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Abstract

In this paper we introduce new Lusternik-Schnirelman type methods
for nonsmooth functionals including the action integral associated to the
relativistic Lagrangian of a test particle under the action of an electro-
magnetic field

L(t, q, q′) = 1−
√

1− |q′|2 + q′ ·W (t, q)− V (t, q),

where V : [0, T ]×R3 → R and W : [0, T ]×R3 → R3 are two C1-functions
with V even and W odd in the second variable. By applying them, we
obtain various multiplicity results concerning T -periodic solutions of the
relativistic Lorentz force equation in Special Relativity,(

q′√
1− |q′|2

)′

= E(t, q) + q′ ×B(t, q),

where E = −∇qV − ∂W
∂t

, B = curlq W. The zero Dirichlet boundary value
conditions are considered as well.
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Keywords: Poincaré relativistic Lagrangian, Lorentz force equation, Lusternik-
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1 Introduction

1.1 The Lorentz force equation and the Poincaré relativis-
tic Lagrangian - A brief history

The Lorentz force equation (LFE) rules the quasi-stationary motion of a charged
particle in a electromagnetic field and constitutes, together with Maxwell equa-
tions, one of the pillars of Electromagnetism. For a fixed period T > 0, if it is
assumed without loss of generality that the mass-to-charge ratio and the speed
of light are equal to one, and that V : [0, T ]×R3 → R and W : [0, T ]×R3 → R3

are the electric and magnetic potentials respectively, the LFE reads(
q′√

1− |q′|2

)′
+ (W (t, q))′ = E(t, q, q′)−∇qV (t, q), (1)

where E : [0, T ]× R3 × R3 → R3 is given by

E(t, q, p) = (p ·Dq1W (t, q), p ·Dq2W (t, q), p ·Dq3W (t, q)).

By a solution q of the LFE we mean a function q = (q1, q2, q3) of class C2

such that |q′(t)| < 1 for all t, and which verifies the equation. In terms of the
electric and magnetic fields given by

E = −∇qV −
∂W

∂t
, B = curlqW,

the equation above is written in the more familiar form(
q′√

1− |q′|2

)′
= E(t, q) + q′ ×B(t, q).

While the force field E(t, q)+q′×B(t, q) acting on the particle was discovered by
H.A. Lorentz and dates back to 1895 [19], the equation itself requires the notion
of relativistic momentum and can be attributed to H. Poincaré, who introduced
it with a different notation in his fundamental 1906’s paper on Special Relativity,
see [26, equation (5) in Section 7] (see also [13, 20] for a detailed description of
this Poincaré pioneering work). Independently, and motivated by the results in
the celebrated paper by Einstein [15, Section 10], the LFE was introduced in
the same year 1906 by Planck in [25, equation (6)].

In those papers by Poincaré [26, Sections 2 and 7] and Planck [25, equation
(5)], the authors identify formally the LFE as the Euler-Lagrange equation
associated to the relativistic Lagrangian

L(t, q, q′) = 1−
√

1− |q′|2 + q′ ·W (t, q)− V (t, q).

2



Actually, these authors do not include the addend 1. Adding this constant 1
gives the positiveness of the relativistic part of L which make easier the reading
of the paper. Clearly, it has neither mathematical nor physical relevance: both
Lagrangians give the same (Euler-Lagrange) equations of motion. Summing
up, from the hystorical point of view the non-smooth part (kinetic energy) of
the Lagrangian is due to Poincaré, while the smooth (potential energy) was
deduced earlier by Lorentz. In the sequel, we will refer to L(t, q, q′) as the
Poincaré relativistic Lagrangian or the Lagrangian of the LFE.

We point out that the formal deduction the the LFE from its Lagrangian
is widely accepted in the physical community (see for instance, [18, Section 17
of Chapter 3] or [17]). In particular, we can read in the 19th lecture of the
well-known ones by Feynman [17] the following (Feynman does not assume that
the mass (m0) -to- charge (q) ratio and the speed of light c are equal to one and
he denotes the velocity (|q′| above) of the particle by v, the electric potential V
by the letter φ and the magnetic potential W by A and v = q′):

“The question is: Is there a corresponding principle of least action for
the relativistic case? There is. The formula in this case of relativity
is the following:

S = −m0c
2

∫ t2

t1

√
1− v2

c2
dt− q

∫ t2

t1

[φ(x, y, z, t)− v ·A(x, y, z, t)]dt.

The first part of the action integral is the rest mass m0 times c2

times the integral of a function of velocity
√

1− v2/c2. Then instead
of just the potential energy, we have an integral over the scalar po-
tential φ and over v times the vector potential A. Of course, we are
then including only electromagnetic forces. All electric and mag-
netic fields are given in term of φ and A. This action function gives
the complete theory of relativistic motion of a single particle in an
electromagnetic field.”

The proof that this action formula gives the correct equations of motion is left
by Feynman to his students.

Besides the Lagrangian approach, there are other mathematical methods
that have been used for the analytical study of the LFE. A first alternative
is to use topological degree arguments like in [5]. It is also possible to use
action integral associated to the Hamiltonian, see [30, 31] and also [2, Section
5]. In this case, the action functional is smooth but strongly indefinite. A
different approach to study the LFE is to formulate the problem in the 4-vector
formalism. The connection between the 3-vector and 4-vector formulations is
well-known, one can find a nicely exposition for instance in [4] (see also [27,
§3.8.]). If q is a T -periodic solution of the LFE, the proper time is defined as

α(t) =
∫ t
0

√
1− |q′(τ)|2dτ . Then, the 4-vector curve (r, δ) := (q ◦ α−1, α−1) in

M0 × R = R3 × R satisfies the Lorentz force equation in 4-dimensions

r′′(s) = δ′(s)E(δ(s), r(s)) + r′(s)×B(δ(s), r(s)),
δ′′(s) = r′(s) · E(δ(s), r(s)), s ∈ [0, α(T )].

(2)
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The Lorentz force equation in 4-vector form (2) is generalized to a general
Lorentz manifold M = M0 ×R, where M0 is a Riemannian manifold. Through
this approach, existence results for the generalized Lorentz force equation are
discussed in many papers for the case of inhomogeneous Dirichlet conditions (the
so-called connecting orbits, see for instance [9, 10, 11, 22] and the references).
Comparatively, the number of papers using the 4-vector formulation to find
periodic solutions is considerably smaller [3, 8]. We observe that the periodic
solutions of the 4-vector LFE found in those papers have a non-prescribed rest
mass m0.

1.2 Critical point theory framework for the Poincaré re-
lativistic Lagrangian

In a recent paper [2], we have studied the differentiability of the action integral
associated to the relativistic Lagrangian L(t, q, q′). Note for instance that it is
not Fréchet differentiable due to the square root appearing in the Lagrangian.
However, it is differentiable in the sense of the theory of Szulkin [29] and we have
proved for the first time that LFE is indeed the Euler-Lagrange equation of the
relativistic Lagrangian L; i.e., the equation satisfied by the critical points in the
sense of Szulkin of the action integral. Denoting by W 1,∞(0, T ) the space of all
Lipschitz functions in [0, T ] (or equivalently the absolutely continuous functions
in [0, T ] with bounded derivatives), we consider the Banach space

W 1,∞
∗ = {q ∈ [W 1,∞(0, T )]3 : q(0) = q(T )}

endowed with the usual norm ‖ · ‖1,∞ given by

‖q‖1,∞ = ‖q‖∞ + ‖q′‖∞,

where ‖q‖∞ = maxt∈[0,T ] |q(t)| and ‖q′‖∞ = maxt∈[0,T ] |q′(t)|. If

K∗ = {q ∈W 1,∞
∗ : ‖q′‖∞ ≤ 1},

the keystone in our approach is that a function q is a T -periodic solution for
LFE, that is, a solution for LFE satisfying

q(0) = q(T ), q′(0) = q′(T ),

if and only if q ∈ K∗ and∫ T

0

[
√

1− |q′|2 −
√

1− |ϕ′|2]dt+

∫ T

0

[E(t, q, q′)−∇qV (t, q)] · (ϕ− q)dt

+

∫ T

0

W (t, q) · (ϕ′ − q′)dt ≥ 0, for all ϕ ∈ K∗.

Now the relation between the Poincaré relativistic Lagrangian and the Cri-
tical Point Theory is straightforward. Consider the action functional associated
to the Poincaré relativistic Lagrangian L with periodic boundary conditions

I∗ : W 1,∞
∗ → (−∞,+∞], I∗ = Ψ∗ + F ,
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where Ψ∗ is given by

Ψ∗(q) =


∫ T

0

[1−
√

1− |q′|2]dt, if q ∈ K∗,

+∞, if q ∈W 1,∞
∗ \ K∗,

and F is defined by

F(q) :=

∫ T

0

[q′ ·W (t, q)− V (t, q)]dt, for all q ∈W 1,∞
∗ .

Observe that Ψ∗ is continuous on K∗ and that I∗ is the sum of the proper convex
lower semicontinuous functional Ψ∗ and of the C1-functional F with

F ′(q)[ϕ] =

∫ T

0

(E(t, q, q′)−∇qV (t, q)) · ϕdt+

∫ T

0

W (t, q) · ϕ′dt, (q, ϕ ∈W 1,∞
∗ ).

Hence the above key result means that a function q is a T -periodic solution of
LFE if and only if q is a critical point for I∗ in the Szulkin sense [29], that is
q ∈ K∗ and

Ψ∗(ϕ)−Ψ∗(q) + F ′(q)[ϕ− q] ≥ 0, for all ϕ ∈W 1,∞
∗ .

Moreover, in [2], we provide sufficient conditions for the existence of at least one
critical point of I∗ that corresponds either to a minimum or to a saddle point,
and consequently also a T -periodic solution of the LFE by the discussion above.
As usual these sufficient conditions imply some geometrical and compactness
properties of the functional I∗ associated to LFE. We have to point out that
the geometry of I∗ is not standard since the nonsmooth and main part Ψ∗ of
it is bounded from above in K∗. With respect to the compactness of I∗, we
also have to remark that I∗ does not satisfy the generalized (PS) condition of
[29, page 80]. Thus, we use in [2] the following weak Palais-Smale condition,
(wPS) in the sequel, of the Poincaré action functional: If (qn) ⊂ K∗ is a bounded
Palais-Smale sequence of I∗ at the level c ∈ R, i.e., if I∗(qn) → c and there is
εn → 0 such that for each integer n ≥ 1

Ψ∗(ϕ)−Ψ∗(qn) + F ′(qn)[ϕ− qn] ≥ −εn‖ϕ− qn‖1,∞, for all ϕ ∈ K∗,

then there exists a subsequence (qnk) of (qn) converging in (C([0, T ],R3), ‖ · ‖∞)
to a critical point q ∈ K∗ of I∗ with level I∗(q) = c.

