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Abstract. We study the dynamics around closed orbits of autonomous
Lagrangian systems. When the configuration space is two-dimensional and
orientable we show that every closed orbit minimizing the free-period ac-
tion functional is orbitally unstable. This result applies even when the
minimizers are degenerate or nonisolated, but a particularly strong form of
instability holds in the isolated case. Under some symmetry assumptions,
free-period action minimizers are unstable also in the higher-dimensional
case. Applications to geodesics and Celestial Mechanics are given.

1 Introduction

Many connections between the dynamical and variational properties of solutions
of various classes of dynamical systems are known. The purpose of this paper is
to analyze the extent to which dynamical instability holds for action-minimizing
closed orbits of autonomous Lagrangian systems.

The history of this problem is long and fruitful, starting with a classical
1887 result of Poincaré [43, §358] on the hyperbolicity of nondegenerate length-
minimizing closed geodesics on orientable surfaces. Forty-five years later Hedlung
[22, Theorem XVI] used variational arguments due to Morse [32] to show the ex-
istence of heteroclinics connecting (possibly degenerate) adjacent minimal closed
geodesics on two-dimensional tori. In particular, it follows from these classical
results that degenerate minimal closed geodesics are also unstable provided that
they are isolated. The isolatedness assumption will be removed in Corollary 3.2,
which also contains a reinforced instability result in the isolated case.

Poincaré’s instability result for nondegenerate minimal geodesics was extended
to even-dimensional orientable manifolds by Bolotin [7] and Treschev [49] (see also
[11]). This result does not hold in the odd-dimensional case; in fact, there is a
1935 example by Carathéodory [13, §411] of a Riemannian metric on R3 and a
closed, length-minimizing geodesic which is orbitally stable. However, under some
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symmetry conditions, Bolotin and Rabinowitz [9], [10] have extended Hedlung’s
theorem to all dimensions d ≥ 3, showing that heteroclinics connecting isolated
closed minimizing geodesics continue to exist in the higher-dimensional setting.
In particular, these results imply that symmetric closed minimizing geodesics are
unstable (in all space dimensions) provided that they are isolated. We shall prove
instability without the isolatedness assumption in Corollary 3.3.

The dynamics of minimal closed geodesics have also been explored by means
of Maslov index techniques. In this line, [28, Theorem 1.5] states that in a quite
general framework (without symmetry assumptions) nondegenerate local minima
of the periodic action are hyperbolic; [36] studies hyperbolicity in a symmet-
ric framework, and [24] considers the possible extension of the Bolotin-Treschev
instability results to the degenerate (parabolic) case1.

The discussion above concerning with geodesic flows, a second question arises:
to what extent the principle of instability of minimizing geodesics can be extended
to more general (autonomous) Lagrangian systems? At a linear level, this problem
has been treated by several authors, mainly motivated by the dynamics of the
so-called Aubry-Mather-Mañé sets (see, e.g. [29], [16], [33, Section 2.6], [4]), and
problems from Celestial Mechanics ([26], [23]). Maslov-index arguments have
also been used in this setting, see, e.g., [45]. There is, however, an important
obstruction to this general idea, and it is provided by Gordon’s characterization
of the (dynamically stable) elliptic orbits of the Kepler problem as minimizers of
the fixed period action functional ([20]; further examples can be found in [3]). It
points to the fact that some extra assumptions must be added to minimizing the
fixed period action functional if one wants to predict dynamical instability.

In view of this situation we deal instead with (local) minimizers of the free
period action functional

Ah(T, x) =

∫ T

0

[
h+ L(x(t), ẋ(t))

]
dt , (1)

where L = L(x, ẋ) is the Lagrangian function and h ∈ R is a parameter. The
new domain is the set of couples (T, x) where T > 0 and x = x(t) is a closed
loop of period T . This functional has been previously considered in the litera-
ture (see, e.g. [15], [1]), and its critical points are the periodic solutions of any
period having energy2 h. While it is clear that any local minimizer (T∗, x∗) of Ah

locally minimizes the fixed-period action functional Ah(T∗, ·), the converse holds
for geodesic flows (Lemma 3.1) but not in general (Example 4. in Section 12; see
also [30, Theorem 1.3] and [2, Proposition 2.1]). Theorems 2.1 and 2.3, which will

1Extra assumptions should be added in [28, Theorem 1.5] or [36, Theorem 3.1], see Example
3 in Section 12. On the other hand, [24, Theorem 1.1] uses in an essential way the fact that linear
instability implies nonlinear instability, which is not always true in the parabolic situation, see
Example 1 in Section 12.

2In fact, vanishing first-order variation with respect to x is equivalent to the Euler-Lagrange
equations and zero first-order variation with respect to T is another way to say that the energy
of the orbit is h. See also Lemma 9.2(iii); part of this result was already present in [15,
Proposition 3-3.1].
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be the main results of this paper, roughly state that if the configuration space
is either 2-dimensional and orientable, or symmetric of any dimension, then all
nonconstant minimizers of Ah are unstable. This result does not require any
nondegeneracy/isolatedness assumptions.

The main idea in our proofs consists in combining the classical principle of
Jacobi-Maupertuis with an argument of reduction of order suggested by Carathéodory
in [13, Chapter 17]. It can be seen that in the vicinity of a closed orbit with
nowhere-vanishing velocity, the dynamics of an autonomous Lagrangian system
inside a given energy level can be represented as the dynamics of a nonau-
tonomous, time-periodic Lagrangian system in one degree less of freedom. This
procedure, which is classical in the context of Hamiltonian systems (see, e.g.,
[5, §45-B]), reduces the problem of the instability of free-period minimizers to
the Lyapunov-instability of action minimizers in time-periodic problems, an is-
sue which has been the object of separate attention in the literature. In the
nonautonomous framework we refer to the pioneering work of Carathéodory [13,
§412-§413] on the linear approximation as well as to the more recent works [18],
[38], [39], [50], [51] (for the one-dimensional problem), or [8], [35],[44], [46], [47],
[52], [53] for the higher-dimensional situation.

2 Precise statement of the main results

Let the configuration space M = Md be a differentiable manifold of class C3

without boundary (assumed connected and metrizable but not neccessarily ori-
entable or compact); 2 ≤ d := dimM < +∞. Denote by TM its tangent bundle,
let O ⊂ TM be an open set, and let the Lagrangian L : O → R, L = L(x, ẋ) be
a C2 function satisfying the Legendre convexity condition on fibers, i.e.

∂2ẋẋL(x, ẋ) is positive definite for every (x, ẋ) ∈ O . (2)

The associated Euler-Lagrange differential equations constitute a first-order sys-
tem on O that in local tangent-bundle coordinates adopts the well-known form

d

dt
∂ẋL

(
x(t), ẋ(t)

)
= ∂xL

(
x(t), ẋ(t)

)
. (3)

We shall denote by

H : O → R, (x, ẋ) 7→ ∂ẋL(x, ẋ)ẋ− L(x, ẋ), (4)

the energy function associated to our Lagrangian L. Notice that it has class C1

on O. It is well-known that H is a first integral (i.e., constant along solutions) of
our Euler-Lagrange system (3). In addition, one checks that

d

dµ
H(x, µẋ) = ∂ẋH(x, µẋ)ẋ = µ ∂2ẋẋL(x, µẋ)(ẋ, ẋ) , (x, µẋ) ∈ O. (5)

The free-period action functional Ah has already appeared in (1). It is time
to be precise concerning its domain, and with this purpose we consider the fiber
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bundle Λ of free closed loops with arbitrary periods. With formulas,

Λ :=
⊔
T>0

C1(R/TZ,M) =
{
(T, x) : T > 0, x ∈ C1(R/TZ,M)

}
.

The ‘linear reparametrization map’ (T, x) ←→ (T, x̂) where x̂(θ) := x(Tθ),
naturally identifies Λ with ]0,+∞[×C1(R/Z,M), and consequently3 Λ is endowed
with a differentiable (of class C2) structure. The (metrizable) topology of Λ is
the natural one: a sequence {(Tn, xn)}n ⊂ Λ converges to (T, x) if and only if
Tn → T and xn(sTn)→ x(sT ) in the C1([0, 1],M)-topology. In this way the set

ΛO := {(T, x) ∈ Λ : (x(t), ẋ(t)) ∈ O ∀t ∈ [0, T ]} (6)

is open. We are interested in ΛO because it is the natural domain of Ah; in fact,
Ah : ΛO → R has class C2. As discussed in the Introduction, its critical points
turn out to be the closed orbits (T, x) of (3) having energy H(x(t), ẋ(t)) ≡ h, see
also Lemma 9.2(iii) below.

We remind that the nonconstant closed orbit (T∗, x∗) is called isolated inside
its energy level provided that the corresponding fixed point of the Poincaré return
map associated to a transversal section of the energy level is isolated. Equiva-
lently, if for any sequence of closed orbits (Tn, xn), all of them having the same
energy as x∗ and such that Tn → T∗ and xn(sTn)→ x∗(sT∗) in the C1([0, 1],M)
sense, one has that Tn = T∗ and xn(t) = x∗(t+ θn) for some sequence θn → 0 and
sufficiently big n.

Similarly, orbital instability (also referred to as dynamical instability in the
Introduction) is understood as the logical negation of the Lyapunov stability
of the corresponding fixed point of the Poincaré section, and therefore, means
both past and future instability, which are equivalent concepts in the measure-
preserving context4. More explicitly, the nonconstant closed orbit x∗ is called
orbitally unstable (inside its energy level) provided that there exists an open
neighborhood N0 ⊂ TM of the trajectory T := {(x∗(t), ẋ∗(t)) : t ∈ R} such
that, for any other open neighborhood N of T there is some solution x = x(t) of
(3) having the same energy as x∗ and with (x(0), ẋ(0)) ∈ N but (x(τ), ẋ(τ)) ̸∈ N0

for some time τ . Roughly speaking, it means that there are solutions having the
same energy of x∗ and starting nearby, which get away from it at some (past or
future) time.

We shall also consider a stronger notion of instability, referred to as orbital
instability in the sense of Siegel and Moser, which was introduced by these authors
in [48, §25]: the closed orbit x∗ is unstable in this sense if there is an open
neighborhood N0 ⊂ TM of the trajectory T such that every solution x ̸≡ x∗
having the same energy as x∗ and satisfying (x(0), ẋ(0)) ∈ N0 leaves N0 either in

3The Banach manifold structure of C1(R/Z,M) was first studied by Eells [19] and has been
considered by many authors since. Under our assumption thatM has class C3 then C1(R/Z,M)
has a natural C2 structure [42], [25].

4See [40, p. 114-115]; the statements there are made for the 2-dimensional case but the
argument keeps its validity for higher dimensions.
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the past or in the future. In broad terms, it means that the only solution having
the same energy as x∗ and remaining close to it for all (past and future) time is x∗
itself. Notice that it can happen only when the closed orbit x∗ is isolated inside
its energy level; on the other hand, hyperbolic closed orbits are always orbitally
unstable in this reinforced sense.

Our first result, which extends Poincaré-Hedlung’s theorem on the instability
of isolated geodesics, is valid only in the two-dimensional orientable case. We
emphasize that the concept of local minimizer is referred to the topology of ΛO
(or Λ); thus, the action on the closed loop x∗ is compared to closed loops which
have a similar period and, after linear reparametrization, are near in the C1

topology.

Theorem 2.1. Let M be an orientable surface. If (T∗, x∗) ∈ ΛO is a nonconstant
local minimizer of Ah, then x∗ is orbitally unstable. If, moreover, (T∗, x∗) is iso-
lated inside its energy level (but possibly degenerate), then it is orbitally unstable
in the sense of Siegel and Moser.

For higher-dimensional configuration manifolds (d ≥ 3) we need to introduce
some symmetry assumptions. Thus, let the C3 diffeomorphism S : M → M
be involutive, i.e. S2 = IdM . By a theorem due to Bochner ([6, Theorem 1],
see also [31, Lemma 2]), each connected component of the set Fix(S) of fixed
points of S must be a C3 submanifold of M . We shall assume that they are all
hypersurfaces5, i.e.

dimFix(S) = d− 1 . (7)

Moreover, let the Lagrangian L be S-symmetric, meaning that

(x, ẋ) ∈ O =⇒ (Sx,−(dS)xẋ
)
∈ O and L(x, ẋ) = L

(
Sx,−(dS)xẋ

)
. (8)

Equivalently, this condition can be restated as follows: Sx(−t) is an extremal
of (3) for any extremal x = x(t). The pair (T, x) ∈ Λ will be called sym-
metric provided that x(t) = Sx(−t) for any t; we denote by ΛS

O the set of
symmetric elements (T, x) ∈ ΛO. Being the set of fixed points of the involu-
tive map (T, x(t)) 7→ (T,Sx(−t)), the infinite-dimensional version of Bochner’s
theorem ([41, Theorem 5.3]) states that each connected component of ΛS

O is a
C2-submanifold of Λ. In addition, Palais’ principle of symmetric criticality ([41,
Theorem 5.4]) ensures that the critical points of Ah

∣∣
ΛS
O

coincide with the S-
symmetric critical points of Ah. This equivalence can be extended to minimizers,
as the following result shows:

Lemma 2.2. Let (T∗, x∗) ∈ ΛS
O be given. Then (T∗, x∗) is a local minimizer of

Ah on ΛO if and only if (T∗, x∗) is a local minimizer of Ah

∣∣
ΛS
O
.

