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Abstract
The classical Lagrange–Dirichlet stability theorem states that, for natural mechanical sys-
tems, the strict minima of the potential are dynamically stable. Its converse, i.e., the insta-
bility of the maxima of the potential, has been proved by several authors including Lia-
punov (The general problem of stability of motion, 1892), Hagedorn (Arch Ration Mech 
Anal 42:281–316, 1971) or Taliaferro (Arch Ration Mech Anal 73(2):183–190, 1980), in 
various degrees of generality. We complement their theorems by presenting an example of 
a smooth potential on the plane having an isolated maximum and such that the associated 
dynamical system has a converging sequence of periodic orbits. This implies that the maxi-
mum is not unstable in a stronger sense considered by Siegel and Moser.

Keywords Converses of the Lagrange–Dirichlet stability theorem · Maxima of the 
potential · Periodic solutions

Mathematics Subject Classification Primary 37C75 · 37J25; Secondary 37J45 · 37J50

1 Introduction

Consider the Newtonian system of equations

where V ∶ ℝ
d
→ ℝ is a given potential having a local maximum at some point q∗ ∈ ℝ

d . In 
his 1892 PhD dissertation [6], Liapunov showed that if this maximum is nondegenerate, 
then the corresponding equilibrium is dynamically unstable. Liapunov’s instability theo-
rem was extended by Hagedorn [4], who used variational methods to prove the instability 
of all isolated maxima of the potential, and Taliaferro [11], who removed the isolatedness 
assumption from Hagedorn’s theorem. Results of this type have been named as converses 

(1)q̈ = −∇V(q), q ∈ ℝ
d,
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of the Lagrange–Dirichlet stability theorem, and the associated literature is very ample, 
see, for instance, [5, 7] and the references therein.

In the above-mentioned papers, the word instability is understood as the logical nega-
tion of Liapunov stability. In particular, for equations of the form (1) and more generally 
in the Hamiltonian framework, it means both past and future instability; namely, the two 
concepts are equivalent. See [9, p. 150] and [8, p. 114–115]. (In this latter reference, the 
statement is made in dimension 2, but the proof works for all dimensions.)

However, a stronger notion of instability was considered by Siegel and Moser in 
[10, §25 ]. According to their definition, the equilibrium q∗ ∈ ℝ

d is unstable if there is a 
neighborhood N  of (q∗, 0) in the phase space such that every globally-defined solution 
q ∶ ℝ → ℝ

d of (1), q(t) ≢ q∗ , satisfies (q(tq), q̇(tq)) ∉ N  for some tq ∈ ℝ . In other words, 
{(q∗, 0)} is the maximal subset of N  which is invariant by the flow. Observe, for instance, 
that a hyperbolic fixed point is always unstable in this stronger sense, whereas a noniso-
lated fixed point never is.

The question which motivates this paper is the following: Assuming that the potential  V  
attains its maximum at q∗ ∈ ℝ

d , and that this maximum is isolated as a critical point of  V, 
does it imply that q∗ is unstable in the stronger sense of Siegel and Moser?

The answer to this question is affirmative in the one-dimensional case d = 1 , as an easy 
conservation-of-energy argument shows. It is also affirmative if one assumes that the Hes-
sian matrix of the (sufficiently smooth) potential V is negative semidefinite on some neigh-
borhood of q∗ ; indeed, under this assumption, the function t ↦ −V(q(t)) is convex as long 
as q(t) belongs to the neighborhood, as one promptly checks. However, this question turns 
out to be false in general. The goal of this paper is to prove the following:

Theorem 1.1 There exists a C∞ function V ∶ ℝ
2
→ ℝ satisfying:

(a) V(0, 0) = max
ℝ2 V ,

(b) ∇V(q) ≠ (0, 0) for any q ≠ (0, 0),
(c) there exists a sequence Tn > 0 of positive numbers and a sequence qn ∶ ℝ∕Tnℤ → ℝ

2 
of nontrivial periodic solutions of q̈ = −∇V(q) such that

We do not know whether such an example exists in the analytic case. In our construc-
tion, the sequence of periods Tn is divergent; one easily checks that this is necessarily the 
case if the Hessian matrix of V vanishes at the origin. The closed orbits qn in our example 
do not encircle the origin.

A comment may shed some light on how our example can(not) be constructed. 
If q ∶ ℝ∕Tℤ → ℝ , q = q(t) is a parameterized closed convex curve of class C2 and 
q̈ = −∇V(q) for some C1 potential V ∶ ℝ

2
→ ℝ , then ∇V(q) points outward at the points 

of our closed curve, so that V has a minimum in the interior of L ∶= q(ℝ) . Therefore, the 
closed curves qn of Theorem 1.1 cannot be convex.