1.3 Even Poincaré action functional and the Lusternik-
Schnirelman method

A natural continuation of the research initiated in [2] is to study whether the
symmetry properties, like e.g. if I∗ is even, of the Poincaré action functional I∗
imply multiple T -periodic solutions of LFE.

5



In the pioneering work [21], the authors combine a topological invariant of
the domain (the Lusternik-Schnirelman category) with the symmetry properties
of the action functional to obtain multiple critical points. The original result is
formulated for action functionals defined on finite-dimensional manifolds, but
was extended to the infinite-dimensional Hilbert manifolds by Schwartz [28]
and to the infinite-dimensional Banach manifolds by Palais [24]. An important
variant of the Lusternik-Schnirelman theory for smooth even functional in Ba-
nach spaces is due to Clark [12], who applies the notion of genus instead of the
category tool. The first paper that applies Lusternik-Schnirelman methods for
Euler-Lagrange action functionals associated to differential equations is due to
Browder [7].

Next, in their seminal paper [1], where the well known Mountain Pass theo-
rem was proved, Ambrosetti and Rabinowitz introduced also a version [1, The-
orem 2.23] of the Mountain Pass Theorem for even C1-functionals unbounded
from below. This gives the existence of a sequence of positive critical values
converging to infinity.

Some years later, Szulkin generalized both the Lusternik-Schnirelman theory
(more precisely, [12, Theorem 8]) and the symmetric Mountain Pass theorem to
nonsmooth even functionals like I∗. These generalizations are given in Theorems
4.3 and 4.4 in [29]. A fundamental hypothesis in the latter generalizated theorem
is that the restriction of the functional to finite dimensional subspaces must tend
to −∞ as q goes to infinity (see hypothesis (ii) in [29, Theorem 4.4]). It is easy to
observe that the Poincaré action functional I∗ does not satisfy this fundamental
hypothesis, given that it is bounded from below modulo a finite codimesional
subspace. In fact, I∗ is bounded from below on the three codimensional subspace
of those functions in W 1,∞

∗ having zero mean value.

1.4 Main contributions

We develop two abstract main tools (Theorems 1 and 2 of Sections 2 and 3) from
which various multiplicity results concerning T -periodic solutions of LFE can be
deduced. A particular version of the first one reads as follows (see Corollary 1
and Remark 1-ii) below) for even Poincaré action functionals which are bounded
from below modulo a finite codimensional subspace:

Theorem A Assume that W is odd and V is even in the second variable. If
I∗ is bounded from below in a subspace X̃l−1 of codimension l − 1 with l ≥ 1
and satisfies (wPS)-condition and for some k ≥ l

(I1∗) there exist a subspace Xk of W 1,∞
∗ with dimXk = k and r > 0 such that

I∗(q) < I∗(0) for all q ∈ Xk with ‖q‖∞ = r,

then I∗ possesses at least k− l+1 distinct pairs of nontrivial critical points with
negative levels.

As it has been mentioned, the above result follows from our abstract The-
orem 1, which is a generalization of Theorem 4.3 in [29] where the author as-
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sumes that l = 1 and, instead of (wPS), that the stronger Szulkin’ version of
the Palais-Smale (PS) holds true.

The second tool is a Mountain Pass Theorem for non-smooth functionals
having Z2-symmetry. In particular, we have the following Mountain Pass The-
orem for the even Poincaré action functional.

Theorem B Assume that W is odd and V is even in the second variable with
V (t, 0) = 0 for every t ∈ [0, T ]. If I∗ satisfies (wPS)-condition, hypothesis (I1∗)
and

(I2∗) there exist a subspace X̃k of W 1,∞
∗ with codim X̃k = k < k and constants

ρ ∈ (0, r) and α > 0 such that I∗(q) ≥ α for all q ∈ X̃k with ‖q‖∞ = ρ,

then I∗ has at least k−k distinct pairs of nontrivial critical points with positive
levels.

We observe explicitly that, contrary to [29, Theorem 4.4], it is not required
that I∗(q) is tending to −∞ when q ∈ Xk is tending to infinity. Moreover,
we only impose the (wPS) condition which is weaker than the (PS) condition
asumed in the previously cited paper. Hence, the above result, or more pre-
cisely, the general Theorem 2 below improves the Theorem 4.4 in [29]. Even
more, in contrast with the “not fully satisfactory” minimax characterization
given in the cited theorem (see [29, Remark 4.7]), we will see in Remark 2 that
Theorem 2 characterizes the critical values associated to the pairs of nontrivial
critical points. In this way, Theorem 2 is a complete generalization of [1, Theo-
rem 2.23] under the weaker hypothesis (wPS) than the standard Palais-Smale
condition.

One advantage of the right variational characterization given in our theorems
is that we can combined both to obtain pairs of nontrivial critical points either
with negative levels or with positive ones. See Theorem 3 below for an example.

To prove the general Theorems 1 and 2 (which imply the above results) we
use Ekeland variational principle (see [16]) together with some ideas from the
proof of Theorem 4.4 in [29].

Specifically, we have to use new ideas based on the continuity with respect
to the W 1,∞-norm of the functional on its domain of definition to overcome the
corresponding difficulties observed for the Poincaré action functional.

Next, we present an example of applicability of Theorem A. The proof follows
from Theorems 5 and 6 below.

Example A Assume that W is odd and V is even in their second variable with
V (t, 0) = 0 for every t ∈ [0, T ]. Suppose also that there exist r1 ∈ (0, 1), c, d > 0
and µ, ν > 0 with µ < min{2, ν + 1} such that

|W (t, q)| ≤ c|q|ν , V (t, q) ≥ d|q|µ for t ∈ [0, T ], |q| ≤ r1.

If, in addition, there exist µ > 1, C > 0 and a sufficiently large R > 0 such that
either

|W (t, q)|+ V (t, q) ≤ −C|q|µ, for t ∈ [0, T ], |q| ≥ R,

7



or
|W (t, q)| − V (t, q) ≤ −C|q|µ, for t ∈ [0, T ], |q| ≥ R,

then the Lorentz force equation (1) has infinitely many pairs of nontrivial T -
periodic solutions.

The symmetric mountain pass result presented as Theorem B also can be
applied to LFE together with Theorem A (see Remark 5 in Section 4), as in the
next example.

Example B Let V be given by

V (t, q) = λβ(t)|q|µ for all (t, q) ∈ [0, T ]× R3,

where µ > 2 and β : [0, T ]→ R is a positive, continuous function. Assume that
the magnetic potential W is such that W (t, ·) is odd for all t ∈ [0, T ], and

lim
|q|→0

|W (t, q)|
|q|2

= 0, lim sup
|q|→∞

|W (t, q)|
|q|µ

<∞,

uniformly in t ∈ [0, T ]. Then, for any integer m ≥ 1, there is Λm > 0 such that
the Lorentz force equation has at least 2m pairs of nontrivial T -periodic solutions
(m pairs corresponding to negative and m pairs to positive critical values of the
relativistic Poincaré action functional) for any λ ≥ Λm.

More results on multiplicity of periodic solutions for LFE can be given by
imposing suitable hypotheses on the behavior of the potentials V and W at
infinity and at zero as in the preceding example, see Theorems 7, 8, 9, 10 below.
The case of zero Dirichlet boundary conditions will be also consider on the last
section of this paper.

1.5 Organization of the paper

The paper is organized as follows. The second section develops and improves the
abstract Lusternik-Schnirelman method for the Szulkin’s nonsmooth functionals
which are continuous in their domain and satisfy only the weak compactness
condition (wPS) (Subsection 2.1) and the symmetric Mountain Pass Theorem
(Subsection 2.2). Our abstract results are tailored for the Poincaré relativistic
Lagrangian in the next sections. Specifically, in Section 3 we study the existence
of multiple periodic solutions for the Lorentz force equation. The last section
is devoted to the extension of the previous results to the case of zero Dirichlet
boundary conditions (Subsection 4.1) and to some remarks about the related
generalized Lorentz force equation in 4-vector form (Subsection 4.2).
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2 Existence of critical points for abstract even
functionals

2.1 The Lusternik-Schnirelman method

Let X be a Banach space with a norm ‖ · ‖ which is continuously embedded into
a Banach space Y , whose norm is denoted by ‖ · ‖Y . Let now I : X → (−∞,∞]
be a functional given by

I = Ψ + F ,

where F ∈ C1(X ,R) and Ψ : X → (−∞,∞] is convex and continuous on
the non-empty and closed domain D(Ψ) = {q ∈ X : Ψ(q) 6= ∞}. Recall the
Szulkin’s definition of critical point:

Definition 1 ([29]) A function q ∈ X is called a critical point of I if q ∈
D(Ψ) and it satisfies the following variational inequality

Ψ(ϕ)−Ψ(q) + F ′(q)[ϕ− q] ≥ 0, for all ϕ ∈ D(Ψ).

In what follows we assume that I satisfies the weak Palais-Smale condi-
tion introduced in [2]:

(wPS) For every c ∈ R, (qn) ⊂ X and εn → 0 such that I(qn)→ c and

Ψ(ϕ)−Ψ(qn) + F ′(qn)[ϕ− qn] ≥ −εn‖ϕ− qn‖ for all ϕ ∈ D(Ψ), n ≥ 1.

there exists a subsequence (qnk) of (qn) converging in Y to a critical point
q ∈ D(Ψ) of I with level I(q) = c.

We will consider even functionals I, i.e., we assume that

(I0) Ψ and F are even.

It is advisable in this case to use the concept of genus of a nonempty, closed,
symmetric (w.r.t. the origin) subset A of X . Recall that the genus γ(A) of A
is the smallest integer k for which there exists some odd, continuous mapping
f : A → Rk \ {0}; with γ(A) = ∞ if no such mapping exists. Set γ(∅) = 0.
In particular, since every odd continuous function f in a nonempty, closed,
symmetric subset A ⊂ X containing the zero satisfies that f(0) = 0, we have
γ(A) = ∞ provided that 0 ∈ A. The genus is a Z2-index, i.e., for any closed,
symmetric subsets A,A1, A2 of X one has that

(G1) γ(A) = 0 if and only if A = ∅;

(G2) If h : A1 → A2 is odd and continuous, then γ(A1) ≤ γ(A2);

(G3) γ(A1 ∪A2) ≤ γ(A1) + γ(A2);

(G4) If A is compact and 0 /∈ A, then γ(A) < ∞ and there is an ε > 0 such
that γ(A) = γ({q ∈ X : dist(q, A) ≤ ε}).

9



In addition, the genus also satisfies the following properties:

(G5) If there exists an odd homeomorphism of the (k − 1)-sphere onto A, then
γ(A) = k.

(G6) If X̃k is a subspace of X of codimension k and A∩X̃k = ∅, then γ(A) ≤ k.