In order to avoid breaking the pace of the presentation, the proof of this
lemma is posponed to the first subsection of the Appendix, at the end of the
paper. It allows us to use the expression symmetric local minimizer with any
of these equivalent meanings. In this paper we also study the dynamics around
symmetric local minimizers.

5This assumption has been previously considered by Arnaud [4].
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Theorem 2.3. Every nonconstant symmetric local minimizer (T∗, x∗) ∈ ΛS
O is

orbitally unstable. Moreover, the associated Floquet multipliers are real and pos-
itive.

We recall that the Floquet multipliers associated to the closed orbit x∗ ∈ ΛS
O

are the eigenvalues of the linearized Poincaré map associated to a transversal
section inside the energy level. It follows that if the minimizing closed orbit x∗ is
nondegenerate, then it is hyperbolic.

Many classical variational methods are designed to find minimizers of the
action functional when the period is fixed. Motivated by this fact let us assume
next that, either,

(a) M is orientable and 2-dimensional, and Ξ is a nontrivial6 connected com-
ponent of C1(R/Z,M), or

(b) there exists an involutive C3-map S :M →M with (7) and (8), and Ξ is a
nontrivial connected component of {x ∈ C1(R/Z,M) : x is S-symmetric}.

For any T > 0 we consider the open set ΞT (assumed nonempty) of closed loops
x ∈ C1(R/TZ,M) such that (T, x) ∈ ΛO and x̂(θ) := x(θT ) belongs to Ξ.

Corollary 2.4. Assume that m(T ) := minx∈ΞT
Ah(T, x) exists for all T > 0, and

limT→0m(T ) = +∞ = limT→+∞m(T ). Then (3) has an orbitally unstable closed
orbit x ∈ ΞT , for some T > 0.

Admitting the validity of Theorems 2.1-2.3, the proof of this result follows
from the fact that the continuous and coercive function m :]0,+∞[→ R must
attains its global minimum, which is the minimum of Ah.

The proof of Theorems 2.1 and 2.3 will be divided in several steps, which will
be distributed along Sections 5-11. Before closing this section we announce that
the question concerning to the necessity of the various assumptions of Theorems
2.1 and 2.3 will be addressed by means of several examples in Section 12. For
instance, the orientability of M (required in Theorem 2.1) is shown to be nec-
essary in Example 2. The symmetry conditions (7)-(8) of Theorem 2.3 cannot
be skipped; this is shown in Example 3. The need of considering the free-period
action functional instead of the more classical fixed-period action functional is
clear from Gordon’s characterization of the elliptic orbits of the Kepler problem
as minimizers of the action (Example 4). The assumption on x∗ being not an
equilibrium is also necessary7, as it will be checked in Example 5. When compar-
ing Theorems 2.1 and 2.3, it seems reasonable to conjecture the orbital instability
in the sense of Siegel and Moser of higher-dimensional isolated symmetric mini-
mizers: in general this is not true, as it will be shown in Example 6.

6We call trivial to the connected component of C1(R/Z,M) containing the constant loops.
When the fundamental group of M is nontrivial, then C1(R/Z,M) is disconnected ([21, Section
1.1, Problem 6]).

7However, if the Lagrangian L is assumed reversible in time, i.e., L(x, ẋ) = L(x,−ẋ), then
the equilibria which minimize the (fixed-period) action functional are Lyapunov-unstable [52,
Corollary 2.3], and the corresponding Floquet multipliers are real and positive [53, Corollary
1.2].
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3 Length-minimizing geodesics

Throughout this section M = Md stands for a Riemannian manifold of class
C3, with associated Riemannian norm ∥ · ∥. We set O := TM and assume that
∥ · ∥2 : TM → R has class C2. In addition to the free-period action functional

Ah : Λ→ R, (T, x) 7→
∫ T

0

(
h+

1

2
∥ẋ(t)∥2

)
dt

associated to each energy level h, the length functional

A : C1(R/Z,M)→ R, x 7→
∫ 1

0

∥ẋ(θ)∥dθ

has an obvious geometrical significance. In this context, it is well-known that a
closed loop x∗ : R/Z → M having constant speed ∥ẋ(θ)∥ ≡ v > 0 is a geodesic
if and only if any of the following equivalent conditions holds: (a): (1, x∗) is a
critical point of the free-period action functional Av2/2; (b): x∗ is a critical point of
the fixed-period action functional A0(1, ·) : C1(R/Z,M)→ R; (c): x∗ is a critical
point of the length functional A. The following elementary lemma extends this
equivalence to action minimizers.

Lemma 3.1. LetM be a Riemannian manifold and let x∗ : R/Z→M be a closed
geodesic with (constant) speed ∥ẋ∗(θ)∥ ≡ v > 0. Then, the following statements
are equivalent:

(i) (1, x∗) is a local minimizer of the free-period action functional Av2/2 : Λ→
R,

(ii) x∗ is a local minimizer of the fixed-period energy action functional: A0(1, ·) :
C1(R/Z,M)→ R,

(iii) x∗ is a local minimizer of the length action functional A : C1(R/Z,M)→ R.

In order to keep the rhythm of the exposition, the proof is postponed to the
second subsection of the Appendix, at the end of the paper. Closed geodesics
satisfying any of these equivalent statements will be called length-minimizing
geodesics in what follows. By assuming the validity of Theorem 2.1 we imme-
diately obtain the following refinement of Poincaré-Hedlung’s planar instability
theorem:

Corollary 3.2. IfM is 2-dimensional and orientable, length-minimizing geodesics
in M are always unstable. Moreover, if a length-minimizing geodesic is isolated,
then it unstable in the sense of Siegel and Moser.

Assume now that the (possibly higher-dimensional) Riemannian manifold M
is endowed with an isometry S : M → M with (7) and such that S2 = IdM . In
this setting, Theorem 2.3 gives rise to the following
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Corollary 3.3. Length-minimizing symmetric geodesics in M are always unsta-
ble. In addition, the associated Floquet multipliers are real and positive.

Under some topological conditions, the existence of length-minimizing geodesics
can be ensured. In the following result we assume that the Riemannian manifold
M is compact and one of the two following possibilities holds:

(a’) M is orientable and 2-dimensional, and Ξ is a nontrivial connected compo-
nent of C1(R/Z,M), or

(b’) There exists an isometry S : M → M with (7) and such that S2 = IdM ,
and Ξ is a nontrivial connected component of the set {x ∈ C1(R/Z,M) :
x is S-symmetric}.

It is well-known that either (a’) or (b’) implies the existence of a length-minimizing
geodesic in Ξ. We arrive to the following

Corollary 3.4. If either (a’) or (b’) holds, then M has a closed geodesic x ∈ Ξ
which is unstable and whose Floquet multipliers are real and positive.

For mechanical Lagrangians L(x, ẋ) := ∥ẋ∥2/2−V (x) one obtains a instability
result by applying the previous corollary to the Jacobi metric

∥ · ∥h :=
√
h− V (x) ∥ · ∥ . (9)

In the last result of this section we keep the framework and assumptions of Corol-
lary 3.4 to which we add a new one: the potential V :M → R has class C3 and,
in case (b’), satisfies V ◦S = V . Adapting the terminology of the previous section
for any T > 0 we set

ΞT := {x ∈ C1(R/TZ,M) such that x̂(θ) := x(θT ) belongs to Ξ} .

Corollary 3.5. Under the above, for any energy level h > maxM V there exists
some T > 0 such that the Lagrangian system (3) has a a closed orbit x∗ ∈ ΞT

which is orbitally unstable and whose Floquet multipliers are real and positive.

4 Unstable periodic orbits in Celestial Mechan-

ics

We illustrate Corollary 2.4 with an application concerning the instability of min-
imizing orbits in some problems from Celestial Mechanics. We consider the re-
stricted planar problem defined by a given number N of primaries with masses
m1,m2, . . . ,mN > 0 rotating solidly around the origin at angular speed ω = 1.
Using complex notation, the positions of these primaries are eitq1, . . . , e

itqN , where
q1, . . . , qN are arbitrary different points of the complex plane C (identified with
R2), which may or may not conform a central configuration.

We study the motion of a massless particle z = z(t) which is attracted by the
primaries through the inverse p > 3 (strong force) law, and our interest lies on
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trajectories which look periodic from a reference system rotating solidly with the
primaries. Using this rotating reference system, and after some normalization,
the Lagrangian governing the motion of the massless particle is given by

L(z, ż) =
1

2
|ż + iz|2 +

N∑
k=1

mk

|z − qk|p−1
, z ∈M := C\{q1, . . . , qN}, ż ∈ C .

The free loop space C1(R/Z,M) is divided into infinitely many connected
components (or, what is the same, homotopy classes). We denote by Ξj the
homotopy class of ξj(θ) := re−2πjθi for r > max1≤k≤N |qk|, i.e. Ξ0 stands for
the homotopy class of the constant loops while Ξj denotes the homotopy class of
closed loops rotating around the convex envelope of the primaries j times in the
clockwise sense. Given a connected component Ξ ⊂ C1(R/Z,M) and T > 0 we
denote by ΞT the set of closed loops z ∈ C1(R/TZ,M) such that ẑ(θ) := z(θT )
belongs to Ξ. For simplicity we set Ξj

T := (Ξj)T .

Finally, we recall that the Jacobi constant

J =
1

2
|z|2 +

N∑
k=1

mk

|z − qk|p−1
− 1

2
|ż|2 ,

is a first integral of the motion.

Theorem 4.1. Under the above, for each value J < 0 of the Jacobi constant
and for any homotopy class Ξ ⊂ C1(R/Z,M) with Ξ ̸= Ξj for every j ≥ 0, there
is some T > 0 and some orbitally unstable closed orbit z ∈ ΞT having this value
of the Jacobi constant.

Proof. We start by noticing that the energy associated to an extremal is its Jacobi
constant with the reversed sign; thus, fixing J < 0 is equivalent to fixing the
energy h = −J > 0. The free-period action functional is given by

Ah(T, z) :=
1

2

∫ T

0

|ż(t) + iz(t)|2dt+
N∑
k=1

∫ T

0

mk

|z(t)− qk|p−1
dt− TJ , (T, z) ∈ Λ .

In order to apply Corollary 2.4 in the planar, non-symmetric case (a), two
assumptions must be checked:

[1.] Ah(T, ·) attains its minimum on ΞT for every T > 0. This fact is es-
sentially due to Poincaré, see also [14, Section 3]. Notice that this part of the
argument actually works for p ≥ 3.

Fix T > 0 and let {zn}n ⊂ ΞT be a minimizing sequence, i.e., Ah(T, zn) →
infz∈ΞT

Ah(T, z).

We start by noticing that {zn}n is bounded on the Sobolev spaceH1(R/TZ,C);
this assertion follows from the inequality

Ah(T, zn) ≥
1

2

∫ T

0

|żn(t) + izn(t)|2dt , n ∈ N .
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Indeed, if T is not an integer multiple of 2π, then the usual Wirtinger inequali-
ties imply that the right hand side is bounded from below by c∥zn∥H1 , where c > 0
is some constant not depending on n, and the result follows. If, on the other hand,
T = 2πj is an integer multiple of 2π, we can write zn(t) = ℓne

−it + ηn(t), where
ℓn ∈ C and {ηn} is bounded on H1(R/2πjZ,C). Then, if zn were not bounded,
after possibly passing to a subsequence one may assume that |ℓn| → +∞. It
follows that zn ∈ Ξj

2πj for n big enough, and consequently, Ξ2πj = Ξj
2πj, implying

that Ξ = Ξj, which contradicts the assumptions.

