2) = 1

2
(4 sin t ((cosϕ2)

+)2 − 4 cos t ((cosϕ2)
−)2 + 4 sin2 ϕ2),

from where

ϕ′
2(t;0,π/2) ≥ −2 cos t, for ϕ2(t;0,π/2) ∈ [π/2,π + π/2],

ϕ′
2(t;0,π/2) ≥ 2 sin t, for ϕ2(t;0,π/2) ∈ [π + π/2,2π + π/2].

This implies that

ϕ2(π + π/2;0,π/2) − π/2 >

π+π/2∫
π/2

−2 cos tdt = 4 > π.

Moreover,

ϕ2(t;0,π/2) > π + π/2, for t > π + π/2.

If ϕ2(3π; 0, π/2) > 2π + π/2 then x(t) = u(t) cosϕ2(t; 0, π/2) has three zeros in [0, 3π), which 
implies that ρ(a∞) > 0 by Proposition 1 (iii). Otherwise, ϕ2(3π; 0, π/2) ≤ 2π + π/2. Then,

π + π/2 < ϕ2(t;0,π/2) ≤ 2π + π/2, for t ∈ [2π,3π],

which implies that ϕ′
2(t; 0, π/2) ≥ 2 sin t for t ∈ [2π, 3π]. Then,

ϕ2(3π;0,π/2) − ϕ2(2π;0,π/2) ≥
3π∫

2 sin tdt = 4 > π.
2π
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This is a contradiction. Therefore, ρ∞ > 0.
Using Lemma 4.3, it is easy to show that if ρ0 > 0 then every solution x(t; 0, x0, x′

0) of 
x′′ + 4 cos tx− = 0 has infinitely many zeros in (0, +∞). Now we observe that x(t) = t satisfies 
that x(0) = 0, x ′(0) = 1 and x(t) > 0, x′′(t) = 0 for t > 0. Thus x(t) = t is the solution of 
x′′ + 4 cos tx− = 0 for t ∈ (0 +∞). But x(t) = t does not vanish on (0 +∞). Therefore we have 
proved that ρ0 = 0.

From Theorem 1.1, for any n/m ∈ (0, ρ∞), the equation (4.3) has infinitely many 2mπ-periodic
solutions xi,m,n(t), i = 1, 2, such that xi,m,n(t), i = 1, 2 make exactly n turns around the origin 
in the time [0, 2mπ]. �
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