We refer to the reader to [12, Lemma 6] for the proofs of (G1−6).
For q0 ∈ X and a > 0 we consider the open set in X given by BY (q0, a) =

{q ∈ X : ||q − q0||Y < a} and, by the continuous embedding of X into Y , its
closure in X given by BY (q0, a) = {q ∈ X : ||q − q0||Y ≤ a}. Observe that the
boundary ∂BY (q0, a) in X of BY (q0, a) (or BY (q0, a)) is just ∂BY (q0, a) = {q ∈
X : ‖q − q0‖Y = a}. We will need another property of the genus:

(G7) Consider a > 0 and n of pairs of points {±qm : 1 ≤ m ≤ n} such that
the sets BY (±qm, a), are mutually disjoint and do not contain the origin.
Then the set ∪nm=1[BY (qm, a) ∪ BY (−qm, a)] is symmetric, closed in X
and has genus one.

Indeed, to show (G7) it suffices to observe that the function given by f(q) = 1 if
q ∈ ∪nm=1BY (qm, a) and f(q) = −1 if q ∈ ∪nm=1BY (−qm, a), is continuous and
odd.

Next, we consider the complete metric space (M, δ) where

M = {A ⊂ X : A is closed, bounded and nonempty},

and δ is the Hausdorff-Pompeiu distance given by

δ(A,B) = max{sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)}.

For j ≥ 1, we define

Aj = {A ⊂ X : A is compact, symmetric and γ(A) ≥ j}.

Since Aj is closed in M, (Aj , δ) is a complete metric space and Aj ⊂ Aj−1,
for every j ≥ 2. Observe also that if Xj is a j-dimensional subspace of X ,
then, by (G5), γ(Xj ∩ ∂BX (0, 1)) = j and Xj ∩ ∂BX (0, 1) ∈ Aj . Following the
Lusternik-Schnirelman method [7, 12, 21, 24, 28, 29], we consider for every j ≥ 1
the values

−∞ ≤ cj = inf
A∈Aj

sup
A
I.

The main properties of the sequence (cj) are compiled in the next lemma.

Lemma 1 (i) The sequence (cj) is non-decreasing.

(ii) If 0 ∈ intD(Ψ) (respectively, 0 6∈ D(Ψ)), then cj ≤ I(0) (respectively,
cj < I(0)) for any j ≥ 1.
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(iii) If −∞ < cj, then given ε > 0 and B ∈ Aj with

sup
B
I ≤ cj + ε,

there exists C ∈ Aj such that

sup
C
I ≤ sup

B
I, δ(B,C) ≤

√
ε, (3)

sup
D
I ≥ sup

C
I −
√
εδ(C,D) for all D ∈ Aj . (4)

Proof. (i) From Aj ⊂ Aj−1 for every j ≥ 2, it follows that cj−1 ≤ cj .
(ii) If 0 ∈ intD(Ψ), using that I is continuous at 0 ∈ intD(Ψ) we deduce

that cj ≤ I(0) for any j ≥ 1. Indeed, from 0 ∈ intD(Ψ) it follows that there
exists ε0 > 0 such that BX (0, ε0) ⊂ intD(Ψ) and, by (G5), ∂BX (0, ε) ∩Xj has
genus j for any ε ∈ (0, ε0) and any j-dimensional subspace Xj of X . Then

cj ≤ sup
u∈∂BX (0,ε)∩Xj

I(u)

Taking limits as ε → 0, by the continuity of I at 0, we obtain cj ≤ I(0). On
the other hand, in the case 0 6∈ D(Ψ), we also have that cj < I(0) =∞.

(iii) Observe that cj = infA∈Aj Π(A), where the mapping Π is defined in the
complete metric space (Aj , δ) by

Π(A) = sup
A
I ∈ (−∞,∞], for all A ∈ Aj . (5)

Using that Π is lower semicontinuous, the result follows now by the Ekeland
variational principle.

Theorem 1 If the functional I satisfies (I0), (wPS)-condition and

−∞ < cj < I(0) for j = l, ..., k,

then cj is a critical value of I for every l ≤ j ≤ k. Moreover, if cj = ci = c for
some l ≤ j < i ≤ k, then I has infinitely many pairs of critical points at the
level c. In particular, I has at least k− l+ 1 distinct pairs of nontrivial critical
points with critical levels below I(0).

Proof. We begin by proving the more difficult part, namely that if ci = cj = c
for some l ≤ j < i ≤ k, then I has infinitely many pairs of critical points at
the level c. The proof that cj are critical values is simpler and will be outlined
at the end . Since I is even, assume by contradiction in this case that I has
only a finite number n of pairs of critical points {±qm : 1 ≤ m ≤ n} at the
level c. Using that cj < I(0), it follows that all those points are different from
zero. Thus, there exists a radius a > 0 such that for every 1 ≤ m ≤ n the sets
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BY (±qm, 2a), are mutually disjoint and do not contain the origin. For α = a
and α = 2a we consider the open symmetric set Nα in X given by

Nα =

n⋃
m=1

[BY (qm, α) ∪BY (−qm, α)].

We claim that there exists ε ∈ (0, a2) such that c + ε < I(0) and given q ∈
I−1([c− ε, c+ ε]) \Na, there is ϕq 6= q with

Ψ(ϕq)−Ψ(q) + F ′(q)[ϕq − q] < −
√
ε‖ϕq − q‖.

Indeed, if it were not the case, there would be a sequence (pm) satisfying

pm ∈ X \Na, c− 1

m
≤ I(pm) ≤ c+

1

m
,

and

Ψ(ϕ)−Ψ(pm) + F ′(pm)[ϕ− pm] ≥ −
√

1

m
‖ϕ− pm‖, for all ϕ ∈ D(Ψ),

for all m ≥ 1. Then, using (wPS)-condition, going if necessary to a subsequence,
one has that there exists a critical point q ∈ D(Ψ) of I with I(q) = c and
‖pm − q‖Y → 0, which implies that q /∈ Na, a contradiction with the definition
of Na.

Moreover, using that Ψ,F are even it is easy to see that in the above claim
we can take

ϕ−q = −ϕq.

Next, using the definition of ci (and of the function Π in (5)) we can pick
A ∈ Ai such that

Π(A) = sup
A
I ≤ c+ ε < I(0).

Then 0 /∈ A ⊂ D(Ψ), and using that Ψ is continuous on D(Ψ) and that A is
compact, it follows that the above “ sup ” is a “ max ”. Since

B = A \N2a.

is closed in X , it is compact, symmetric and we deduce from the inclusion
A ⊂ B ∪

[
∪nm=1[BY (qm, 2a) ∪BY (−qm, 2a)]

]
and (G7) that

j < i ≤ γ(A) ≤γ(B) + γ
( n⋃
m=1

[BY (qm, 2a) ∪BY (−qm, 2a)]
)

= γ(B) + 1.

Thus, γ(B) > j − 1 and B ∈ Aj . Using that B ⊂ A and the definition of Π, we
notice that

c ≤ Π(B) ≤ Π(A) ≤ c+ ε.

By Lemma 1-(iii), there exists C ∈ Aj satisfying (3) and (4).
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Using that B∩N2a = ∅ and that the Hausdorff-Pompeiu distance δ(B,C) ≤√
ε ≤ a, it follows that C ∩Na = ∅. In particular,

S := {q ∈ C : c− ε ≤ I(q)} ⊂ I−1([c− ε, c+ ε]) \Na.

Moreover, using that I is continuous on D(Ψ), it follows that S is compact in
X . On the other hand, using the continuity of F ′, the continuity of Ψ on D(Ψ)
and the above claim, for each q ∈ S, we can find δq > 0 such that

i) δq = δ−q,

ii) the closed balls BX (±q, δq) in X (of centers ±q and radius δq with respect
to the norm ‖ · ‖ in X ) are disjoint: BX (q, δq) ∩BX (−q, δq) = ∅,

iii) 0, ϕq 6∈ BX (q, δq),

iv) for every h ∈ BX (0, δq) and p ∈ BX (q, δq),

Ψ(ϕq)−Ψ(p) + F ′(q + h)[ϕq − p] < −
√
ε‖ϕq − p‖.

Using that S is compact in X and that the open balls BX (±q, δq) with
q ∈ S are a cover of it, it follows that there exist p1, ..., p` ∈ S such that
{B±ι = BX (±pι, δpι) : 1 ≤ ι ≤ `} is a covering of S:

S ⊂
⋃̀
ι=1

(Bι ∪B−ι).

Using that ϕpι /∈ Bι, (by iii)) we have

dist (ϕpι , Bι ∩ C) = min
p∈Bι∩C

‖ϕpι − p‖ > 0

for every ι = −`, . . . ,−1, 1, . . . , `.
Let us fix

0 < δ ≤ min{δ(B,C), δpι ,dist (ϕpι , Bι ∩ C) : ι = −`, . . . ,−1, 1, . . . , `}

and consider a continuous and even function η : C → [0, 1] satisfying

η(q) =

 1, if c ≤ I(q),

0, if I(q) ≤ c− ε,

and the function ηι : C → [0, 1] with η given by

ηι(q) =



dist (q, C \Bι)∑̀
m = −`
m 6= 0

dist(q, C \Bm)

, if q ∈ Bι ∩ C,

0, if q ∈ C \Bι.
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Observe that ∑̀
ι = −`
ι 6= 0

ηι = 1 on S

and that each ηι is odd (since, by i) and ii), ϕ−pι = −ϕpι and Bι ∩B−ι = ∅ for
every 1 ≤ ι ≤ `).

Now, let us define the function β : [0, 1]× C → X given by

β(t, q) = βt(q) := q + tδη(q)
∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖
(ϕpι − q), ∀t ∈ [0, 1], ∀q ∈ C.

Clearly, each βt : C → X is continuous and odd with β0 the identity in C.
(Thus, β is called a deformation of C associated to the above covering). In
particular, using that β1 is continuous and odd, we deduce that

D = β1(C)

is compact and symmetric with γ(D) ≥ γ(C), which implies that D ∈ Aj .
Moreover, by taking into account that ηι(q) = 0 for all q /∈ Bι we deduce for

M := (dist (ϕpι , Bι ∩ C))−1 that

tδη(q)
∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖
≤ δ

∑̀
ι = −`
ι 6= 0

ηι(q)

dist (ϕpι , Bι ∩ C)
≤ δM,

for every (t, q) ∈ [0, 1] × C. Hence, using δ ≤ 1/M , we observe that βt(q) is a
convex combination of q, ϕp1 , ..., ϕp` . Indeed, for any q ∈ C it holds that

βt(q) =

[
1− tδη(q)

∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖

]
q + tδη(q)

∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖
ϕpι .

Therefore, by the convexity of Ψ, we obtain

Ψ(βt(q)) ≤

[
1−tδη(q)

∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖

]
Ψ(q)+tδη(q)

∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖
Ψ(ϕpι).