As a consequence, after possibly passing to a subsequence, one may assume
that {zn} → z∗ weakly on H1(R/TZ,C) (and in particular, uniformly on R).
We claim that z∗(t) ∈ M for any t ∈ R, i.e., z∗ does not have collisions with
the primaries. We check it by a contradiction argument and assume instead
the existence of collisions, say, with the first mass q1. If we assume that, actu-
ally, z∗(t) ≡ q1, then the inequality Ah(T, zn) ≥ m1

∫ T

0
1

|zn(t)−q1|p−1dt implies that

Ah(T, zn)→ +∞, a contradiction. Thus, there must be numbers t1 < t2 < t1+T
such that z∗(t1) = q1, z∗(t2) ̸= q1 and |z∗(t) − q1| < 1 for any t ∈ [t1, t2]. For n
big enough, |zn(t)− q1| < 1 for every t ∈ [t1, t2], and one has

Ah(T, zn) ≥
1

2

∫ t2

t1

|żn(t) + izn(t)|2dt+
∫ t2

t1

m1

|zn(t)− q1|2
dt , (10)

where we have used the assumption p ≥ 3. We set wn(t) := eit(zn(t) − q1); the
parallelogram identity |u− iv|2 = |u|2 + |v|2 − 2 im(uv) leads us to

|ẇn(t)|2 = |żn(t) + izn(t)|2 + |q1|2 − 2 im
[
(żn(t) + izn(t))q1

]
,

and using the inequality |zn(t)| ≤ |q1|+ 1 we see that, for every t ∈ [t1, t2],

|żn(t) + izn(t)|2 ≥ |ẇn(t)|2 + 2 im(żn(t) q1)− 3|q1|2 − 2|q1| .

On the other hand,∫ t2

t1

im(żn(t) q1)dt = im(zn(t2)q1)− im(zn(t1)q1) ≥ −2|q1|(|q1|+ 1) ,

and (10) implies that

Ah(T, zn) ≥
∫ t2

t1

[
1

2
|ẇn(t)|2 +

m1

|wn(t)|2

]
dt− (T + 1)(5|q1|2 + 4|q1|) .

The last summand on the right term does not depend on n. On the other
hand, using the inequality a2 + b2 ≥ 2ab, we see that the integral In in the
inequality above can be estimated as follows:

In ≥
√
2m1

∫ t2

t1

|ẇn(t)|
|wn(t)|

dt ≥
√
2m1

∫ t2

t1

∣∣∣∣ ddt( log |wn(t)|
)∣∣∣∣ dt ≥

≥
√
2m1

∣∣∣ log |wn(t2)| − log |wn(t1)|
∣∣∣→ +∞ as n→ +∞ .
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Consequently, Ah(T, zn) → +∞ as n → +∞, which is not possible since zn was
a minimizing sequence. It follows from here that z∗ does not have collisions, and
we deduce, on the first hand, that z∗ ∈ ΞT , and on the second, that Ah(T, ·)
(which is lower-semicontinuous with respect to the H1 topology) attains on z∗ its
minimum over ΞT .

[2.] a(T ) := minΞT
Ah(T, ·) diverges at T = 0 and at T = +∞. Since

a(T ) ≥ −TJ and we assumed J < 0, the fact that a(T ) → +∞ as T → +∞
is immediate. Thus, let us assume, by a contradiction argument, that there is a
sequence Tn → 0 and a constant K > 0 such that a(Tn) ≤ K for any n ∈ N. Set
a(Tn) = Ah(Tn, zn) for some zn ∈ ΞTn , define un : [0, Tn] → C by t 7→ eitzn(t),
and observe that∫ Tn

0

|u̇n(t)|2dt =
∫ Tn

0

|żn(t) + izn(t)|2dt ≤ 2Ah(Tn, zn) ≤ 2K , n ∈ N ,

so that, by the Cauchy-Schwarz inequality,

|un(t)− un(0)| ≤
∫ Tn

0

|u̇n(t)|dt ≤
√
2K

√
Tn , t ∈ [0, Tn], n ∈ N ,

and, using the inequality

|zn(t)− zn(0)| = |eitzn(t)− eitzn(0)| ≤ |un(t)− un(0)|+ |1− eit||zn(0)| ,

we obtain that |zn(t)−zn(0)| ≤
√
2K
√
Tn+ |zn(0)|Tn for any t ∈ R/TnZ and any

n ∈ N.
If we assume now that |zn(0)| → +∞, we obtain that zn ∈ Ξ0

Tn
for n big

enough, a contradiction. Thus, after possibly passing to a subsequence, we may
suppose that zn(0) is bounded, and this implies the existence of some constant
R > 0 such that

|zn(t)− zn(0)| ≤ R
√
Tn , t ∈ R/TnZ , n ∈ N . (11)

Now, if one assumes that, for some natural index n, the inequality |zn(0) −
qk| > R

√
Tn holds for every 1 ≤ k ≤ N , we see that zn ∈ Ξ0

Tn
, which is a

contradiction. It follows that, after possibly passing to a subsequence, we may
assume that |zn(0)− q1| ≤ R

√
Tn for every n. Thus, (11) gives

|zn(t)− q1| ≤ 2R
√
Tn , t ∈ R/TnZ , n ∈ N ,

and the inequality Ah(Tn, zn) ≥ m1

∫ Tn

0
1

|zn(t)−q1|p−1dt, together with the fact that

p > 3, implies now that a(Tn) = Ah(Tn, zn) → +∞ as n → +∞. This is a
contradiction and concludes the proof.

In connection with Theorem 4.1, Llibre and Stoica [27] have used continuation
methods to study the dynamics around both comet orbits, i.e., the almost-circular
closed orbits of large amplitude, and Hill’s orbits, the almost-circular closed orbits
of small amplitude rotating a primary; they all are shown to be unstable for
p > 3. In comparison, we deal with more types of orbits and our result is not of
perturbative nature.
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5 Free-period minimizers do not have cusp points

Let us go back to the general framework set in Section 2 and let M be a dif-
ferentiable manifold, let O ⊂ TM be an open set, and let the C2 Lagrangian
L : O → R satisfy the Legendre convexity condition (2). The energy function
H : O → R is defined as in (4). In this section we prepare the proof of Theorems
2.1-2.3 by observing that the trajectories of free-period minimizers are regular
curves in the geometrical sense. More precisely:

Proposition 5.1. Let x∗ ∈ ΛO be a local minimizer of the free-period action
functional Ah. If x∗ is not an equilibrium, then

ẋ∗(t) ̸= 0 for any t ∈ R. (12)

In the reversible case L(x,−ẋ) = L(x, ẋ), periodic solutions which travel back
and forth over some set C ∼= [0, 1] are sometimes called brake orbits. Such orbits
cannot be free-period minimizers, in view of the above. It must be noticed,
however, that Proposition 5.1 holds also in a non-reversible setting. Observe also
that it does not require symmetry assumptions, or restrictions on the dimension
of M .

An observation before the proof of Proposition 5.1. Let x∗ ∈ ΛO and t0 ∈ R be
given, and assume that we are given families of positive numbers {aρ}, {bρ}, {τρ},
all three defined for small ρ > 0 and converging to zero as ρ→ 0+. Assume also
that for small ρ > 0 there exists some curve γρ ∈ C1([0, τρ],M) (not necessarily
extremal) with

(i) γρ(0) = x∗(t0 − aρ), γρ(τρ) = x∗(t0 + bρ), for each ρ ,

(ii) max0≤t≤τρ |γρ(t)− x∗(t0)|+max0≤t≤τρ |γ̇ρ(t)− ẋ∗(t0)| → 0 as ρ→ 0+ ,

(iii)
∫ τρ
0
(h+ L(γρ(t), γ̇ρ(t)))dt <

∫ t0+bρ
t0−aρ

(h+ L(x∗(t), ẋ∗(t)))dt for ρ > 0 small .

Then x∗ is not a local minimizer of the free-period action functional Ah.

The proof of this statement follows easily from a regularization argument, but
it has the following important consequence: in order to prove Proposition 5.1 we
only have to check that families aρ, bρ, τρ, γρ as above do exist if one assumes that
the nonconstant extremal x∗ = x∗(t) satisfies ẋ∗(t0) = 0 and has energy h (this
latter condition being necessary for local minimizers; see Lemma 9.2(iii) below).
It will be our task next.

Proof of Proposition 5.1. In view of the observation above, which reduces the
problem to a local question, there is no loss of generality in assuming that M =
Bd

1 ⊂ Rd is the unit ball and O = Bd
1 × Bd

1 ⊂ Rd × Rd. In order to simplify the
notation we shall further assume that x∗ = x∗(t) is a nonconstant extremal with
energy h = 0 and x∗(0) = 0 = ẋ∗(0). In particular, L(0, 0) = 0. Additionally, we
shall assume that

∂ẋL(0, 0) = 0 , (13)
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since otherwise it suffices to replace L(x, ẋ) with L̃(x, ẋ) := L(x, ẋ)− ∂ẋL(0, 0)ẋ,
which has the same Euler-Lagrange equations, the same free-period action func-
tional and the same free-period minimizers.

We consider the C2 function V : Bd
1 → R defined by V (x) := H(x, 0) =

−L(x, 0). Uniqueness implies that

∇V (0) ̸= 0 , (14)

and the Euler-Lagrange equations (3) give ẍ∗(0) ̸= 0; in fact, (2) leads to
⟨∇V (0), ẍ∗(0)⟩ < 0. Thus,

V (x∗(0)) = 0 ,
d

dt

∣∣∣
t=0
V (x∗(t)) = 0 ,

d2

dt2

∣∣∣
t=0
V (x∗(t)) < 0 .

Therefore, there exists some ρ0 > 0 and strictly-increasing functions a, b : [0, ρ0[→
[0,+∞[ of class C1 such that a(0) = b(0) = 0, a′(0) = b′(0) > 0, and V (x∗(−a(ρ))) =
V (x∗(b(ρ))) = −ρ2 for any ρ ∈ [0, ρ0[. By combining l’Hôpital’s rule with Lemma
13.1 in the Appendix we see that there exists some constant 0 < κ < +∞ such
that

lim
ρ→0+

1

ρ3

∫ b(ρ)

−a(ρ)

L(x∗(t), ẋ∗(t))dt = κ . (15)

We also observe that

lim
ρ→0+

x∗(b(ρ))− x∗(−a(ρ))
ρ2

= lim
ρ→0+

[(
b(ρ)

ρ

)2
x∗(b(ρ))

b(ρ)2
−
(
a(ρ)

ρ

)2
x∗(−a(ρ))
(−a(ρ))2

]
= (b′(0)2 − a′(0)2)ẍ∗(0)/2 = 0 ,

since a′(0) = b′(0) > 0. Furthermore, the points x∗(−a(ρ)) and x∗(b(ρ)) both
belong to the C2-hypersurface Vρ := {x ∈ Bd

1 : V (x) = −ρ2}, and, in view of (14),
these hypersurfaces continue from V0 in a C2-fashion. Thus, for small ρ > 0 it is
possible to find τρ > 0 and a C1 curve γρ : [0, τρ] → Bd

1 with γρ(0) = x∗(−a(ρ)),
γρ(τρ) = x∗(b(ρ)), γ̇ρ(t) ̸= 0 for every t ∈ [0, τρ],

H(γρ(t), 0) = V (γρ(t)) = −ρ2 for any t ∈ [0, τρ] , (16)

and such that ∫ τρ

0

|γ̇ρ(t)|dt = o(ρ2), as ρ→ 0+ . (17)

In this way (i) holds trivially. In addition, γρ(0) = x∗(−a(ρ)) = o(ρ) as ρ→ 0+,
and we deduce that

max
0≤t≤τρ

|γρ(t)| = o(ρ) as ρ→ 0+ . (18)

Remembering (2) and (5) we deduce that for any x, ẋ ∈ B1 with ẋ ̸= 0, the
function µ 7→ H(x, µẋ) is strictly increasing on [0, 1]. Expressions (2) and (5)
also imply the existence of constants 0 < ϵ1 < 1, 0 < k < K such that

k|ẋ|2 ≤ H(x, ẋ)− V (x) ≤ K|ẋ|2 , |x| ≤ ϵ1, |ẋ| < 1 . (19)
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Thus, after possibly replacing ϵ1 by an smaller constant there exists some ϵ2 ∈
]ϵ1, 1[ such thatH(x, ẋ) > 0 if |x| ≤ ϵ1 and ϵ2 ≤ |ẋ| < 1. By (18), max0≤t≤τρ |γρ(t)| <
ϵ1 for small ρ > 0, and by (16) we see that

H(γρ(t), 0) < 0 < H(γρ(t), ẋ), for all t ∈ [0, τρ], all ϵ2 ≤ |ẋ| < 1 and small ρ > 0.

Therefore, after reparametrization we may assume that

H(γρ(t), γ̇ρ(t)) = 0, |γ̇ρ(t)| < ϵ2 , for all t ∈ [0, τρ] and small ρ > 0. (20)

The inequality in the previous line concerning |γ̇ρ(t)| can be improved, since the
combination of (16), (19) and (20) shows the existence of constants 0 < κ1 < κ2
such that

κ1ρ ≤ |γ̇ρ(t)| ≤ κ2ρ for every t ∈ [0, τρ] and small ρ > 0 . (21)

Remembering (18) we see that (ii) holds. Moreover, by (17) we obtain that
τρ = o(ρ) as ρ → 0+. On the other hand, by the first part of (20) and (13) we
see that

L(γρ(t), γ̇ρ(t)) = ∂ẋL(γρ(t), γ̇ρ(t))γ̇ρ(t) =

=

∫ 1

0

∂xẋL(sγρ(t), sγ̇ρ(t))(γρ(t), γ̇ρ(t))ds+

∫ 1

0

∂ẋẋL(sγρ(t), sγ̇ρ(t))(γ̇ρ(t), γ̇ρ(t))ds,

and the estimates in (18) and (21) imply the existence of some constant c > 0
such that |L(γρ(t), γ̇ρ(t))| ≤ cρ2 for every t ∈ [0, τρ] and sufficiently small ρ > 0.
Thus, ∣∣∣∣∫ τρ

0

L(γρ(t), γ̇ρ(t))dt

∣∣∣∣ ≤ cρ2τρ = o(ρ3) as ρ→ 0+ .

When combined with (15), it shows (iii) and completes the proof.

6 The Jacobi-Maupertuis Lagrangian

For any (x, ẋ) ∈ O with ẋ ̸= 0, the set

I(x, ẋ) :=
{
µ > 0 :

(
x, (1 + s(µ− 1))ẋ

)
∈ O ∀s ∈ [0, 1]

}
,

is an open interval containing µ = 1. Moreover, in view of (5) the energy function
H : O → R satisfies

d

dµ
H(x, µẋ) > 0 , (x, ẋ) ∈ O, ẋ ̸= 0, µ ∈ I(x, ẋ) . (22)

We fix some energy level h ∈ R and consider the sets Nh ⊂ Oh ⊂ O defined by

Nh := {(x, ẋ) ∈ O : ẋ ̸= 0 and H(x, ẋ) = h} ,

Oh :=
{
(x, ẋ) ∈ O : ẋ ̸= 0 and H(x, µẋ) = h for some µ ∈ I(x, ẋ)

}
.

14



It follows from (22) that Oh is open in TM . Let the maps λh : Oh → R and
Πh : Oh → Nh be defined by

λh(x, ẋ) ∈ I(x, ẋ) and H(x, λh(x, ẋ)ẋ) = h, Πh(x, ẋ) := (x, λh(x, ẋ)ẋ) .

They are both of class C1, and Πh is a retraction of Oh into the energy level set
Nh. Some further properties of the function λh, the intervals I(x, ẋ) and the set
Oh are collected below:

Lemma 6.1. Given (x, ẋ) ∈ Oh and µ ∈ I(x, ẋ) one has
(x, µẋ) ∈ Oh, I(x, µẋ) =

1

µ
I(x, ẋ), λh(x, µẋ) =

λh(x, ẋ)

µ
,

h+ L(x, µẋ)

µ
≥ h+ L(x, λh(x, ẋ)ẋ)

λh(x, ẋ)
.

Proof. The three assertions in the first line are easy to check. Concerning the last
inequality we define φ : I(x, ẋ) → R by φ(µ) := (L(x, µẋ) + h)/µ and observe
that φ′(µ) = (H(x, µẋ)− h)/µ2, so that, by (22),

φ′(µ) = 0⇔ µ = λh(x, ẋ) , φ′′(λh(x, ẋ)) > 0 .

We deduce that φ′(µ) > 0 if µ > λh(x, ẋ) and φ
′(µ) < 0 if µ < λh(x, ẋ), which

implies the result.

The Jacobi-Maupertuis Lagrangian Lh : Oh → R is defined as follows:

Lh(x, ẋ) :=
h+ L(x, λh(x, ẋ)ẋ)

λh(x, ẋ)
= ∂ẋL(x, λh(x, ẋ)ẋ)ẋ , (x, ẋ) ∈ Oh . (23)

It follows from Lemma 6.1 that Lh is locally homogeneous of degree 1 on ẋ in the
sense that

Lh(x, µẋ) = µLh(x, ẋ) for all (x, ẋ) ∈ Oh and µ ∈ I(x, ẋ) . (24)

In addition, it is clear from (23) that Lh has class C1. In the result below we
show that Lh has some additional unsuspected regularity.

Lemma 6.2. Lh ∈ C2(Oh). Moreover, ∂2ẋẋLh(x, ẋ)(v, v) > 0 if v ̸∈ Rẋ.

Proof. Assuming, with no loss of generality, that M = Bd
1 is the unit ball in Rd

and O = Bd
1 × Bd

1, some computations give
∂xλh(x, ẋ) =

∂xL(x, λhẋ)− λh ∂2xẋL(x, λhẋ)ẋ
λh ∂2ẋẋL(x, λhẋ)(ẋ, ẋ)

,

∂ẋλh(x, ẋ) = −
λh ∂

2
ẋẋL(x, λhẋ)ẋ

∂2ẋẋL(x, λhẋ)(ẋ, ẋ)
,
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(for the sake of simplicity, in the right hand sides we write λh instead of λh(x, ẋ)).
From here one checks the equalities

∂xLh(x, ẋ) =
1

λh(x, ẋ)
∂xL(x, λh(x, ẋ)ẋ) , ∂ẋLh(x, ẋ) = ∂ẋL(x, λh(x, ẋ)ẋ) ,

so that Lh has class C2, as claimed. Now, we observe that

∂2ẋẋLh(x, ẋ)(v, v) =
λh(x, ẋ)

(ẋ|ẋ)

[
(v|v)(ẋ|ẋ)− (v|ẋ)2

]
,

where we denote (v|w) := ∂2ẋẋL(x, λh(x, ẋ)ẋ)(v, w); for (x, ẋ) ∈ Oh fixed this is a
scalar product on TxM . The result follows from the Cauchy-Schwarz inequality.

In many physical applications the Lagrangian L has the form

L(x, ẋ) =
1

2
∥ẋ∥2 + E(x)ẋ− V (x) , (x, ẋ) ∈ O = TM ,

where ∥ · ∥2 stands for a Riemannian quadratic form, E : M → T ∗M is a linear
form, and V : M → R is the potential, all three assumed of class C2. Then,
H(x, ẋ) = ∥ẋ∥2/2 + V (x), and, setting Mh := {x ∈M : V (x) < h} one has

Lh(x, ẋ) =
√

2(h− V (x)) ∥ẋ∥+ E(x)ẋ , (x, ẋ) ∈ Oh = TMh .

Notice in particular that in the special (mechanical) case in which E vanishes,
Lh is (

√
2 times) the length associated to the classical Jacobi metric (9).

7 Local structure of the phase space around a

closed extremal

Let x∗ ∈ C2(R/Z,M) with (12) be a closed orbit of the Lagrangian system (3)
having energy h. We assume, with no loss of generality, that T∗ = 1 is the minimal
period of x∗. In addition, let one of the following assumptions (corresponding
respectively to Theorems 2.1 and 2.3) hold:

(a): M is orientable and 2-dimensional,

(b): There exists a C3 involution S : M → M satisfying (7)-(8) and such that
x∗ is S-symmetric.

Under any of these conditions, it is possible to find some small radius 0 < ϵ < 1
and a C2 map ψ : (R/Z)× Bd−1

ϵ →M , ψ = ψ(θ, y) satisfying8:

[ψ1] ψ(θ, 0) = x∗(θ) for every θ ∈ R/Z.
8We denote by Bd−1

ϵ the ball of radius ϵ in Rd−1.
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[ψ2] The restriction of ψ to ]θ − ϵ/2, θ + ϵ/2[×Bd−1
ϵ is a diffeomorphism into its

open image, for all θ ∈ R/Z.

[ψ3] ∂θψ, ∂yiψ : (R/Z)× Bd−1
ϵ → TM (for 1 ≤ i ≤ d− 1), are C0,2 maps.

Moreover, if (b) holds then the map ψ can be chosen with the additional
property

[ψ4] ψ(−θ, y) = S(ψ(θ, y)) for any (θ, y) ∈ (R/Z)× Bd−1
ϵ .

Even though the closed loop x∗ might have self-intersections, we shall see
in the following section that curves which are close to x∗ in the C1-sense can
be lifted via ψ to curves in the (θ, y) space. The differential of ψ is defined on
(R/Z)× Bd−1

ϵ × R× Rd−1 as follows:

dψ(θ, y, θ̇, ẏ) :=
(
ψ(θ, y), ∂θψ(θ, y)θ̇ + ∂yψ(θ, y)ẏ

)
.

Since the closed loop R/Z → O, θ 7→ dψ(θ, 0, 1, 0) = (x∗(θ), ẋ∗(θ)) is simple
(by uniqueness), and the differential of dψ at each point (θ, 0, 1, 0) is a linear
isomorphism from R × Rd−1 × R × Rd−1 into T(x∗(θ),ẋ∗(θ))(TM), the semilocal
version of the inverse function theorem implies that, after possibly replacing ϵ
with some smaller number, there exists some 0 < ϵ′ < 1 such that dψ establishes
a diffeomorphism from

Ω∗ :=
{
(θ, y, θ̇, ẏ) ∈ (R/Z)×Rd−1×R×Rd−1 : |θ̇−1| < ϵ′, |y| < ϵ, |ẏ| < ϵθ̇

}
(25)

into its image O∗ := dψ(Ω∗), assumed to be an open subset of Oh. Alternatively,
(setting ẏ = θ̇ζ) one can reformulate this condition by considering the set O :=
(R/Z)× Bd−1

ϵ × Bd−1
ϵ and the map Ψ : O×]1− ϵ′, 1 + ϵ′[→ O∗ defined by

Ψ(θ, y, ζ;λ) :=
(
ψ(θ, y), λ(∂θψ(θ, y) + ∂yψ(θ, y)ζ)

)
.

Then, the requirement that dψ : Ω∗ → O∗ is a diffeomorphism means that Ψ is a
C1-diffeomorphism. We may think of O∗ ⊂ TM as a solid tube around the orbit,
and Ψ as providing, in some way, ‘cylindrical coordinates’ for O∗. Replacing
again ϵ > 0 with some smaller quantity we may further assume that

1− ϵ′ < λh
(
Ψ(θ, y, ζ; 1)

)
< 1 + ϵ′, (θ, y, ζ) ∈ O . (26)

Lemma 7.1. The set N∗ := Nh ∩ O∗ = {(x, ẋ) ∈ O∗ : H(x, ẋ) = h} is a
C1-hypersurface of TM , and the map

Ξ : O→ N∗, (θ, y, ζ) 7→ (Πh ◦Ψ)
(
θ, y, ζ; 1

)
,

is a C1-diffeomorphism.

Proof. We start by observing that, as a consequence of (26), the image of Ξ is
contained in O∗. The result follows immediately.
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Before concluding this section we consider the C1 submanifolds N0 ⊂ O0 of
TM defined as follows:

O0 := Ψ
(
{0} × Bd−1

ϵ × Bd−1
ϵ ×]1− ϵ′, 1 + ϵ′[

)
, N0 := O0 ∩N∗ .

They can be regarded as C1 ‘slices’ of O∗ and N∗ respectively. Moreover, the
maps Ψ0 : Bd−1

ϵ × Bd−1
ϵ ×]1− ϵ′, 1 + ϵ′[→ O0 and Ξ0 : Bd−1

ϵ × Bd−1
ϵ → N0 defined

by
Ψ0(y, ζ;λ) := Ψ(0, y, ζ;λ) , Ξ0(y, ζ) := Ξ(0, y, ζ) , (27)

are C1-diffeomorphisms. The fact that (by (25)),

θ̇ > 0 for all (θ, y, θ̇, ẏ) ∈ Ω∗ , (28)

implies that O0 and N0 are transversal surfaces of sections for the flow of the
Lagrangian system (3) restricted to O∗ and N∗, respectively.

8 A Banach fiber bundle of curves

In order to study dynamics one has to keep track of all solutions near a given one,
and not only the periodic ones. For this reason we consider, for each T > 0, the
Banach manifold C1([0, T ],M) of (not necessarily closed) curves. These manifolds
are pasted together to yield the fiber bundle

Γ̂ :=
⊔
T>0

C1([0, T ],M) :=
{
(T, x) : T > 0, x ∈ C1([0, T ],M)

}
.

Exploiting some ideas already presented in Section 2, Γ̂ may be identified with
]0,+∞[×C1([0, 1],M) by means of the transformation

(T, x) ∈ Γ̂←→ (T, x̂) ∈]0,+∞[×C1([0, 1],M), where x̂(θ) := x(θT ) .

In particular, Γ̂ is naturally endowed with a C2-differentiable structure modeled
on the Banach space R × C1([0, 1],Rd). For the purposes of this paper we shall
be interested in the subset

Γ :=

{
(T, x) ∈ Γ̂ :

(
x(t)
ẋ(t)

)
∈ O0 for t ∈ {0, T},

(
x(t)
ẋ(t)

)
∈ O∗\O0 ∀t ∈]0, T [

}
.