On the other hand, note also that by the mean value theorem, given q ∈ C,
there exists τ ∈ (0, 1) such that

F(β1(q))−F(q) = δη(q)
∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖
F ′(βτ (q))[ϕpι − q].
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This together with the above inequality imply that

I(β1(q)) =Ψ(β1(q)) + F(β1(q))

≤

[
1− δη(q)

∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖

]
Ψ(q) + F(q)

+ δη(q)
∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖
Ψ(ϕpι)

+ δη(q)
∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖
F ′(βτ (q))[ϕpι − q],

which implies that

I(β1(q)) ≤ I(q) + δη(q)
∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖
[Ψ(ϕpι)−Ψ(q) +F ′(βτ (q))[ϕpι − q]].

Observing that ∥∥∥∥∥τδη(q)
∑̀
ι = −`
ι 6= 0

ηι(q)

‖ϕpι − q‖
(ϕpι − q)

∥∥∥∥∥ ≤ δ ≤ δpι ,
it follows that

Ψ(ϕpι)−Ψ(q) + F ′(βτ (q))[ϕpι − q] < −
√
ε‖ϕpι − q‖,

for all q ∈ Bι and ι = −`, . . . ,−1, 1, . . . , `. We deduce that

I(β1(q)) < I(q)− δη(q)
√
ε
∑̀
ι = −`
ι 6= 0

ηι(q) for all q ∈ C.

In particular,
I(β1(q)) < I(q)− δη(q)

√
ε, ∀q ∈ S.

Notice that if q ∈ C \ S, then η(q) = 0 and thus β1(q) = q. Consequently,

I(β1(q)) = I(q) < c− ε for all q ∈ C \ S.

In particular, since D ∈ Aj , we have maxC I ◦ β1 ≥ c, and hence there exists
q0 ∈ S such that

max
C
I ◦ β1 = I(β1(q0)).
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Therefore, we deduce that

c ≤ Π(D) = I(β1(q0)) < I(q0)− δη(q0)
√
ε ≤ I(q0),

which implies that η(q0) = 1 and then that

Π(D) = I(β1(q0)) < I(q0)− δ
√
ε ≤ Π(C)− δ

√
ε ≤ Π(C)− δ(C,D)

√
ε,

a contradiction with the choice of the set C, showing that necessarily that I has
infinitely many pairs of critical points at the level c when ci = cj = c for some
l ≤ j < i ≤ k.

With respect to the proof of the first part of theorem, that is, that cj are crit-
ical values, we have only to follow the same argument like above just replacing
in the above proof Na and N2a with the empty set.

Recalling (G5), any symmetric set K ⊂ X homeomorphic to the unit (k−1)-
sphere Sk−1 by an odd map has genus k; i.e., K ∈ Ak. In addition, if I is
bounded from below in a subspace X̃l−1 of codimension l−1, by (G6), A∩X̃l−1 6=
∅ for every A ∈ Al and then cl ≥ infX̃l−1

I > −∞. Therefore, we deduce the

following consequence.

Corollary 1 Assume (I0). Suppose also that X is continuously embedded into
a Banach space Y and that I = Ψ + F is bounded from below in a subspace
X̃l−1 of codimension l − 1 and satisfies (wPS)-condition. If there exist k ≥ l
and a symmetric set K ⊂ X homeomorphic to the unit (k − 1)-sphere Sk−1 by
an odd map such that supK I < I(0), then I possesses at least k− l+ 1 distinct
pairs of nontrivial critical points with negative levels.

Remark 1 (i) A particular case is when I is bounded from below in all X .

In this case, we can take in the above corollary any subspace X̃l−1 of
codimension l− 1 with 1 ≤ l ≤ k and therefore we obtain k distinct pairs
of nontrivial critical points with negative levels.

(ii) Notice that the hypothesis

(I1) There exist a subspace Xk of X with dimXk = k and r > 0 such
that I(q) < I(0) for all q ∈ Xk with ‖q‖Y = r.

allows to take K = {q ∈ Xk : ‖q‖Y = r} in the above corollary.

2.2 The symmetric Mountain Pass Theorem

In addition to (I0)-(I1), assume also that I(0) = 0 and the following hypotheses
concerning the geometry of the action functional I for some integer k < k:

(I2) There exist a subspace X̃k of X with codim X̃k = k and constants ρ ∈ (0, r)

and α > 0 such that I(q) ≥ α for all q ∈ X̃k with ‖q‖Y = ρ.
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Take
Q = BY (0, r) ∩Xk = {q ∈ Xk : ||q||Y ≤ r}.

Thus, the boundary of Q in Xk is

∂Q = ∂BY (0, r) ∩Xk = {q ∈ Xk : ||q||Y = r}.

Consider
H = {h ∈ C(Q,X ) : h odd, h = id on ∂Q}.

Notice that id ∈ H and H 6= ∅. Next, let 1 ≤ j ≤ k be fixed and consider the
family Γj of all subsets A ⊂ X such that A = h(Q \ V ) with h ∈ H and V
is a symmetric and open set in BY (0, r) ∩ Xk satisfying that each closed and
symmetric (possibly empty) Z ⊂ V \ {0} verifies γ(Z) ≤ k − j. Consider the
min-max family Bj (1 ≤ j ≤ k) of all compact, symmetric, nonempty subsets
A ⊂ X such that for every open set U in X containing A, there exists A0 ⊂ U
with A0 ∈ Γj . Notice that the compactness of Q implies that h(Q\V ) is compact
for every h ∈ H and every symmetric and open V in BY (0, r). Hence, Γj ⊂ Bj .

Lemma 2 (i) Bj is nonempty and (Bj , δ) is a complete metric space for all
1 ≤ j ≤ k.

(ii) Bj+1 ⊂ Bj for all 1 ≤ j ≤ k − 1.
(iii) If 1 ≤ j ≤ k and A ∈ Bj , then ∂Q ⊂ A. Moreover, if β : A → X is a

continuous, odd function such that β(q) = q for all q ∈ ∂Q, then β(A) ∈ Bj .
(iv) If q1, q2, . . . qn are points in X \ {0} satisfying

qm 6= ±ql and ‖qm‖Y 6= r, for all m, l = 1, 2 . . . , n, l 6= m,

and we denote Nα =
n⋃

m=1
[BY (qm, α)∪BY (−qm, α)], then for α > 0 small enough

and 2 ≤ j ≤ k, we have

A \Nα ∈ Bj−1, for all A ∈ Bj .

(v) If k < j ≤ k, then one has the intersection property

A ∩ ∂BY (0, ρ) ∩ X̃k 6= ∅ for all A ∈ Bj .

Proof. (i) It is clear that Q ∈ Γj ⊂ Bj and Bj 6= ∅. We show that Bj is closed in
the complete metric space (M, δ). Consider (Bn) ⊂ Bj such that δ(Bn, B)→ 0
for some B ⊂ X nonempty, compact and symmetric set. Let U ⊃ B be open
in X . Take n big enough such that Bn ⊂ U. Using that Bn ∈ Bj , there exists
A0 ∈ Γj with A0 ⊂ U. Hence one has that B ∈ Bj and (Bj , δ) is a complete
metric space.

(ii) It is clear that Γj+1 ⊂ Γj , hence Bj+1 ⊂ Bj for all 1 ≤ j ≤ k − 1.
(iii) Let A ∈ Bj for 1 ≤ j ≤ k. Consider an open set U in X such that

A ⊂ U . Using that A ∈ Bj , it follows that there exists A0 = h(Q \V ) ∈ Γj such
that A0 ⊂ U. Since V ∩∂Q = ∅ and h = id on ∂Q, it is clear that ∂Q ⊂ A0 ⊂ U .
Hence, if U = {U : U is open in X , A ⊂ U}, then ∂Q ⊂ ∩U∈UU ; i.e., ∂Q is
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a subset of the closure in X of A. Using that A is compact, this means that
∂Q ⊂ A.

In addition, if β : A → X is a continuous, odd function such that β(q) = q
for all q ∈ ∂Q, then by the Dugundji’s extension theorem (see [14, Theorem

4.1]), there exists a continuous, odd mapping β̃ : X → X such that β̃(q) = β(q)

for all q ∈ A. In particular, β̃(q) = β(q) = q for every q ∈ ∂Q, which implies

that β̃ ◦ h ∈ H and thus, β̃(A0) ∈ Γj , for every A0 ∈ Γj . Moreover, for each

open set U in X such that β(A) ⊂ U , one has that G1 = β̃−1(U) is open in X
with A ⊂ G1. Using that A ∈ Bj , it follows that there exists A0 = h(Q\V ) ∈ Γj
with A0 ⊂ G1. Since β̃(A0) ⊂ β̃(G1) ⊂ U, we deduce that β(A) ∈ Bj .

(iv) Choose α > 0 small enough to satisfy that every two balls in the family
{BY (±qm, α) : m = 1, 2, . . . n} are disjoint and none of these balls contains

points of ∂BY (0, r). Thus, Nα =
n⋃

m=1
[BY (qm, α) ∪BY (−qm, α)] satisfies

Nα ∩ ∂Q = ∅. (6)

Fix A ∈ Bj with 2 ≤ j ≤ k and let U ⊃ A \ Nα be open in X . Hence,
U0 = U ∪ Nα is open in X with A ⊂ U0. Since A ∈ Bj there exists A0 ∈ Γj
such that A0 ⊂ U0. By definition of Γj , this means that A0 = h(Q \ V ) with
h ∈ H and V a symmetric and open in BY (0, r)∩Xk such that each closed and
symmetric (possibly empty) Z ⊂ V \ {0} verifies γ(Z) ≤ k − j. Note that

A0 \Nα = h(Q \ V ) \Nα = h(Q \ [V ∪ h−1(Nα)]).

Using that V ∪ h−1(Nα) is symmetric, open in Q, that h = id on ∂Q and (6),
we deduce that V ∪ h−1(Nα) does not intersect ∂Q. Moreover, for any closed
and symmetric (possibly empty) P ⊂ [V ∪h−1(Nα)]\{0}, there exist closed and
symmetric subsets P1, P2 in X such that P = P1∪P2 and P1 ⊂ V, P2 ⊂ h−1(Nα)
(for instance, take P1 = {x ∈ P : dist (x,Q \ V ) ≥ dist (x,Q \ h−1(Nα))} and
P2 defined similarly by reversing the inequality). Since A0 ∈ Γj , it follows that

γ(P1) ≤ k − j.

On the other hand, using that h is odd, we deduce by (G2) and (G7) that

γ(P2) ≤ γ(h(P2)) ≤ γ(∪nm=1[BY (qm, α) ∪BY (−qm, α)]) = 1.

Hence, by (G3),
γ(P ) ≤ γ(P1) + γ(P2) ≤ k − j + 1.

Therefore, we have A0 \Nα ∈ Γj−1 and using that A0 \Nα ⊂ U, it follows that
A \Nα ∈ Bj−1.

(v) Let A ∈ Bj . If it would be

A ∩ ∂BY (0, ρ) ∩ X̃k = ∅,

then A ⊂ X\[∂BY (0, ρ)∩X̃k], which together to the fact that X\[∂BY (0, ρ)∩X̃k]
is an open set, implies that there exists A0 = h(Q \ V ) ∈ Γj which does not
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intersect ∂BY (0, ρ)∩X̃k. By definition of Γj , A0 = h(Q\V ) where h ∈ H and V
is a symmetric and open in BY (0, r)∩Xk such that each closed and symmetric
(possibly empty) Z ⊂ V \ {0} verifies γ(Z) ≤ k − j.

Since Q \ V is compact, h(Q \ V ) is also compact in the open set X \
[∂BY (0, ρ) ∩ X̃k]. It follows that there exists an open symmetric set U with

0 ∈ U such that h(Q \V ) ⊂ U and U ⊂ X \ [∂BY (0, ρ)∩ X̃k] (take U as a finite
union of open balls, one of them with center at zero). In particular, h−1(U)
is symmetric, open in Q and Q \ V ⊂ h−1(U). Therefore the symmetric and
compact set Z := Q \ h−1(U) ⊂ V \ {0} (because h(0) = 0 and 0 ∈ U) satisfies

h(Q \ Z) ⊂ h(Q \ Z) ⊂ U ⊂ X \ [∂BY (0, ρ) ∩ X̃k]; i.e.,

h(Q \ Z) ∩ ∂BY (0, ρ) ∩ X̃k = ∅.

From the definition of Γj we have γ(Z) ≤ k − j. Consider now the open set Ω
in Q given by

Ω := h−1(BY (0, ρ)).

From h = id on ∂Q and r > ρ we deduce that Ω∩ ∂Q = ∅. Moreover, since h is
odd, Ω is bounded and symmetric in Xk with 0 ∈ Ω. Hence, by (G5),

γ(∂Ω) = k.

In particular one has that ∂Ω 6= ∅. Moreover, we have

h(∂Ω) ⊂ ∂BY (0, ρ).

Indeed, for every fixed x ∈ ∂Ω there exists a sequence (xn) in Ω converging to x.
Hence, the sequence (h(xn)) is contained in BY (0, ρ) and converges to h(x). This
means that h(x) ∈ BY (0, ρ). Using that x 6∈ Ω we also have h(x) 6∈ BY (0, ρ)
and consequently, h(x) ∈ ∂BY (0, ρ).

Next, we consider the compact symmetric set

P = h−1(∂BY (0, ρ)).

Since ∂Ω ⊂ P , by (G2), γ(P ) ≥ γ(∂Ω) = k. It follows from (G3) that

γ(P \ Z) ≥ γ(P )− γ(Z) ≥ k − (k − j) = j,

which implies by (G2) that

γ(h(P \ Z)) ≥ γ(P \ Z) ≥ j > k.

By (G6) it follows that h(P \ Z)∩X̃ 6= ∅. In consequence, using that h(P \ Z) ⊂
h(Q \ Z)∩∂BY (0, ρ), we get a contradiction with h(Q \ Z)∩∂BY (0, ρ)∩ X̃ = ∅
and property (v) is proved.

Now, like in the Lusternik-Schnirelman method we consider for 1 ≤ j ≤ k
the values

bj = inf
A∈Bj

sup
A
I

and we compile its properties in the next lemma.
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Lemma 3 (i) α ≤ bk+1 ≤ · · · ≤ bk.

(ii) Given ε > 0 and B ∈ Bj with

max
B
I ≤ bj + ε,

there exists C ∈ Bj such that

max
C
I ≤ max

B
I, δ(B,C) ≤

√
ε,

sup
D
I ≥ max

C
I −
√
εδ(C,D) for all D ∈ Bj .

Proof. (i) It is a consequence of (I2) together with (ii) and (v) from Lemma 2.
(ii) The mapping Λ defined in the complete metric space (Bj , δ) (see (i) in

the Lemma 2) by

Λ(A) = sup
A
I ∈ (−∞,∞], for all A ∈ Bj

is lower semicontinuous. Indeed, if (An) is a sequence in Bj and A ∈ Bj is
such that δ(An, A) → 0, then for any q ∈ A, there exists a sequence (qn) with
qn ∈ An and qn → q. Since I is continuous on D(Ψ) and I =∞ on X \D(Ψ),
we have

I(q) ≤ lim inf
n→∞

I(qn) ≤ lim inf
n→∞

Λ(An).

The arbriteriness of q ∈ A implies that Λ(A) ≤ lim infn→∞ Λ(An).
Notice that

α ≤ bj = inf
Bj

Λ (k + 1 ≤ j ≤ k).

Consequently, the result is deduced by the Ekeland variational principle applied
to the lower semicontinuous, bounded function Λ.

The main result of this section is the following Ambrosetti-Rabinowitz type
result [1] for the Poincaré type action functionals.

Theorem 2 If the functional I satisfies (wPS)-condition, I(0) = 0 and con-
ditions (I0,1,2) hold true with k < k, then bj is a critical value of I for every
k + 1 ≤ j ≤ k. Moreover, if bi = bj = b for some j < i, then I has infinitely
many pairs of critical points at the level b. In particular, I has at least k − k
distinct pairs of nontrivial critical points with positive levels.

Remark 2 The above theorem improves Theorem 4.4 of [29]. Indeed, first we
are not imposing that I(q) is tending to −∞ as q ∈ Xk is going to infinity and
moreover, we only impose the condition (wPS) which is weaker that the condi-
tion (PS) assumed in [29]. Secondly and more important, we prove a minimax
characterization of the critical values (bj) of I while in [29] (see Remark 4.7
in that paper) the author needs to add the assumption that I has not critical
values below a certain negative level in order to state that his values (called cj
in [29]) are critical values of I.
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Proof. We show that if bi = bj = b for some k + 1 ≤ j < i ≤ k, then I has
infinitely many pairs of critical points at the level b. The proof of the fact that
bj (k+1 ≤ j ≤ k) are critical values follows analogously, even more easier. Since
I is even, assume by contradiction in this case that I has only a finite number
n of pairs of critical points {±qm : 1 ≤ m ≤ n} at the level b. Notice that b ≥ α
and using (I1) it follows that qm /∈ ∂BY (0, r) (1 ≤ m ≤ n). Moreover, using
that I(0) = 0, we deduce that qm 6= 0 for all m and there exists a > 0 such that
BY (qm, 2a) ∩ BY (−qm, 2a) = ∅. For α = a and α = 2a we consider the open
symmetric set Nα in X given by

Nα =

n⋃
m=1

[BY (qm, α) ∪BY (−qm, α)].

Arguing similarly as in the proof of Theorem 1, by the (wPS)-condition, we
have the claim: there exists ε ∈ (0, a2) such that b − ε > 0 and given q ∈
I−1([b− ε, b+ ε]) \Na, there is ϕq 6= q with ϕ−q = −ϕq and

Ψ(ϕq)−Ψ(q) + F ′(q)[ϕq − q] < −
√
ε‖ϕq − q‖.

Next, using the definition of bi, we can pick A ∈ Bi such that

0 < b− ε < b ≤ sup
A
I ≤ b+ ε.

Then 0 /∈ A ⊂ D(Ψ), and using that I is continuous on D(Ψ) and that A is
compact, it follows that the above “ sup ” is a “ max ”. By case (iv) of Lemma 2
we deduce that

B := A \N2a ∈ Bi−1.

Since B ⊂ A we notice that

b ≤ max
B
I ≤ max

A
I ≤ b+ ε.

with B ∈ Bj because i−1 ≥ j and case (ii) of Lemma 2. By case (ii) of Lemma 3,
there exists C ∈ Bj such that

max
C
I ≤ max

B
I, δ(B,C) ≤

√
ε,

sup
D
I ≥ max

C
I −
√
εδ(C,D) for all D ∈ Bj .

The proof follows in a similar way to this one of Theorem 1 (using case (iii) of
Lemma 2 to prove for the corresponding function β1 that D := β1(C) ∈ Bj).

Combining Corollary 1 with Theorem 2 we obtain the following theorem

Theorem 3 Assume that I = Ψ + F is bounded from below, I(0) = 0 and
satisfies (wPS)-condition. If it also satisfies hypotheses (I0), (I1) and (I2)

with X̃k = X (k = 0), then I possesses at least 2k distinct pairs of nontrivial
critical points, k with negative levels and k with positive levels.
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3 Multiple periodic solutions for the Lorentz force
equation

3.1 Functional framework

In what follows R3 is endowed with the Euclidean scalar product “ · ” and the
Euclidean norm “| |”. Let T > 0 be fixed. If W 1,∞(0, T ) denotes the space
of all Lipschitz functions in [0, T ] (or equivalently the absolutely continuous
functions in [0, T ] with bounded derivatives), we consider the Banach space

W 1,∞
∗ = {q ∈ [W 1,∞(0, T )]3 : q(0) = q(T )}

endowed with the usual norm ‖ · ‖1,∞ given by

‖q‖1,∞ = ‖q‖∞ + ‖q′‖∞,

where ‖q‖∞ = maxt∈[0,T ] |q(t)| and ‖q′‖∞ = maxt∈[0,T ] |q′(t)|.
Consider also the Euler-Lagrange action functional associated to the Poincaré

relativistic Lagrangian L with periodic boundary conditions, i.e.,

I∗ : W 1,∞
∗ → (−∞,+∞], I∗ = Ψ∗ + F ,

where Ψ∗ (respectively, F) is associated to the “nonsmooth” part (respectively,
the “smooth” part) of the relativistic Lagrangian. Specifically, if

K∗ = {q ∈W 1,∞
∗ : ‖q′‖∞ ≤ 1},

Ψ∗ is given by

Ψ∗(q) =


∫ T

0

[1−
√

1− |q′|2]dt, if q ∈ K∗,

+∞, if q /∈W 1,∞
∗ \ K∗,

(7)

while F is defined by

F(q) :=

∫ T

0

[q′ ·W (t, q)− V (t, q)]dt, for all q ∈W 1,∞
∗ .

It is standard that F is of class C1 in W 1,∞
∗ with

F ′(q)[ϕ] =

∫ T

0

(E(t, q, q′)−∇qV (t, q)) · ϕdt+

∫ T

0

W (t, q) · ϕ′dt,

for every q, ϕ ∈W 1,∞
∗ , where the function E : [0, T ]×R3×R3 → R3 is given for

each t ∈ [0, T ] and p, q ∈ R3 by

E(t, q, p) = (p ·Dq1W (t, q), p ·Dq2W (t, q), p ·Dq3W (t, q)).

In addition, we have the following properties of Ψ∗ and its domain K∗ (see
[2, 6]):
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Lemma 4 (i) The set K∗ is convex and closed in C([0, T ],R3) and thus in
W 1,∞
∗ . Moreover, if (qn) is a sequence in K∗ converging pointwise in [0, T ]

to a continuous function q : [0, T ] → R3, then q ∈ K∗ and q′n → q′ in the
w∗-topology σ(L∞, L1).

(ii) Each q ∈ K∗ satisfying
∫ T
0
qdt = 0 fulfills

‖q‖∞ ≤ T.