(29)

In addition to being a (C1, codimension 2)-submanifold of Γ̂, Γ can be covered
by a single (infinite-dimensional) coordinate patch. To check this out we consider
the affine space

F :=
{
(T,κ) ∈ R× C1([0, 1],Rd) : κ(0) ∈ {0} × Rd−1, κ(1) ∈ {1} × Rd−1

}
,

endowed with the topological and differentiable structures inherited from the
parallel Banach space R × {κ̃ ∈ C1([0, 1],Rd) : κ̃(θ) ∈ {0} × Rd−1 for θ = 0, 1}
(we use the identification Rd ≡ R× Rd−1). The set

G :=

{
(T,κ) ∈ F : T > 0,

(
κ(θ),

1

T
κ̇(θ)

)
∈ Ω∗ ∀θ ∈ [0, 1]

}
,
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is open in F and contains the point (1,κ∗) where κ∗(θ) := (θ, 0Rd−1). Let Φ :

G→ Γ̂ be defined by

Φ(T,κ) := (T, x) , where x(t) := (ψ ◦ κ)
(
t

T

)
, t ∈ [0, T ] .

Lemma 8.1. Φ(G) = Γ, and Φ : G → Γ is a C1-diffeomorphism. Moreover,
a point (T,κ) ∈ G belongs to ]0,+∞[×C2([0, 1],Rd) if and only if Φ(T, x) ∈
]0,+∞[×C2([0, T ],M).

Proof. We start by observing that Φ has class C1 because ψ has class C2 (see
[25, Property (B), p. 74]). Let (T,κ) ∈ G be given and write κ := (τ, y); since
τ is strictly increasing on [0, 1] (by (28)), τ(0) = 0 and τ(1) = 1, we deduce that
τ(θ) ∈]0, 1[ for all θ ∈]0, 1[. It follows that Φ(T,κ) ∈ Γ.

In order to check that Φ(G) = Γ and construct Φ−1 choose (T, x) ∈ Γ and set
(t, y, ṫ, ẏ) := (dψ)−1 ◦ (x, ẋ) : [0, T ] → (R/Z) × Rd−1 × R × Rd−1. Observe that,
as the notation suggests, ṫ and ẏ are the time derivatives of t and y respectively.
The C1-function t : [0, T ]→ R/Z satisfies that t(0) = 0+Z = t(T ) and therefore
its C1-lifting τ : [0, T ] → R with τ(0) = 0 satisfies τ(T ) ∈ Z. But τ is strictly
increasing (since 0 < 1− ϵ′ < τ̇(t) = ṫ(t)), and τ(t) ̸∈ Z ∀t ∈]0, T [ (by (29)), and
we deduce that τ(T ) = 1. Thus, setting

κ(θ) :=
(
τ(θT ), y(θT )

)
, θ ∈ [0, 1],

we see that (T,κ) ∈ G and the C1-map Γ→ G defined by (T, x) 7→ (T,κ) is the
inverse of Φ. It proves the first part of the result.

Concerning the ‘Moreover...’ statement we observe that in case that κ ∈
C2([0, 1],Rd) then x ∈ C2([0, T ],M) since ψ has class C2. Conversely, if x ∈
C2([0, T ],M) then both κ and κ̇ are C1 maps (since dψ has class C1). It com-
pletes the proof.

We conclude this section by pointing out a couple of facts related to this
result:

(i) Lemma 8.1 can be thought of as a ‘lifting lemma’: given (T, x) ∈ Γ there
exists an unique C1 function κ : [0, 1] → R × Rd−1, κ(s) := (t(s), y(s)), with
t(0) = 0, t(1) = 1, and such that(

κ(t/T ),
κ̇(t/T )
T

)
∈ Ω∗ , x(t) = (ψ ◦ κ)(t/T ) , t ∈ [0, T ] .

(ii) Readers unfamiliar with the differentiable structure of the set of paths on
a manifold may simply think of Γ as endowed with the pull-forward differentiable
structure associated to the bijective map Φ. In this paper we shall not essentially
use the fact that this differentiable structure coincides with the usual one.
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9 Reparametrizations

We shall begin with a definition. Two elements (Ta, xa), (Tb, xb) ∈ Γ will be called
reparametrizations of each other provided that there exists a C1-diffeomorphism
σ : [0, Tb]→ [0, Ta] with

σ(0) = 0, σ(Tb) = Ta, σ̇(t) ∈ I
(
xa
(
σ(t)

)
, ẋa

(
σ(t)

))
for any t ∈ [0, Tb] ,

(30)
and such that xb = xa ◦ σ. It follows from Lemma 6.1 that this is an equivalence
relation on Γ. In the following result we check that every element of Γ can be
uniquely reparametriced to constant energy h:

Lemma 9.1. The following hold:

(i) Every element (Ta, xa) ∈ Γ admits a unique reparametrization (Tb, xb) =
R(Ta, xa) such that H(xb(t), ẋb(t)) = h for all t ∈ [0, Tb].

(ii) The map R : Γ→ Γ defined in this way is a continuous retraction into

Γ(h) :=
{
(T, x) ∈ Γ : H(x(t), ẋ(t)) = h ∀t ∈ [0, T ]

}
.

(iii) If (Ta, xa) ∈ Γ is such that xa ∈ C2([0, Ta],M), then R is differentiable at
(Ta, xa), and (Tb, xb) := R(Ta, xa) satisfies that xb ∈ C2([0, Tb],M).

Proof. Writing xb := xa ◦ σ where σ : [0, Tb] → R has class C1, we see that (30)
holds and (Tb, xb) ∈ Γ(h), if and only if σ solves the boundary value problem

σ̇ = λh(xa(σ), ẋa(σ)) , σ(0) = 0, σ(Tb) = Ta . (31)

The right hand side of this separable equation is continuous and positive,
implying uniqueness for initial value problems (see, e.g., [17, Theorem 1.2]). The
above looks like an overdetermined problem, but the point is that Tb > 0 is one of
the unknowns of the problem. Thus, there is a unique solution (Tb, σ) to (31). In
addition, (Tb, xa ◦σ) ∈ Γ by Lemma 7.1, meaning that R : Γ→ Γ is well-defined.
It proves (i).

It is now clear that all points (T, x) ∈ Γ having constant energy h are fixed by
R. In order to check the claimed continuity of R as well as (c), we use the chart
Φ : G→ Γ. Some elementary calculus show that (Tb,κb) := (Φ−1 ◦R◦Φ)(Ta,κa)
is defined by:

• Tb = Ta

∫ 1

0

1

(λh ◦ dψ)
(
κa(s), κ̇a(s)/Ta

)ds, and
• κb = κa ◦ s, where the diffeomorphism s : [0, 1]→ [0, 1] is defined by

ṡ =
Tb
Ta

(λh ◦ dψ)
(
κa(s), κ̇a(s)/Ta

)
, s(0) = 0 .

The result follows.
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The free-period action functional Ah : ΛO → R associated to the Lagrangian
function L and the energy level h (defined by (1)) can be naturally extended to
nonperiodic curves; in this way we may think of it as defined on Γ. We shall be
particularly interested in the action of Ah on the set Γp of periodic curves

Γp :=
{
(T, x) ∈ Γ : x(0) = x(T ), ẋ(0) = ẋ(T )

}
and on the sets Γ(x0, x1) of Dirichlet curves

Γ(x0, x1) :=
{
(T, x) ∈ Γ : x(0) = x0, x(1) = xa

}
,

where x0 = ψ(0, y0) and x1 = ψ(0, y1) ∈ ψ({0} × Bd−1
ϵ ) are arbitrary.

The usual identification x 7→ x∣∣[0,T ]
between closed loops x ∈ C1(R/TZ,M)

and curves x ∈ C1([0, T ],M) with x(0) = x(T ) and ẋ(0) = ẋ(T ) makes it possible
to see Γp as an open subset of ΛO, the set of closed loops considered in (6). Notice
that under this identification, the new definition of the action functional Ah is
coherent with its previous meaning. The result below extends [15, Proposition
3-3.1].

Lemma 9.2. For a fixed energy level h ∈ R the following hold:

(i) Ah ∈ C1(Γ).

(ii) Γp and Γ(x0, x1) are C
1-submanifolds of Γ.

(iii) The element (T, x) ∈ Γp is a critical point of Ah

∣∣
Γp

(or the element (T, x) ∈
Γ(x0, x1) is a critical point of Ah

∣∣
Γ(x0,x1)

), if and only if x ∈ Γ(h) and solves

the Euler-Lagrange equations (3).

Proof. Straightforward computations show that

(Ah ◦ Φ)(T,κ) = Th+ T

∫ 1

0

L

(
ψ
(
κ(s)

)
,
1

T
ψ′(κ(s))κ̇(s)) ds , (T,κ) ∈ G .

(32)
In this way (i) follows from Lemma 8.1.

Concerning (ii) and in view of Lemma 8.1 we can equivalently check that
Gp := Φ−1(Γp) and G(y0, y1) := Φ−1(Γ(x0, x1)) are C1-submanifolds of G. One
checks that

Gp =
{
(T,κ) ∈ G : κ(1)− κ(0) ∈ {1} × {0Rd−1}, κ̇(0) = κ̇(1)

}
,

G(y0, y1) =
{
(T,κ) ∈ G : κ(0) = (0, y0), κ(1) = (1, y1)

}
,

and the result follows.

Regarding (iii) we set (T,κ) := Φ−1(T, x), so that (T, x) ∈ Γp is a critical
point of Ah

∣∣
Γp

(respectively, (T, x) ∈ Γ(x0, x1) is a critical point of Ah

∣∣
Γ(x0,x1)

) if
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and only if (T,κ) ∈ Gp is a critical point of (Ah ◦Φ)
∣∣
Gp

(resp., (T,κ) ∈ G(y0, y1)

is a critical point of (Ah ◦ Φ)
∣∣
G(y0,y1)

). Next, it follows from (32) that

∂(Ah ◦ Φ)|Gp

∂κ
(T,κ) = 0

(
resp.,

∂(Ah ◦ Φ)|G(y0,y1)

∂κ
(T,κ) = 0

)
,

if and only if x = x(t) is a solution of the Euler-Lagrange equations (3). On
the other hand, the partial derivative with respect to T of (Ah ◦ Φ)|Gp (resp.,
(Ah ◦ Φ)|G(y0,y1)) is given by

h− 1

T

∫ T

0

H(x(t), ẋ(t))dt,

and the result follows from the fact that the energy is a first integral for the
Euler-Lagrange flow.

We consider now the (free-period) action functional Ah ∈ C2(Γ), defined by

Ah(T, x) :=

∫ T

0

Lh(x(t), ẋ(t))dt , (T, x) ∈ Γ .

where Lh : Oh → R is the Jacobi-Maupertuis Lagrangian, already considered in
(23). To conclude this section we shall check that the retraction R lowers the
value of Ah; on the other hand Ah encapsulates the action of Ah on curves with
constant energy h. More formally, one has the following

Lemma 9.3. Ah(T, x) = Ah

(
R(T, x)

)
≤ Ah(T, x) , (T, x) ∈ Γ.

Proof. It follows from (24) that Ah is invariant by reparametrizations. Thus,

Ah(T, x) = Ah(R(T, x)) = Ah

(
R(T, x)

)
, (T, x) ∈ Γ .

Set now (Th, xh) := R(T, x) and write xh = x ◦ σ, where σ : [0, Th]→ [0, T ] is
an increasing diffeomorphism. Then, changing variables in the integral we get:

Ah(T, x) =

∫ T

0

(
h+ L(x(t), ẋ(t))

)
dt =

∫ Th

0

(
h+ L

(
x(σ(t)), ẋ(σ(t))

))
σ̇(t)dt =

=

∫ Th

0

(
h+ L

(
xh(t),

ẋh(t)

σ̇(t)

))
σ̇(t)dt ≥ Ah(Th, xh) ,

where we have used the inequality in the second line of Lemma 6.1. It completes
the proof.
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10 Carathéodory’s reduction of order

Following some ideas already appearing in [13, §404], the (nonautonomous) Carathéodory’s
reduced Lagrangian associated to the energy level h is constructed from the Jacobi-
Maupertuis Lagrangian Lh of Section 6 as follows:

Lh : O→ R, (θ, y, ẏ) 7→ Lh

(
ψ(θ, y), ∂θψ(θ, y) + ∂yψ(θ, y)ẏ

)
.

Here, O = (R/Z)×Bd−1
ϵ ×Bd−1

ϵ is the open set considered in Section 7. One has
the following

Lemma 10.1. Seeing O as an open subset of (R/Z) × R2(d−1), the Lagrangian
Lh : O→ R is a C0,2 function satisfying the Legendre convexity condition:

∂2ẏẏLh(θ, y, ẏ) > 0 , (θ, y, ẏ) ∈ O .

Moreover, if assumptions (b) and [ψ4] of Section 7 hold, then Lh is time-reversible,
i.e.