(iii) If (qn) is a sequence in K∗ converging in C([0, T ],R3) to q, then

Ψ∗(q) ≤ lim inf
n→∞

Ψ∗(qn).

In particular, the functional Ψ∗ is weakly lower semicontinuous and convex
in W 1,∞

∗ .

(iv) The restriction of the functional Ψ∗ to its domain K∗ is continuous.

In conclusion, since I∗ is the sum of the proper convex lower semicontinuous
functional Ψ∗ and of the C1-functional, a function q ∈W 1,∞

∗ is a critical point
of I∗ if q ∈ K∗ and∫ T

0

[
√

1− |q′|2 −
√

1− |ϕ′|2]dt+

∫ T

0

[E(t, q, q′)−∇qV (t, q)] · (ϕ− q)dt

+

∫ T

0

W (t, q) · (ϕ′ − q′)dt ≥ 0, for all ϕ ∈ K∗.

In [2] it is proved that the critical points of I∗ are just the T -periodic solutions
of the Lorentz force equation (1). By a T -periodic solution q we mean a function
q = (q1, q2, q3) of class C2 such that |q′(t)| < 1 for all t, and which verifies the
equation (1) and

q(0) = q(T ), q′(0) = q′(T ).

Specifically, it is shown the following result.

Theorem 4 ([2]) A given q ∈W 1,∞
∗ is a critical point of I∗ if and only if q is

a T -periodic solution of the Lorentz force equation (1).

The following result in [2] will be essential to prove the weak Palais-Smale
condition for the functional I∗ with Y = C([0, T ],R3).

Lemma 5 If c ∈ R, (εn) is a sequence of positive numbers converging to zero
and (qn) is a bounded sequence in W 1,∞

∗ satisfying that

lim
n→∞

I∗(qn) = c,

and for each integer n ≥ 1,

Ψ∗(ϕ)−Ψ∗(qn) + F ′(qn)[ϕ− qn] ≥ −εn‖ϕ− qn‖1,∞, for all ϕ ∈ K∗,

then there exists a subsequence (qnk) of (qn) which is converging in C([0, T ],R3)
to a critical point q ∈ K∗ of I∗ with level I∗(q) = c.
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In the rest of the section we apply the results proved in Sections 2 and 3 to
state the existence of multiple periodic solutions for the Lorentz force equation
under different hypotheses on the electric potential V and the magnetic potential
W .

3.2 Infinitely many periodic solutions

As a first application, we have the following result.

Theorem 5 Assume that V and W satisfy

(H1) V (t, ·) is even and W (t, ·) is odd for all t ∈ [0, T ].

(H2) There exist µ > 1, C > 0 and a sufficiently large R > 0 such that

|W (t, q)|+ V (t, q) ≤ −C|q|µ, for t ∈ [0, T ], |q| ≥ R.

(H3) V (t, 0) = 0 for every t ∈ [0, T ] and there exist r1 ∈ (0, 1), c, d > 0 and
µ, ν > 0 with µ < min{2, ν + 1} such that

|W (t, q)| ≤ c|q|ν , V (t, q) ≥ d|q|µ for t ∈ [0, T ], |q| ≤ r1.

Then the Lorentz force equation (1) has infinitely many pairs of nontrivial T -
periodic solutions (corresponding to negative critical values of the action fun-
cional).

Remark 3 A sufficient condition for (H2) is that there exist R > 0, C > 0 and
1 ≤ ν < µ such that

|W (t, q)| ≤ C|q|ν , V (t, q) ≤ −C|q|µ for t ∈ [0, T ], |q| ≥ R.

Proof. Our aim is to apply Corollary 1 with l = 1 and any k ≥ 1. Observe that
using (H1) one has that F , and thus I∗, is even. For q ∈ K∗ we define

q = q + q̃, q =
1

T

∫ T

0

qdt.

By Lemma 4-(ii),
‖q̃‖∞ ≤ T,

and using ‖q′‖∞ ≤ 1, (H2) and that |q|µ ≤ 2µ−1[|q|µ+ |q̃|µ], we obtain constants
C1, C2 > 0 such that

I∗(q) ≥
∫ T

0

[|q′||W (t, q)| − V (t, q)]dt ≥ −
∫ T

0

[|W (t, q)|+ V (t, q)]dt

≥ C
∫ T

0

|q|µdt− C1 ≥ 21−µCT |q|µ − C2, for all q ∈W 1,∞
∗ .
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Therefore, we deduce that I∗ is bounded from below and by Remark 1-i) we
can take l = 1 in Corollary 1.

We claim also that I∗ satisfies (wPS)-condition with Y = C([0, T ],R3).
Indeed, let (qn) ⊂W 1,∞

∗ be a sequence such that (I∗(qn)) is bounded. Then the
above inequality implies that (qn), and thus (qn) by Lemma 4-(ii), is a bounded
sequence in W 1,∞

∗ , hence Lemma 5 implies our claim.
Next, we deduce from (H3) that I∗(0) = 0. Let us fix k ≥ 1 and take Xk a

k-dimensional subspace of W 1,∞
∗ . Consider the (k − 1)-sphere of radius r with

respect to the norm ‖ · ‖1,∞:

Kr = {q ∈ Xk : ‖q‖1,∞ = r}

with r ≤ r1. Since r1 < 1, one has that Kr ⊂ K∗ and hence

I∗(q) =

∫ T

0

[1−
√

1− |q′|2]dt+

∫ T

0

[q′ ·W (t, q)− V (t, q)]dt

≤
∫ T

0

|q′|2dt+

∫ T

0

[|q′||W (t, q)| − V (t, q)]dt

≤ T‖q‖21,∞ + cr‖q‖νLν − d‖q‖
µ
Lµ , for all q ∈ Kr.

Now, since Xk is finite-dimensional all the norms are equivalent and, using that
µ < min{2, ν + 1}, this means that there exists some constants C3, C4 > 0 such
that

I∗(q) ≤ T‖q‖21,∞ + C3r‖q‖ν1,∞ − C4‖q‖µ1,∞ = Tr2 + C3r
ν+1 − C4r

µ

< 0 = I∗(0), for all q ∈ Kr,

for r small enough. Corollary 1 implies the existence of at least k pairs of
nontrivial T -periodic solutions of (1). Taking into account that k is any positive
integer, the proof is completed.

The proof of the latter result relies on Corollary 1 in the case that the action
functional I∗ is bounded from below. Now, we give a variant with conditions
that do not imply I∗ to be bounded from below. To prove it we apply Corollary 1
with l = 4 ≤ k for any k.

Theorem 6 Assume that V and W satisfy the conditions of Theorem 5 with
condition (H2) replaced by

(H ′2) There exist µ > 1, C > 0 and a sufficiently large R > 0 such that

|W (t, q)| − V (t, q) ≤ −C|q|µ, for t ∈ [0, T ], |q| ≥ R.

Then the Lorentz force equation (1) has infinitely many pairs of nontrivial T -
periodic solutions (corresponding to negative critical values of the action func-
tional).
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Remark 4 A sufficient condition for (H ′2) is that there exist R > 0, C > 0 and
1 ≤ ν < µ such that

|W (t, q)| ≤ C|q|ν , V (t, q) ≥ C|q|µ for t ∈ [0, T ], |q| ≥ R.

Proof. The functional I∗ satisfies (I0) by (H1). Meanwhile, similarly to the
proof of the previous theorem, (H ′2) implies that for every q ∈ K∗,

I∗(q) ≤ T +

∫ T

0

[|q′||W (t, q)| − V (t, q)]dt ≤ T +

∫ T

0

[|W (t, q)| − V (t, q)]dt

≤ −C
∫ T

0

|q|µdt+ C1 ≤ −C2|q|µ + C3,

for some constants C1, C2, C3 > 0. Thus, I∗ satisfies the (wPS)-condition.
On the other hand, consider the subspace of W 1,∞

∗ of codimension 3 defined
by

W̃ 1,∞
∗ = {q ∈W 1,∞

∗ : q = 0}.

It is easy to check that I∗ is bounded from below in W̃ 1,∞
∗ ; i.e.,

inf
q∈W̃ 1,∞

∗

I∗(q) > −∞.

Besides, using (H3) as in the proof of Theorem 5 for every subspace Xk of
W 1,∞
∗ with dimension k, there exists a (k − 1)-sphere of radius r with respect

to the norm ‖ · ‖1,∞ such that the supremum on this sphere of the functional I∗
is negative.

Therefore, by applying Corollary 1, we conclude the existence of at least k
pairs of nontrivial T -periodic solutions of (1) for every k ≥ 4 and the proof is
completed.

3.3 Nonlinear eigenvalue problems

In the next application, we consider the Lorentz force equation with the electric
potential depending on a parameter λ > 0(

q′√
1− |q′|2

)′
+ (W (t, q))′ = E(t, q, q′)− λ∇qV (t, q), (8)

where V,W and E are defined above. We have the following result.

Theorem 7 Assume that V and W satisfy (H1), (H2) (or (H ′2)) and

(H4) There is 1 ≥ r1 > 0 such that

V (t, q) > 0 = V (t, 0) for t ∈ [0, T ], 0 < |q| ≤ r1.
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Then for any integer m ≥ 1, there is Λm > 0 such that the Lorentz force equation
(8) has at least m pairs of nontrivial T -periodic solutions (corresponding to
negative critical values of the action funcional) for any λ ≥ Λm.

Proof. Let us take

Fλ(q) =

∫ T

0

[q′ ·W (t, q)− λV (t, q)]dt, for all q ∈W 1,∞
∗

and the action
Iλ∗ = Ψ∗ + Fλ

corresponding to the problem associated to the equation (8) with periodic
boundary conditions. From (H1) it follows that Fλ is even and recall that
Ψ∗ is even. Thus Iλ∗ is even. On the other hand, since V (t, 0) = 0, one has that
Iλ∗ (0) = 0.

In the case that (H2) holds true, using same arguments as in the proof of
Theorem 5 it follows that there are positive constants C1, C2 depending on λ
such that

Iλ∗ (q) ≥ C1|q|µ − C2 for all q ∈W 1,∞
∗ .

This implies, as in the proof of Theorem 5, that Iλ∗ is bounded from below and
satisfies (wPS)-condition. In particular, we can take l ≥ 1 in Corollary 1.

If hypothesis (H ′2) is satisfied instead of (H2), by same arguments used in
the proof of Theorem 6 there are positive constants C3, C4 depending on λ such
that

Iλ∗ (q) ≤ −C3|q|µ + C4 for all q ∈W 1,∞
∗ ,

and, as in the proof of Theorem 6, we deduce that Iλ∗ satisfies (wPS)-condition.

Moreover, note that Iλ∗ is bounded from below on W̃ 1,∞
∗ . Hence, in this case,

we can take l ≥ 4 in Corollary 1.
Next, consider a k-dimensional subspace Xk of W 1,∞

∗ with k ≥ l = 1 if (H2)
is satisfied and with k ≥ l = 4 if condition (H ′2) holds true. If

K = {q ∈ Xk : ‖q‖1,∞ = r1},

observe that (H4) implies that K ⊂ K∗ and

inf
q∈K

∫ T

0

V (t, q)dt > 0.

On the other hand,

Iλ∗ (q) =

∫ T

0

[1−
√

1− |q′|2]dt+

∫ T

0

q′ ·W (t, q)dt− λ
∫ T

0

V (t, q)dt

≤ T (1 + max
[0,T ]×BR3 [0,r1]

|W |)− λ inf
q∈K

∫ T

0

V (t, q)dt,

for any q ∈ K. Thus, there is Λm > 0 such that supK Iλ∗ < 0 for all λ ≥ Λm.
Now the result follows from Corollary 1 with m = k ≥ l = 1 if (H2) is satisfied
and with m = k − 3, k ≥ l = 4 if condition (H ′2) holds true.
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Theorem 8 (i) If V and W satisfy (H1), (H2) and

(H5) there is r1 ∈ (0, 1] such that

V (t, q) > 0 = V (t, 0) for 0 < |q| ≤ r1, and

lim
|q|→0

|W (t, q)|+ V (t, q)

|q|2
= 0, uniformly in [0, T ],

then for any integer m ≥ 1, there is Λm > 0 such that

• the Lorentz force equation (8) has at least m pairs of nontrivial T -periodic
solutions (corresponding to negative critical values of the action func-
tional) for any λ ≥ Λm,

• if m ≥ 4, then (8) has at least m−3 pairs of nontrivial T -periodic solutions
(corresponding to positive critical values of the action functional) for any
λ ≥ Λm.

(ii) If V and W satisfy (H1), (H ′2) and (H5), then for any integer m ≥ 1,
there is Λm > 0 such that the Lorentz force equation (8) has

• at least m pairs of nontrivial T -periodic solutions (corresponding to nega-
tive critical values of the action functional) for any λ ≥ Λm,

• at least m pairs of nontrivial T -periodic solutions (corresponding to posi-
tive critical values of the action functional) for any λ ≥ Λm.

Proof. We keep the notation introduced in the proof of Theorem 7. Let m ≥ 1
be a fixed integer.

From the proof of Theorem 7 we know that Iλ∗ satisfies (wPS)-condition for
each λ > 0. In addition, Iλ∗ is bounded from below if (H2) holds true, while

when (H ′2) is satisfied, Iλ∗ is bounded from below on W̃ 1,∞
∗ . Therefore, we can

choose l ≥ 1 if (H2) holds true and l ≥ 4 when (H ′2) is satisfied.
Now, for k = m if (H2) holds true and k = m + 3 if it is satisfied (H ′2),

consider a k-dimensional subspace Xk of W 1,∞
∗ . Let us fix r > 0 and consider

K = {q ∈ Xk : ‖q‖∞ = r}.

Note that there exists αk > 0 such that

‖q‖1,∞ ≤ αk‖q‖∞ for all q ∈ Xk.

Thus, taking 0 < r < r1 sufficiently small and using that V is positive when
0 < |q| ≤ r1, it follows with same arguments as in the proof of Theorem 7 that
there is Λm > 1 such that supK Iλ∗ < 0 for all λ ≥ Λm. Corollary 1 implies that
Iλ∗ has at least m distinct pairs of non-trivial critical points with negative levels
for all λ ≥ Λm.
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To look for the critical points with positive level suppose that k ≥ 4, i.e.
that m ≥ 4 if it is satisfied condition (H2) and that m ≥ 1 when (H ′2) holds
true. Next, by the Sobolev inequality there exists α > 0 such that

‖q‖∞ ≤ α‖q′‖L2 for all q ∈ W̃ 1,∞
∗ ,

which together with the elementary inequality

1−
√

1− s2 ≥ s2

2
for all s ∈ [0, 1],

implies that there exists a constant C1 > 0 such that

Iλ∗ (q) =

∫ T

0

[1−
√

1− |q′|2]dt+

∫ T

0

q′ ·W (t, q)dt− λ
∫ T

0

V (t, q)dt

≥ C1‖q‖2∞ −
∫ T

0

[
|W (t, q)|+ λV (t, q)

]
dt

≥ C1‖q‖2∞ − λ
∫ T

0

[
|W (t, q)|+ V (t, q)

]
dt+ (λ− 1)

∫ T

0

|W (t, q)|dt

≥ C1‖q‖2∞ − λ
∫ T

0

[
|W (t, q)|+ V (t, q)

]
dt,

for all λ ≥ Λm > 1 and q ∈ W̃ 1,∞
∗ . This together with (H5) implies that there

exists r > ρ > 0 and C2 > 0, depending on C1 and λ, such that

Iλ∗ (q) ≥ C2‖q‖2∞ = C2ρ
2 > 0 for all q ∈ W̃ 1,∞

∗ with ‖q‖∞ = ρ.

Hence, using Theorem 2 it follows that Iλ∗ has at least k − 3 distinct pairs of
nontrivial critical points with positive levels for any λ ≥ Λm and the proof is
completed.

Remark 5 Let V be given by

V (t, q) = β(t)|q|µ for all (t, q) ∈ [0, T ]× R3,

where µ > 2 and β : [0, T ]→ R is a positive, continuous function. Assume that
the magnetic potential W is such that W (t, ·) is odd for all t ∈ [0, T ], and

lim
|q|→0

|W (t, q)|
|q|2

= 0, lim sup
|q|→∞

|W (t, q)|
|q|µ

<∞,

uniformly in t ∈ [0, T ]. Clearly, since µ > 2, hypotheses (H1) and (H5) are
satisfied. In addition, since β is continuous and positive, for λ > 0 sufficiently
large, condition (H ′2) holds true and then, by the previous theorem, for any
integer m ≥ 1 there is Λm > 0 such that the Lorentz force equation (8) has at
least 2m nontrivial T -periodic solutions for any λ ≥ Λm.

29



Next, consider the Lorentz force equation given by(
q′√

1− |q′|2

)′
+ (W (t, q))′ = E(t, q, q′)− [λq +∇qV (t, q)], (9)

where V,W and E are defined above. This means that in this case the electric

potential is given by λ |q|
2

2 + V (t, q). We have the following result.

Theorem 9 If V and W satisfy conditions (H1,2) with µ > 2 and

(H6) V (t, 0) = 0 for every t ∈ [0, T ] and

lim
|q|→0

|W (t, q)| − V (t, q)

|q|2
= 0 uniformly in t ∈ [0, T ],

then for any integer m ≥ 1, the Lorentz force equation (9) has at least 6m pairs
of nontrivial T -periodic solutions (corresponding to negative critical values of

the action functional) for any λ > 8
(
πm
T

)2
.

Proof. Let us take

Fλ(q) =

∫ T

0

[
q′ ·W (t, q)−

(
λ
|q|2

2
+ V (t, q)

)]
dt, for all q ∈W 1,∞

∗ ,

and the action
Iλ∗ = Ψ∗ + Fλ,

corresponding to the problem associated to the equation (9) with periodic
boundary conditions. Observe that Fλ is even and Iλ∗ (0) = 0. From (H2)
and same arguments used in the proof of Theorem 5 it follows that there are
positive constants Ci (1 ≤ i ≤ 3) depending on λ such that

Iλ∗ (q) ≥ C1|q|µ − C2|q|2 − C3 for all q ∈W 1,∞
∗ .

This implies, as in the proof of Theorem 5, that Iλ∗ is bounded from below and
satisfies (wPS)-condition.

Now, let us fix an integer m ≥ 1 and consider the 6m-dimensional subspace
Xm of W 1,∞

∗ given by

Xm = {a sin jωt+ b cos jωt : a, b ∈ R3, 1 ≤ j ≤ m},

where ω = 2π/T . Fix λ > 8
(
πm
T

)2
. Consider ε > 0 such that m2ω2− λ

2 + ε < 0
and, using (H6), choose r ∈ (0, 1) such that

|W (t, q)| − V (t, q) ≤ ε|q|2 for all |q| ≤ r, t ∈ [0, T ].

Take
K = {q ∈ Xm : ‖q‖1,∞ = r}.
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One has that K ⊂ K∗ and, using that

1−
√

1− s2 ≤ s2 for all s ∈ [0, 1],

and

m2ω2

∫ T

0

|q|2dt ≥
∫ T

0

|q′|2dt for all q ∈ Xm,

it follows that

Iλ∗ (q) =

∫ T

0

[1−
√

1− |q′|2]dt+

∫ T

0

[q′ ·W (t, q)− V (t, q)]dt− λ

2

∫ T

0

|q|2dt

≤ (m2ω2 − λ

2
)

∫ T

0

|q|2dt+

∫ T

0

[|W (t, q)| − V (t, q)]dt,

for all q ∈ K. By the choice of r we deduce that

Iλ∗ (q) ≤ (m2ω2 − λ

2
+ ε)

∫ T

0

|q|2dt ≤ r2T (m2ω2 − λ

2
+ ε) < 0 = Iλ∗ (0),

for all q ∈ K. The proof is completed via Corollary 1.

Next, consider the Lorentz force equation given by(
q′√

1− |q′|2

)′
+ (W (t, q))′ = E(t, q, q′)− [λβ(t)|q|µ−1q − α(t)|q|ν−1q], (10)

where W and E are defined above and the electric potential V is given by

V (t, q) =
1

µ
λβ(t)|q|µ − 1

ν
α(t)|q|ν for all (t, q) ∈ [0, T ]× R3,

where µ, ν ≥ 1, λ > 0 is a parameter, α, β : [0, T ]→ R are positive, continuous
functions. We have the following result.

Theorem 10 If ν < µ and the magnetic potential W satisfies

(H7) W (t, ·) is odd for all t ∈ [0, T ], and

lim sup
|q|→0

ν|W (t, q)|
|q|ν

< min
[0,T ]

α, lim sup
|q|→∞

|W (t, q)|
|q|µ

<∞,

uniformly in t ∈ [0, T ],

then for any integer m ≥ 1, there is Λm > 0 such that the Lorentz force equation
(10) has at least m pairs of nontrivial T -periodic solutions (corresponding to
positive critical values of the action functional) for any λ ≥ Λm. Moreover, if
m ≥ 4, then the Lorentz force equation (10) has at least m−3 pairs of nontrivial
T -periodic solutions (corresponding to negative critical values of the Poincaré
action functional) for any λ ≥ Λm.
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Proof. From (H7) it follows that there exist C1 > 0 such that

|W (t, q)| ≤ C1(|q|µ + 1) for all (t, q) ∈ [0, T ]× R3.

Hence, using same arguments as in the proof of Theorem 5 it follows that there
exist C2, C3, C4, C5 > 0 depending only on W,α, β, T such that

Iλ∗ (q) ≤ (C2 − C3λ)|q|µ + C4|q|ν + C5 for all q ∈ K∗.