Lh(−θ, y,−ẏ) = Lh(θ, y, ẏ) , (θ, y, ẏ) ∈ O .

Proof. The combination of Lemma 6.2 and assumption [ψ3] implies that Lh has
class C0,2 on O and satisfies the Legendre convexity condition. On the other
hand, the ‘moreover...’ statement is easy to prove.

The Euler-Lagrange equations associated to Lh are given by

d

ds
∂ẏLh(θ, y, ẏ) = ∂yLh(θ, y, ẏ) , (θ, y, ẏ) ∈ O , (33)

and the corresponding (fixed-period) action functional is defined as follows:

Ah[y] :=

∫ 1

0

Lh(θ, y(θ), ẏ(θ)) ds .

The natural domain of Ah is the set

G := {y ∈ C1([0, 1],Rd−1) : (θ, y(θ), ẏ(θ)) ∈ O ∀θ ∈ [0, 1]},

which is open in C1([0, 1],Rd−1). Consider now the map Υ : G → Γ(h) defined
by

Υ[y] := (R ◦ Φ)(1,κy) , where κy(θ) := (θ, y(θ)), 0 ≤ θ ≤ 1 . (34)

We shall also introduce the set of periodic functions

Gp :=
{
y ∈ G : y(0) = y(1), ẏ(0) = ẏ(1)

}
.

Notice that Υ(Gp) ⊂ Γp, the function y∗ ≡ 0 is an element of Gp and (1, x∗) is an
element of Γp ∩ Γ(h). Moreover, Υ[y∗] = x∗. The following lemma collects some
further properties of Υ.

23



Lemma 10.2. The following hold:

(i) Υ(G) = Γ(h) and Υ : G→ Γ(h) is a homeomorphism.

(ii) A function y ∈ G has class C2 on [0, 1] if and only if Υ[y] has class C2.
Moreover, in this case Υ : G→ Γ is differentiable at y.

(iii) Ah[y] = Ah[Υ[y]] for every y ∈ G.

(iv) If (T, x) ∈ Γ(h) is an extremal of (3) then y := Υ−1(T, x) is an extremal of
(33).

(v) There exists some 0 < ϵ1 < ϵ with the following property: for any y ∈ G
extremal of (33) with y(0), ẏ(0) ∈ Bd−1

ϵ1
, one has that (T, x) := Υ[y] is an

extremal of (3).

Proof. Let us start by constructing the inverse of Υ. Given (T, x) ∈ Γ(h) we set
Υ−1(T, x) := y ◦ θ−1, where (T, θ, y) := Φ−1(T, x) ∈ G. The map Υ−1 : Γ(h)→ G
constructed in this way is well-defined (by Lemma 7.1) and continuous, and it is
clear that it is the inverse of Υ : G→ Γ(h). Statements (i)-(ii) follow.

Concerning (iii) we simply observe that, by (34) and Lemma 9.3,

Ah[y] = Ah[Φ(1,κy)] = Ah[R(Φ(1,κy))] = Ah[Υ[y]] , y ∈ G .

In order to check (iv), let y ∈ G be such that Υ[y] is a solution of the Euler-
Lagrange equations (33). By (ii) we know that y ∈ C2([0, 1],Rd−1) and Υ : G→ Γ
is differentiable at y. In particular, setting y0 := y(0), y1 := y(1), x0 := ψ(0, y0),
x1 := ψ(0, y1) and letting G(y0, y1) be the set of functions in G satisfying the same
Dirichlet boundary conditions as y (which is a C1-submanifold of G), we see that
the restriction Υ

∣∣
G(y0,y1)

: G(y0, y1) → Γ(x0, x1) is well-defined and differentiable

at y. In view of Lemma 9.2(iii), Υ[y] is a critical point of Ah

∣∣
Γ(x0,x1)

; on the other

hand, by part (iii) of this lemma,

Ah

∣∣
G(y0,y1)

=
(
Ah

∣∣
Γ(x0,x1)

)
◦
(
Υ
∣∣
G(y0,y1)

)
,

so that, by the chain rule, y is a critical point of Ah

∣∣
G(y0,y1)

. It proves (iv).

Finally, in order to check (v) choose some sequence {ȳn}n ⊂ G with |ȳn(0)|+| ˙̄yn(0)| →
0 and such that all functions ȳn are solutions of (33). It will be shown that
(T̄n, x̄n) := Υ[ȳn] is an extremal of (3) for big n. By continuous dependence,
{ȳn} → y∗ ≡ 0 in the C1([0, 1],Rd−1)-topology, and the continuity of Υ implies
that (T̄n, x̄n) → (1, x∗) in Γ. In particular, (x̄n(0), ˙̄xn(0)) → (x∗(0), ẋ∗(0)). Con-
tinuous dependence applies again to show that, for n big enough, the extremal xn
of (3) with xn(0) = x̄n(0) and ẋn(0) = ˙̄xn(0) satisfies that (Tn, xn) ∈ Γ for some
Tn > 0. Setting yn := Υ−1(Tn, xn) ∈ G (which is an extremal of (33) by assertion
(iv) above), we see that yn(0) = ȳn(0) and ẏn(0) = ˙̄yn(0), and uniqueness implies
that ȳn ≡ yn for big n. Then also (T̄n, x̄n) = (Tn, xn), so that (T̄n, x̄n) is an
extremal of (3) for big n, as claimed. It completes the proof.
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Lemma 10.3. The following hold:

(i) y∗ ≡ 0 is a local minimizer of Ah

∣∣
Gp

if and only if (1, x∗) is a local minimizer

of Ah

∣∣
Γp
.

(ii) y∗ ≡ 0 is isolated in Gp as a critical point of Ah

∣∣
Gp

if and only if (1, x∗) is

isolated in Γp as a critical point of Ah

∣∣
Γp
.

Proof. In view of Lemma 10.2(iii) one has:

Ah

∣∣
Gp

=
(
Ah

∣∣
Γp∩Γ(h)

)
◦
(
Υ
∣∣
Gp

)
.

On the other hand, it follows from Lemma 10.2(i) that Υ
∣∣
Gp

: Gp → Γp ∩ Γ(h)

is a homeomorphism. Thus, y∗ ≡ 0 is a local minimizer of Ah

∣∣
Gp

if and only

if (1, x∗) is a local minimizer of Ah

∣∣
Γp∩Γ(h)

. On the other hand, by combining

Lemma 9.1(ii) and Lemma 9.3 we see that R : Γp → Γp ∩ Γ(h) is a continuous
retraction lowering the value of Ah. It implies the first part of the statement.

On the other hand, by Lemma 10.2(iv)-(v) there are open neighborhoods of
y∗ ≡ 0 and (1, x∗), in Gp and Γp∩Γ(h) respectively, such that Υ carries bijectively
the critical points of Ah

∣∣
Gp

in the first open set into the critical points of Ah

∣∣
Γp

in

the second open set. In view of Lemma 9.2(iii) the critical points of Ah

∣∣
Γp

must

belong to Γ(h) and the result follows.

Notice now that, for any y ∈ G, the function (T, x) := Υ[y] satisfies

(x(0), ẋ(0)) = Ξ0(y(0), ẏ(0)) , (x(T ), ẋ(T )) = Ξ0(y(1), ẏ(1)) , (35)

where Ξ0 : Bd−1
ϵ × Bd−1

ϵ → N0 is the C1-diffeomorphism defined in (27). We are
led to consider the setsO00 :=

{
(y(0), ẏ(0)) : y ∈ G is a solution of (33)

}
,

N00 :=
{(
x(0), ẋ(0)

)
: (T, x) ∈ Γ is a solution of (3) with energy h

}
.

By continuous dependence on initial conditions, O00 is open in Bd−1
ϵ × Bd−1

ϵ ,
and N00 is open in N0. These sets are the natural domains of the Poincaré maps
P : O00 → Bd−1

ϵ × Bd−1
ϵ and P : N00 → N0, associated respectively to the flows

of (33) (for the period 1), and (3) inside the energy level h (for the transversal
section N0). Notice also that (0, 0) ∈ O00 and (x∗(0), ẋ∗(0)) ∈ N00. In the
following result we see that P and P are conjugate around these points.

Lemma 10.4. Ξ0 ◦ P = P ◦ Ξ0 on (Bd−1
ϵ1
× Bd−1

ϵ1
) ∩O00. Here, 0 < ϵ1 < ϵ is the

number appearing in Lemma 10.2(v) .

Proof. Choose some initial condition (y0, ẏ0) ∈ (Bd−1
ϵ1
× Bd−1

ϵ1
) ∩ O00. Then, the

associated solution y = y(θ) of (33) is defined for all θ ∈ [0, 1] and belongs to
G. We set (y1, ẏ1) := (y(1), ẏ(1)) = P(y0, ẏ0). By Lemma 10.2(v) we see that
(T, x) := Υ[y] is an extremal of (3), and by (35) we obtain

P
(
Ξ0(y0, ẏ0)

)
= P

(
x(0), ẋ(0)

)
=

(
x(T ), ẋ(T )

)
= Ξ0(y1, ẏ1) = Ξ0

(
P(y0, ẏ0)

)
,

proving the result.
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11 From the autonomous framework to a time-

dependent problem

In this section we complete the proofs of the main results of this paper, namely
Theorems 2.1 and 2.3. Actually, almost all the work has already been done
now; the only piece of the jigsaw puzzle which waits to be put on the table is
a theorem concerning time-periodic Lagrangian systems of the form (33). Here,
the Lagrangian L = L(θ, y, ẏ) is assumed to be a C0,2 function, defined on an
open set O ⊂ (R/Z) × (Rd−1 × Rd−1) for some d ≥ 2. It will be assumed that
L satisfies the Legendre convexity condition ∂2ẏẏL(θ, y, ẏ) > 0 on O. Moreover,
let us further assume that, either (a”): d = 2, or (b”): L is time-reversible, i.e.,
(θ, y, ẏ) ∈ O ⇒ (−θ, y,−ẏ) ∈ O and L(−θ, y,−ẏ) = L(θ, y, ẏ). We consider the
(fixed period)-action functional

A[y] :=
∫ 1

0

L(θ, y(θ), ẏ(θ))dθ , y ∈ C1
O(R/Z,Rd−1) ,

the domain C1
O(R/Z,Rd−1) being the set of C1 functions y : R/Z → Rd−1 such

that (θ, y(θ), ẏ(θ)) ∈ O for every θ. As mentioned at the end of the Introduction,
the instability of the minimizers of A has been treated in several works, and we
collect some of these results below. It will be convenient to adapt the notion of
instability in the sense of Siegel and Moser for nonautonomous systems; thus, we
shall say that the 1-periodic solution y∗ of (33) is unstable in the sense of Siegel
and Moser provided that there exists some ϵ0 > 0 such that the unique globally-
defined solution y = y(θ) of (33) with |y(θ)− y∗(θ)|+ |ẏ(θ)− ẏ∗(θ)| < ϵ0 ∀θ ∈ R
is y ≡ y∗.

Theorem 11.1 ([13, 50, 51, 52, 53]). Let y∗ ∈ C1
O(R/Z,Rd−1) be a local minimizer

of A. In situation (b”) assume further that y∗ is even, i.e. y∗(−θ) = y∗(θ) for
any θ. Then:

(i) y∗ is unstable in the Lyapunov sense. Moreover, the associated Floquet
multipliers are real and positive.

(ii) If (a”) holds and y∗ is isolated as a 1-periodic solution of (33), then it is
unstable in the sense of Siegel and Moser.

The instability assertion in (i) was shown in [51] in situation (a”), and in [52,
Lemma 2.3] if (b”) holds. The statement on the Floquet multipliers was shown
by Carathéodory [13, §413] in situation (a”), and more recently, by the author
[53] for the case (b”). Finally, assertion (ii) has been proved in [50].

Proof of Theorems 2.1 and 2.3. Let x∗ ∈ ΛO be a nonconstant local minimizer
of Ah; then Proposition 5.1 implies (12). Let h be the energy level of x∗ and let
L = Lh be the associated Carathéodory Lagrangian, constructed as in Section 6.
Now, the result follows from the combination of Lemma 10.3, which establishes
that y∗ ≡ 0 is a local minimizer of Carathéodory’s reduced action; Lemma 10.4,
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which states that the associated Poincaré maps are conjugate and so have the
same dynamics; and Theorem 11.1, depicting the dynamics around the minimizer
y∗ ≡ 0 for Carathéodory’s reduced system.

12 A list of examples

We devote this section to develop some insight about the assumptions of The-
orems 2.1 and 2.3 by presenting several counterexamples when some of these
assumptions fail.

1. Degenerate closed geodesics which are not minimal may be stable even with
Morse index zero. Consider the revolution surfaces

R± : r = 1± z4 , −1 < z < 1 ,

written here in cylindrical coordinates (r, θ, z). Clairaut’s relation9 implies that,
for R+, the closed geodesic z = 0 is unstable, while for R−, the closed geodesic
z = 0 is stable. Moreover, this geodesic is length-minimizing in the first case but
not in the second, and consequently, in view of Lemma 3.1, it is energy-minimizing
inR+ but not inR−. Nonetheless, the first-order linear approximation is the same
and so, the associated Morse index is zero in both cases. Notice that this example
contradicts [24, Theorem 1.1].

2. Nonorientable surfaces: The 2-dimensional, symmetry-free Theorem 2.1
loses its validity without the orientability assumption. The following counterex-
ample is inspired by [13, §411]. We start from the two-dimensional sphere S2 =
{(u, v, w) ∈ R3 : u2 + v2 + w2 = 1}, endowed with the usual Riemannian metric
inherited from R3. The antipodal map −I : S2 → S2, (u, v, w) 7→ (−u,−v,−w)
is an isometry; hence, the (nonorientable) projective plane RP2 := S2/{I,−I}
is naturally endowed with the quotient Riemannian metric. The corresponding
geodesics are the projections of geodesics on the sphere; thus, they are all closed
loops (with the minimal period divided by 2) and dynamically stable. Moreover,
they are length-minimizing, as this is the case with the geodesics of the sphere
till the moment they arrive to the antipodal point.

Observe that the reflection map S2 → S2, (u, v, w) 7→ (u,−v, w) induces
an involutive isometry S : RP2 → RP2, and the closed geodesic x∗ : R/πZ →
RP2, t 7→ (cos t, sin t, 0), is S-symmetric. However, the set of fixed points of S
is composed of a topological circle and an isolated point; it is therefore not a
hypersurface of RP2.

3. An elliptic countexample with bad symmetries: The previous example is
degenerate; indeed, the closed geodesic x∗ lies inside a continuous family of closed
geodesics. We are now going to build a new example where the configuration
manifold will be the open solid torus

M := (R/2πZ)× D = {(θ, z) : θ ∈ R/2πZ, z ∈ C, |z| < 1} ,
9According to Clairaut’s equality, the quantity r(t) cos τ(t) is constant for each geodesic.

Here, τ = τ(t) stands for the angle between the geodesic and the parallels z = const of the
revolution surface.
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endowed with some convenient Riemannian metric. Our example, which is a
variation of a (parabolic) construction due to Carathéodory [13, §411], will satisfy:

(i) x∗(t) := (t, 0C), t ∈ R/2πZ, is a length-minimizing geodesic;

(ii) x∗ is S-symmetric for some involutive isometry S :M →M ;

(iii) x∗ is elliptic (and in particular, nondegenerate), and orbitally stable.

It will not disprove Theorem 2.3 because Fix(S) will include isolated points
and/or connected components of codimension 2. Notice also that such an example
contradicts previous attempts to show the hyperbolicity of minimizers in more
general frameworks, such as [28, Theorem 1.5] or [36, Theorem 3.1] (concerning
this last paper, take as antisymplectic involution R : TM → TM, (x, v) 7→
(S(x),−S ′(x)v)).

We begin with the 3-dimensional sphere S3 := {(p1, p2) ∈ C × C : |p1|2 +
|p2|2 = 1}, which we write with the help of complex notation but consider as a
hypersurface of R4. It is naturally endowed with the Riemannian metric inherited
from the scalar product of R4, and the map η : S3 → S3, (p1, p2) 7→ (ip1,−p2) is an
isometry. Moreover, η4 = IdS3 , and η takes the circumference N := {0C}×S1 into
itself. We can now see η as a map from S3\N into itself; it generates the isometry
subgroup G := {IdS3\N , η, η

2, η3}, and this group acts in a properly discontinuous
way on S3\N (see, e.g., [12, Chapter III.7]). The quotient space T3 := (S3\N )/G
is a 3-dimensional manifold diffeomorphic to the open solid torus; moreover, the
maps (R/2πZ)×D→ T3, (θ, z) 7→ (

√
1− |z|2 eiθ/4, eiθ/2z) and T3 → (R/2πZ)×D,

(p1, p2) 7→ (4 arg(p1), p1p2/p1) are mutually inverse diffeomorphisms. This fact
makes it equivalent to construct the announced pathological Riemannian metric
on (R/2πZ) × D or on T3; we opt for this second possibility and consider the
quotient Riemannian metric on T3 inherited from S3\N .

Notice that the parameterized curve x∗ : R/(π/2)Z → T3 given by t 7→
(eit, 0C) is a closed geodesic; we claim that it is length-minimizing. Indeed, if
x : R/(π/2)Z → T is a closed loop near x∗, then it can be lifted to a closed
loop x̂ : R/2πZ→ S3\N satisfying x̂(t+ π/2) = η(x̂(t)) for any t; moreover, the
lengths of x and x̂ on the time interval [0, π/2] coincide. This length is therefore
not smaller than the distance on S3 between x̂(0) and x̂(π/2) = η(x̂(0)). The
distance between two points on the sphere coincides with the angle between them;
on the other hand, writting x̂(0) = (p1, p2), x̂(π/2) = (ip1,−p2), we see that this
angle is arccos(−|p2|2) ≥ π/2. This shows that x∗ is length-minimizing.

It is clear from the construction that x∗ is orbitally stable; in principle it
could be parabolic, but we claim that it is elliptic. To see this we consider the
Poincaré map P : TT3 → TT3 associated to the time period π/2. Then, ξ∗ :=
(x∗(0), ẋ∗(0)) = ((1, 0C), (i, 0C)) is a fixed point of P , and P ′(ξ∗) : Tξ∗(TT

3) →
Tξ∗(TT

3) is a linear isomorphism. It has λ = 1 as a double eigenvalue (see, e.g.
[34, Lemma 2.3 (p. 90)]), and in order to check the ellipticity of x∗ we shall show
that the remaining eigenvalues are ±i (also double).

With this goal, we denote by P : TS3 → TS3 the Poincaré map associated to
the geodesic flow on S3 and the time period π/2. Then, (dη)−1 ◦P : TS3 → TS3
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also has ξ∗ as a fixed point, and is in fact locally conjugate around ξ∗ to P (via the
differential of the canonical projection S3\N → T3). Correspondingly, it suffices
to check that ±i are double eigenvalues of ζ := dξ∗ [(dη)

−1 ◦P] : Tξ∗(TS3) →
Tξ∗(TS3).

We use the identification TS3 ≡ {(p, v) ∈ C2 × C2 : |p| = 1, re ⟨p, v⟩ = 0}.
(Here, ⟨p, q⟩ := p1q1 + p2q20 stands for the canonical Hermitian form on C2).
Then,M := {(p, v) ∈ TS3 : |v| = 1} is a 5-dimensional submanifold of TS3. This
manifold is invariant both for P and dη; indeed,

P(p, v) = (v,−p); (dη)(p, v) = (ip1,−p2, iv1,−v2) ,

for any (p, v) = (p1, p2, v1, v2) ∈M. Consequently,

ζ(u,w) = (−iw1,−w2, iu1, u2), (u,w) ∈ Tξ∗M .

Notice now that ({0C}×C)×({0C}×C) ≡ R4 is a ζ-invariant subspace of Tξ∗M
and ζ(0C, u2, 0C, w2) = (0C,−w2, 0C, u2) for any u2, w2 ∈ C. The eigenvalues of
this linear map are ±i (both repeated twice and semisimple). This completes the
proof of the announced ellipticity of x∗.

Finally, we notice that there are several involutive isometries S : T3 → T3

such that x∗ is S-symmetric. For instance, one can take S(p1, p2) := (p1, p2); in
principle S is an isometry on S3, but one checks that S ◦ η = η3 ◦ S, and so, S
induces an isometry (which we may still call S) on T3. The previously-considered
diffeomorphisms between T3 and (R/2πZ) × D allow us to see it as a map from
(R/2πZ) × D to itself; it is then given by S(θ, z) = (−θ, eiθz). In particular, we
observe that the set of fixed points is made by the 2-cell θ = 0 and the 0-cell
(θ, z) = (π, 0).

One can repeat the procedure for the choice S(p1, p2) := (p1,−p2), and also
Sτ (p1, p2) := (p1, e

iτp2) for some fixed τ ∈ R. Arguing as before, one checks that
they give rise to involutive isometries in T. In the first case the set of fixed points
is again composed by a 2-cell and a 0-cell, while in the second its is made of two
1-cells.

4. A counterexample for the fixed period action functional: Despite the geodesics
example, instability does not hold in general for (symmetric) minimizers of the
fixed-period action functional if one deals with more general Lagrangians. As an
example, we recall that Gordon [20] showed that the, say, 2π−periodic orbits of
the Kepler problem

ẍ = − x

|x|3
, x ∈ R2\{0} ,

minimize the fixed-period action functional x 7→
∫ 2π

0

(
|ẋ|2

2
+

1

|x|

)
dt. More-

over, the circular one x∗(t) := (cos t, sin t) is symmetric with respect to the
orthogonal reflection over the abscissa axis. However, x∗ is orbitally-stable.
We observe that the energy of x∗ is h = −1/2; on the other hand, setting
xc(t) :=

1
c2/3

(cos ct, sin ct), simple computations show that the function c > 0 7→
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A−1/2(2π/c, xc) =
∫ 2π/c

0
(−1/2 + |ẋc|2/2 + 1/|xc|) dt = 3π/ 3

√
c − π/c has a maxi-

mum at c = 1. Thus, the free-period action functional A−1/2 has in fact a saddle
point at x∗.

Other examples of elliptic orbits which minimize the fixed-period action func-
tional have been given in [3].

5. On x∗ being not an equilibrium. The condition that x∗ is not an equilibrium
cannot be eliminated, either. Here is a counterexample, constructed by combining
some ideas of Moser [33, p. 78] and Ortega [37]. We consider, for M = R2 and
O = TM = R2 × R2, the Lagrangian

Lϵ(x, ẋ) :=
1

2
|ẋ|2 + 1

2
|x|2 + (1 + ϵ)⟨ẋ, Jx⟩ , x, ẋ ∈ R2.

Here, J =

(
0 −1
1 0

)
stands for the 90◦ rotation in the positive sense, and

ϵ > 0 is a small parameter. Setting S(x1, x2) := (x1,−x2) one checks that (8)
holds, so that Lϵ is S-symmetric. The associated Euler-Lagrange equations are
linear, and given by:

ẍ+ 2(1 + ϵ)Jẋ− x = 0 , x ∈ R2 . (36)

This equation can be solved explicitly, and the trivial solution x∗ ≡ 0 is stable.
What is more, if one fixes the period T∗ := 1 and chooses ϵ > 0 sufficiently small,
then x∗ is of elliptic-elliptic type with four different Floquet multipliers on the
unit circle. This is easy to confirm: denoting by R[−(1+ϵ)t] the rotation of angle
−(1+ϵ)t in the anticlockwise sense, the change of variables x(t) = R[−(1+ϵ)t]u(t)
transforms (36) into ü+ (ϵ2 + 2ϵ)u = 0.

Yet, setting x∗ ≡ 0, for small ϵ > 0 the extremal (1, x∗) is also a (strict) local
minimizer of the free-period action functional

A0 : Λ→ R , (T, x) 7→
∫ T

0

Lϵ(x(t), ẋ(t))dt .

This can be equivalently reformulated by saying that the fixed-period action
functional A0(T, ·) is positive definite on C1(R/TZ,R2) provided that |T −1| and
ϵ > 0 are small. To check this statement we first notice that A0(T, ·) is positive
definite on the set of constant functions x̄ ∈ R ; on the other hand, setting

C̃1(R/TZ,R2) := {x̃ ∈ C1(R/TZ,R2) :
∫ T

0
x̃(s)ds = 0}, one has:

A0(T, x̄+ x̃) ≥ A0(T, x̃) ∀x̄ ∈ R , ∀x̃ ∈ C̃1(R/TZ,R2) .

Thus, it suffices to see that A0(T, ·) is positive-definite on C̃1(R/TZ,R2) whenever
ϵ > 0 is small and T is close to 1. By combining Cauchy-Schwarz’s andWirtinger’s
inequalities we see that, letting p(r, s) := r2/2 + s2/2 − (1 + ϵ)rs, for every

x̃ ∈ C̃1(R/TZ,R2) one has:

A0(T, x̃) ≥ min
{
p(r, ∥ ˙̃x∥2) : 0 ≤ r ≤ (T/2π)∥ ˙̃x∥2

}
= p

(
(T/2π)∥ ˙̃x∥2, ∥ ˙̃x∥2

)
= c∥ ˙̃x∥22 ,
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where c = (4π2 − 4π(1 + ϵ)T + T 2)/8π2, which is positive for ϵ > 0 small and T
close to 1. It completes the argument.