Consequently, taking Λ = C2/C3 and λ > Λ, using µ > ν it follows that
Iλ∗ (q)→ −∞ as q ∈ K∗ and |q| → ∞. This together with Lemma 5 implies that
Iλ∗ satisfies (wPS)-conditon for all λ > Λ.

Next, let m ≥ 1 be a fixed integer and Xm be a m-dimensional subspace of
W 1,∞
∗ endowed with the norm ‖ · ‖∞. Consider r > 0 such that

Q := {q ∈ Xm : ‖q‖∞ ≤ r} ⊂ K∗.

Note that ∂Q = {q ∈ Xm : ‖q‖∞ = r}. It is clear that there exists Λm ≥ Λ such
that

Iλ∗ (q) < 0 for all q ∈ ∂Q,

for all λ ≥ Λm.
Next, let us fix λ ≥ Λm. Using the assumption (H7) consider ρ > 0 and

0 < C6 < min[0,T ] α such that

|W (t, q)| ≤ C6
|q|ν

ν

for all t ∈ [0, T ] and q ∈ R3 with |q| ≤ ρ. In particular, for q ∈ K∗ with
‖q‖∞ = ρ it is deduced that

Iλ∗ (q) ≥ −
∫ T

0

|W (t, q)|dt+

∫ T

0

[α(t)
|q|ν

ν
− λβ(t)

|q|µ

µ
]dt

≥
∫ T

0

[
(α(t)− C6)

|q|ν

ν
− λβ(t)

|q|µ

µ

]
dt.

Hence, there exist C7, C8 > 0 such that for every q ∈ K∗ with ‖q‖∞ = ρ, one
has

Iλ∗ (q) ≥ C7

∫ T

0

|q|νdt− C8

∫ T

0

|q|µdt

= C7

∫ T

0

|qν |(1− C−17 C8|q|µ−ν)dt

≥ C7

∫ T

0

|qν |(1− C−17 C8ρ
µ−ν)dt.
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Therefore, for 0 < ρ < r (depending on λ) small enough, there exists C9 > 0
which depends on ρ such that

Iλ∗ (q) ≥ C9

∫ T

0

|q|νdt for all q ∈ K∗ with ‖q‖∞ = ρ.

If we prove the claim

a := inf

{∫ T

0

|q|νdt : q ∈ K∗, ‖q‖∞ = ρ

}
> 0,

we obtain the existence of b > 0 such that Iλ∗ (q) ≥ b for all q ∈ W 1,∞
∗ with

‖q‖∞ = ρ and the first assertion will be completed via Theorem 2 (with k = 0,

X̃0 = X = W 1,∞
∗ ). Indeed, to show the claim, observe that if (qn) ⊂ K∗ with

‖qn‖∞ = ρ is a minimizing sequence; i.e., satisfying
∫ T
0
|qn|νdt → 0 as n →∞,

then the boundedness of (qn) in W 1,∞ and the Arzelà-Ascoli theorem imply that
there exists q ∈ C([0, T ],R3) such that, up to a subsequence, ‖qn − q‖∞ → 0 as

n→∞. It follows then that ‖q‖∞ = ρ and
∫ T
0
|q|νdt = a and therefore a > 0.

Next, using that for each λ ≥ Λm, Iλ∗ is bounded from below on W̃ 1,∞
∗

and that Iλ∗ < 0 on ∂Q, the existence of at least m − 3 pairs of nontrivial
T -periodic solutions (corresponding to negative critical values of the Poincaré
action functional) follows in a clear way from Corollary 1, taking k = m, l = 4,

X̃3 = W̃ 1,∞
∗ and K = ∂Q.

4 Remarks and extensions

4.1 The Lorentz force equation with zero Dirichlet bound-
ary value conditions

In the latter section, we have focused on the periodic problem. However, the
Lorentz force equation (1) with zero Dirichlet boundary value conditions

q(0) = 0 = q(T ) (11)

can be considered in a very similar way. In this case, we must consider the
functional in W 1,∞

0 := {q ∈ W 1,∞ : q(0) = q(T ) = 0} given by I0 = Ψ0 + F ,
where Ψ0 is defined as in (7) just changing the domain K∗ by

K0 = {q ∈W 1,∞
0 : ‖q′‖∞ ≤ 1}.

Then, the notion of critical point of I0 is analogous to this one of I∗ (again
changing to the domain K0, see [2, Definition 1]). In addition, in a similar way
to Theorem 4, these critical points of I0 are just the solutions of the Lorentz
force equation (1) with zero Dirichlet boundary conditions (11), see [2, Theorem
2]. Using that I0 is bounded from below for any potentials V and W and
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that the functional I0 satisfies the weak Palais-Smale condition (wPS) with
Y = C([0, T ],R3) (see [2, Lemma 5]), we deduce from Corollary 1 the following
result.

Theorem 11 If condition (H1) holds true and there exist a subspace Xk of
W 1,∞

0 with dimXk = k and r > 0 such that I0(q) < I0(0) for all q ∈ Xk with
‖q‖∞ = r, then I0 possesses at least k distinct pairs of nontrivial critical points
which are solutions of the Lorentz force equation (1) with Dirichlet boundary
conditions (11).

By using Theorem 11 and the same strategy like in Theorems 5, 7, 9 respec-
tively, the reader can deduce the following results.

Corollary 2 If V and W satisfy (H1,3), then the Lorentz force equation (1) has
infinitely many pairs of nontrivial solutions satisfying the Dirichlet boundary
conditions (11).

Corollary 3 If V and W satisfy (H1,4), then for any integer m ≥ 1, there is
Λm > 0 such that the Lorentz force equation (8) has at least m pairs of nontrivial
solutions satisfying the Dirichlet boundary conditions (11) for any λ ≥ Λm.

Corollary 4 If V and W satisfy (H1,5), then for any integer m ≥ 1, the Lorentz
force equation (9) has at least 3m pairs of nontrivial solutions satisfying the

Dirichlet boundary conditions (11) for any λ > 2
(
πm
T

)2
.

On the other hand using Theorem 3 we have the following application.

Corollary 5 If V and W satisfy (H1,4) and

(H8) there exist constants µ, ν > 2 and d > 0 such that

V (t, q) ≤ d|q|µ, |W (t, q)| ≤ d|q|ν ,

for every (t, q) ∈ [0, T ]× R3 with |q| ≤ T ,

then for any integer m ≥ 1, there is Λm > 0 such that the Lorentz force equation
(8) has at least 2m pairs of nontrivial solutions satisfying the Dirichlet boundary
conditions (11) for any λ ≥ Λm.

Proof. For each m ≥ 1, let Xm be a m-dimensional subspace of W 1,∞
0 . Choose

αm > 1 such that

‖q‖1,∞ ≤ αm‖q‖∞ for all q ∈ Xm,

and r > 0 such that αmr < r1 (where r1 is given by (H4)). For every q ∈ Xm

with ‖q‖∞ = r we have

• ‖q′‖∞ < r1 and, since r1 ≤ 1, q ∈ K0,
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• and, by (H4),

inf

{∫ T

0

V (t, q)dt : q ∈ Xm with ‖q‖∞ = r

}
> 0.

Consequently, there exists Λm > 0 such that

I0(q) < 0 = I0(0) for all q ∈ Xm with ‖q‖∞ = r,

for every λ ≥ Λm. In particular, I0 satisfies (I1) with k=m provided that
λ ≥ Λm.

Next, since∫ T

0

[1−
√

1− |q′|2]dt ≥ 1

2

∫ T

0

|q′|2dt =
1

2
‖q‖2H1

0
, for all q ∈ K0,

we deduce by using (H8) that there exists C1 > 0 such that

I0(q) ≥ 1

2
‖q‖2H1

0
− C1‖q‖νLν − λC1‖q‖µLµ , for all q ∈ K0.

Taking into account that H1
0 is embedded into C([0, T ],R3) and C([0, T ],R3) is

embedded into Lµ and Lν , it follows that there exist constants C2, C3 > 0 such
that

I0(q) ≥ C2‖q‖2∞ − C3‖q‖ν∞ − λC3‖q‖µ∞, for all q ∈ K0.

Therefore, using that µ, ν > 2 we deduce that I0 satisfies (I2) with k = 0 and

X̃0 = W 1,∞
0 for some ρ < r. Now the proof follows from the Theorem 3.

4.2 The generalized Lorentz force equation in 4-vector
form

Following for example [17, Lecture 26] or [18, Section 23], if q is a T -periodic solu-
tion (respectively a solution with zero boundary conditions) for the LFE in [0, T ],

then the function α : [0, T ]→ [0, T ∗ := α(T )] given by α(t) =
∫ t
0

√
1− |q′(τ)|2dτ

is a bijection. From the physical point of view, α(t) is the proper time of the
particle. Let (r, δ) : [0, T ∗] → R4 be given by δ = α−1 and r = q ◦ δ. It follows
that (r, δ) satisfies the Lorentz force equation in 4-dimensions (2) with boundary
conditions on [0, T ∗],

r(0) = r(T ∗), r′(0) = r′(T ∗), δ(0) = 0, δ′(0) = δ′(T ∗). (12)

(respectively,

.r(0) = r(T ∗) = 0, δ(0) = 0). (13)

35



Moreover, (r, δ) satisfies a fundamental property of LFE, namely

|r′(s)|2 − δ′2(s) = −1 for all s ∈ [0, T ∗]. (14)

Conversely, let (r, δ) be a solution of the LFE in 4-dimensions (2) with boundary
conditions (12) (respectively, (13)) on [0, T ∗], then there exists a constant h ∈ R
such that

|r′(s)|2 − δ′2(s) = h, for all s ∈ [0, T ∗]. (15)

Assume that h < 0. In this case δ : [0, T ∗] → [0, T := δ(T ∗)] is a bijection and
q : [0, T ] → R3 given by q(t) = r(δ−1(t)) is a T -periodic solution (respectively,
a solution with zero Dirichlet boundary conditions) of the LFE with the rest
mass

m0 =
√
−h.

Thus, in this case the rest mass is not prescribed and changes with the solution
of (2) considered. Consider the Minkowski space (M, g) where M = M0 × R
with M0 = R3 endowed with the Euclidean scalar product and the Minkowski
semi-metric given by g = dr2 − dδ2. A curve (r, δ) : [0, T ∗] → M that satisfies
(14) is called a material particle in M, while if the curve satisfies (15) with
h < 0, it is called timelike (see [23, Chapter 6]). The Lorentz force equation
in 4-dimensions (2) has a natural generalization to a general Lorentz manifold
M = M0 × R where M0 is a Riemannian manifold (see for example [4] or
[27, §3.8.]). Existence results for the generalized Lorentz force equation with
periodic boundary conditions without the prescribed rest mass can be found in
[3, 8]. To the best of our knowledge, the results in the mentioned papers do
not contain any qualitative result about solutions of the original Lorentz force
equation when the rest mass and the period are prescribed.
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