6. Instability vs. instability in the sense of Siegel and Moser. In view of
Theorems 2.1 and 2.3, another question appears: is it true that, when d ≥ 3,
symmetric closed minimizing orbits which are isolated are unstable in the sense
of Siegel and Moser?

The answer turns out to be negative. Set M := (R/Z)×R2, with coordinates
x = (θ, y); there exists a C∞ Lagrangian function

L : TM ≡M × R3 → R, L = L(θ, y, θ̇, ẏ)

such that, defining S : M → M by S(θ, y) := (−θ, y) and x∗ : R/Z → M by
t 7→ (t, 0), the following hold:

(a) L is S-symmetric and satisfies ∂2ẋẋL(x∗(t), ẋ∗(t)) > 0 for any time t ∈ R/Z,

(b) (1, x∗) is a local minimizer of the free-period action functional Ah corre-
sponding to some energy value h. Moreover, it is isolated as a periodic
orbit inside its energy level,

but x∗ is not orbitally unstable in the sense of Siegel and Moser (it must be
orbitally unstable by Theorem 2.3).

In fact, our Lagrangian L will have the form

L(θ, y, θ̇, ẏ) =
1

2
|ẏ|2 − V (y) +

1

2

(
1− V (y)− 1

2
|ẏ|2

)
(θ̇2 − 1) ,

where V : R2 → R is some C∞ function with

V (0) = 0, ∇V (0) = 0, HessV (0) = 0 , (37)

which will be made precise later. Now, (a) follows immediately. One checks that
the energy function

H(θ, y, θ̇, ẏ) = ∂θ̇L(θ, y, θ̇, ẏ)θ̇ + ∂ẏL(θ, y, θ̇, ẏ)ẏ − L(θ, y, θ̇, ẏ) ,

satisfies the identity H(θ, y, 1, ẏ) ≡ 1; in particular, h := 1 is the energy level
of the extremal x∗(t) := (t, 0). Carrying out the scheme described in Section
6, on some open neighborhood U of the closed loop (R/Z) × {(0, 1, 0)} one has
λ1(θ, y, θ̇, ẏ) = 1/θ̇ and the associated Jacobi-Maupertuis Lagrangian is given by:

L1(θ, y, θ̇, ẏ) =
(
1 + L(θ, y, 1, ẏ/θ̇)

)
θ̇ =
|ẏ|2

2θ̇
+
(
1− V (y)

)
θ̇ , (θ, y, θ̇, ẏ) ∈ U .

Further performing Carathéodory’s reduction of order procedure (as described in
Section 10) with ψ(t, y) := (t, y), we get the Lagrangian

L1(t, y, ẏ) = L1(t, y, 1, ẏ) =
|ẏ|2

2
+ 1− V (y) , t ∈ R/Z, |y| < ϵ, |ẏ| < ϵ,
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with associated Euler-Lagrange equations

ÿ = −∇V (y) . (38)

In order to fix V we shall use the following result, which was recently obtained
in [54]: there exists a C∞ function V : R2 → R with V (0) = 0 > V (y) for any
y ̸= 0, ∇V (y) ̸= 0 for y ̸= 0, and there exists a sequence of nontrivial periodic
orbits yn : R/TnZ→ R2 of (38) with maxt |yn(t)| → 0 as n→ +∞.

It follows now from Lemma 10.3(i) that (1, x∗) is a local minimum of the free-
period action functional A1 associated to L, whereas Lemma 10.4 implies that x∗
is not unstable inside its energy level in the sense of Siegel and Moser. It only
remains to see that z∗ is isolated, and, by Lemma 10.3(ii) it is equivalent to show
that y∗ ≡ 0 is isolated as a 2π-periodic solution of the Newtonian equation ÿ =
−∇V (y). We use a contradiction argument and assume instead the existence of
a sequence {yn}n → 0 of nontrivial 1-periodic solutions; they cannot be constant,
and so, it makes sense to define zn := ẏn/∥yn∥∞, for each n ∈ N. Differentiation
in the equation ÿn = −∇V (yn) leads to z̈n = −HessV (yn(t))zn, and since {zn} is
bounded in the L∞ norm, we deduce that also z̈n is bounded in the L∞ norm.
We deduce from here that the sequence zn is actually bounded in the C2 norm,
and, by the Ascoli-Arzela lemma, after possibly passing to a subsequence, we may
assume zn → z∗ in the C1 norm. Passing to the limit and remembering (37) we
see that z∗ must solve the equation

z̈∗ = −HessV (0)z∗ = 0 ,

and, since z∗ must be periodic, it must be constant. On the other hand, all
functions zn have zero mean value, and we conclude that also z∗ has zero mean
value, so that z∗ ≡ 0. But ∥zn∥∞ = 1 for every n, and passing to the limit we
find that ∥z∗∥∞ = 1. This is a contradiction and concludes the proof.

13 Appendix

13.1 Minimizing on loops vs. minimizing on symmetric
loops

We open this section with a general result which applies to Lagrangian systems
(3) under the sole assumptions that the Lagrangian function L : O → R has class
C2 and satisfies the Legendre convexity condition (2). Our starting point will
be the following observation: if x : I → M is a solution of the Euler-Lagrange
equations (3) with energy h and ẋ(t0) = 0 for some t0 ∈ I, then

h+ L(x(t0), ẋ(t0)) = ∂ẋL(x(t0), ẋ(t0))ẋ(t0) = 0.

The lemma below, which was used in the proof of Proposition 5.1, gives a deeper
insight in the behavior of the function t 7→ h+ L(x(t), ẋ(t)) near t = t0:
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Lemma 13.1. Let x : I → M be a solution of (3) with energy h and ẋ(t0) = 0
for some t0 ∈ I. If x is not an equilibrium, then

lim
t→t0

h+ L(x(t), ẋ(t))

(t− t0)2
> 0 .

.

Proof. Since the statement is local, there is no loss of generality in assuming
M = Rd and x(t0) = 0. Since x is not an equilibrium, ∂xL(0, 0) ̸= 0, and the
Euler-Lagrange equations (3) imply that ẍ(t0) ̸= 0.

Now, for t ∈ I\{t0} one has:

h+ L(x(t), ẋ(t))

(t− t0)2
=
∂ẋL(x(t), ẋ(t))ẋ(t)

(t− t0)2
=

= (t− t0)
(∫ 1

0

∂2xẋL(sx(t), sẋ(t)) ds

)(
x(t)

(t− t0)2
,
ẋ(t)

(t− t0)

)
+

+

(∫ 1

0

∂2ẋẋL(sx(t), sẋ(t))ds

)(
ẋ(t)

t− t0
,
ẋ(t)

t− t0

)
.

Since x(t)/(t− t0)2 → ẍ(0)/2 and ẋ(t)/(t− t0)→ ẍ(0) as t→ t0 we see that the
first term of the last side of the equality converges to 0, and the second one to
∂2ẋẋL(0, 0) (ẍ∗(0), ẍ∗(0)) > 0. The result follows.

The remaining of this subsection is devoted to prove Lemma 2.2. Thus, we
further assume now that the Lagrangian L : O → R satisfies the symmetry
condition (8) for some involutive C3-map S :M →M with (7). Let (T∗, x∗) ∈ ΛS

O
be given; by symmetry, x∗(0) and x∗(T∗/2) must be fixed points of S. The
following lemma gives some additional information on the local behavior of x∗
near t = 0 when (T∗, x∗) is a local minimizer of Ah

∣∣
ΛS
O
.

Lemma 13.2. Let (T∗, x∗) ∈ ΛS
O be a local minimizer of Ah

∣∣
ΛS
O
. Then,

x∗(]− ε, ε[)\Fix(S) ̸= ∅ for all ε > 0 .

Proof. We argue by a contradiction argument and assume instead the existence
of some 0 < ε0 < T∗/2 such that x∗

(
] − ε0, ε0[

)
⊂ Fix(S). Then, by symmetry,

x∗(−t) = x∗(t) for if |t| < ε0, and in particular, ẋ∗(0) = 0. Lemma 13.1 implies
the existence of some 0 < ε1 < ε0 such that h+L(x∗(t), ẋ∗(t)) > 0 if 0 < |t| < ε1,
and we deduce that, for any n ∈ N one has∫ T∗/2

ε1/n

(
h+ L(x∗(t), ẋ∗(t))

)
dt <

∫ T∗/2

0

(
h+ L(x∗(t), ẋ∗(t))

)
dt.

By slightly modifying x∗∣∣[ε1/n,T∗/2]
near ε1/n (so that its derivative there vanishes)

and extending it by symmetry and periodicity, we can now construct a sequence
{(T∗ − 2ε1/n, xn)}n ⊂ ΛS

O converging to (T∗, x∗) and with Ah(T∗ − 2ε1/n, xn) <
Ah(T∗, x∗) for all n. This is a contradiction with the fact that x∗ was a local
minimizer in ΛS

O and concludes the proof.
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Proof of Lemma 2.2. It is clear from the definitions that any S-symmetric local
minimizer of Ah is a local minimizer of Ah

∣∣
ΛS
O
. We check the converse by a

contradiction argument and assume that (T∗, x∗) is a local minimizer of Ah

∣∣
ΛS
O

for which there exists a sequence (Tn, xn) → (T∗, x∗) with (Tn, xn) ∈ ΛO and
Ah(Tn, xn) < Ah(t∗, x∗) ∀n.

By Lemma 13.2 there is a sequence {τn} → 0 with x∗(τn) ̸∈ Fix(S) for every
n ∈ N. Then, by symmetry, x∗(−τn) ̸∈ Fix(S), and in fact, for n big enough
x∗(±τn) belong to the two different connected components in which Fix(S) divides
M near x∗(0). Consequently, after possibly replacing xn by a subsequence we
may assume that xn(±τn) also belong to the two local connected components
of M\Fix(S) near x∗(0), and therefore there exists some sequence {αn} → 0
such that xn(αn) ∈ Fix(S) for every n. Similarly, after possibly passing to a
second subsequence we may assume the existence of {βn} → T∗/2 such that
xn(βn) ∈ Fix(S) for every n. Finally, after possibly replacing xn = xn(t) with
x̄n(t) := S(xn(−t)) and αn, βn by −αn, Tn− βn respectively, we may additionally
assume that∫ βn

αn

(
h+ L(xn(t), ẋn(t)

)
dt <

1

2
Ah(T∗, x∗) for all n ∈ N .

Thus, after slightly modifying each function xn∣∣[αn,βn]
near αn, βn (so that its

derivative at these points vanishes), and extending it to the real line by symmetry
and periodicity we obtain a sequence {(2(βn − αn), x̃n)}n ⊂ ΛS

O converging to
(T∗, x∗) and with Ah(2(βn−αn), x̃n) < Ah(T∗, x∗) for all n. It contradicts the fact
that x∗ was a local minimizer in ΛS

O and concludes the proof.

13.2 Minimizing length vs. minimizing energy

Proof of Lemma 3.1. The implication (i) =⇒ (ii) is immediate. Concerning
(ii) =⇒ (iii) we notice that every x ∈ C1(R/Z,M) with ẋ(t) ̸= 0 ∀t can be
reparameterized to constant speed inside C1(R/Z,M), i.e., there exists a C1 dif-
feomorphism σ : R → R with σ(t + 1) = σ(t) + 1 for every t ∈ R such that
xσ := x ◦ σ has constant speed ∥ẋσ(t)∥ ≡ vx. Moreover, if x is close to x∗ then
xσ is also close to x∗, and one has

1

2

∫ 1

0

∥ẋσ(t)∥2dt =
1

2
v2x ≥

1

2
v2 ,

implying that vx ≥ v. Consequently,∫ 1

0

∥ẋ(t)∥ dt =
∫ 1

0

∥ẋσ(t)∥ dt = vx ≥ v =

∫ 1

0

∥ẋ∗(t)∥ dt ,

proving this implication.

It remains to check the implication (iii) =⇒ (i). With this aim, choose
(T, x) ∈ Λ near (1, x∗) and set x1(t) := x(tT ), which is a function in C1(R/Z,M)
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near x∗. Thus,∫ T

0

∥ẋ(t)∥ dt =
∫ 1

0

∥ẋ1(t)∥ dt ≥
∫ 1

0

∥ẋ∗(t)∥ dt = v .

On the other hand, the Cauchy-Schwarz inequality implies∫ T

0

∥ẋ(t)∥2dt ≥ 1

T

(∫ T

0

∥ẋ(t)∥dt
)2

≥ v2

T
,

and therefore, the inequality a2 + b2 ≥ 2ab gives∫ T

0

(v2 + ∥ẋ(t)∥2)dt ≥ Tv2 +
v2

T
≥ 2v2 =

∫ T∗

0

(v2 + ∥ẋ∗(t)∥2)dt ,

concluding the proof.
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[42] Penot, J.P., Variétés différentiables d’applications et de chemins. (French)
C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A1066–A1068.
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