For this reason, a key advance toward the proof of Theorem 1.1 will consist in building a 
closed, simple and nonconvex curve L  in the plane, and a potential U with a nonvanishing 
gradient which points inward on the concave section of L  and outward on the convex part. 
This construction, formulated more precisely in Proposition 2.1, will occupy us through 
Sects. 2, 3 and 4. In Sect. 5, we shall find a reparametrization � = �(t) of L  which satisfies 
a generalized version of (1) with a weight. This result will be used in Sect. 6 to construct 

max
t∈ℝ

(‖qn(t)‖ + ‖q̇n(t)‖) → 0 as n → +∞.
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a modified potential function W in the plane, with nonvanishing gradient, and such that 
the corresponding Newtonian system has a closed orbit. Actually, W will be periodic in 
the first variable, allowing us to see it as defined on a ring circling the origin. The end of 
the argument will consist in ‘stacking’ infinitely many copies of W defined on smaller and 
smaller rings to obtain the potential V of Theorem 1.1.

2  Admissible closed curves and potentials

The closed curve L  will be defined by a 2�-periodic parametrization � = �(t) . For sim-
plicity reasons, we shall further impose some symmetry conditions on our problem; 
thus, from now on we denote by S to the symmetry in ℝ2 with respect to the y-axis, i.e., 
S(x, y) ∶= (−x, y).

It will be convenient to introduce some definitions here. The parameterized closed curve 
� ∶ ℝ∕2�ℤ → ℝ

2, � = �(t) will be termed admissible provided that it is C∞ , simple, goes 
in the counterclockwise direction and satisfies: 

(�i)  �(−t) = S(�(t)) ∀t ∈ ℝ∕2�ℤ,
(�ii)  �(ℝ∕2𝜋ℤ) ⊂] − 1, 1[2, �(]0,𝜋[) ⊂]0,+∞[×ℝ,
(�iii)  �̇(t) ≠ (0, 0) ∀t ∈ ℝ∕2𝜋ℤ,

 and, for some t∗ ∈]0, �∕2[ , 

(�iv)  det(�̇(t), �̈(t))
{

< 0 if 0 ≤ t < t∗
> 0 if t∗ < t ≤ 𝜋

,
d

dt

|||t=t∗ det(�̇(t), �̈(t)) > 0.

On the other hand, the function U ∶ ℝ
2
→ ℝ, U = U(x, y) , will be said to be an admis-

sible potential provided that it is C∞ and satisfies 

(Ui):  U(x + 2, y) = U(−x, y) = U(x, y);
(Uii):  U(x, y) = y if |y| ≥ 1;
(Uiii):  ∇U(x, y) ≠ (0, 0) ∀(x, y) ∈ ℝ

2.

Finally, the admissible closed curve � and the admissible potential U will be called cou-
pled provided that 

(U�i):  ⟨∇U(�(t)), �̇(t)⟩ > 0 ∀t ∈]0,𝜋[,
d2

dt2
���t=0U(�(t)) > 0 >

d2

dt2
���t=𝜋U(�(t)),

(U�ii):  det(∇U(�(t)), �̇(t))

{
< 0 if 0 ≤ t < t∗
> 0 if t∗ < t ≤ 𝜋

,
d

dt

|||t=t∗ det(∇U(�(t)), �̇(t)) > 0,

 where t∗ is the same number appearing in assumption (�iv) . If only (U�i) is ensured, we 
shall say that � and U are semicoupled.

Assumption (�iii) means that the closed curve L ∶= {�(t) ∶ t ∈ ℝ∕2�ℤ} is regular in 

the geometrical sense. Set J =

(
0 1

−1 0

)
 ; since the parametrization � goes in the counter-

clockwise direction, we deduce that J�̇(t) points in the normal outward direction to L  at 
�(t) , for every t. Then, by combining ( �i ) and the equality det(u, v) = ⟨u, Jv⟩ we can 
rephrase ( �iv ) by saying that the closed curve L ∶= {�(t) ∶ t ∈ ℝ∕2�ℤ} is convex on the 
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arc t∗ < t < 2𝜋 − t∗ and concave for −t∗ < t < t∗ . Similarly, (U�ii) states that ∇U(�(t)) 
points outward in the convex section of L  and inward in the concave part.

Our first task in this paper, announced at the beginning of this section, will consist in 
checking that the definitions above are not empty:

Proposition 2.1 There exist an admissible closed curve � and an admissible potential  U  
which are coupled.

The proof of Proposition 2.1 will be divided into three steps:

• Firstly, we shall present a family {��}� of admissible closed curves.
• Secondly, we shall describe an admissible potential U which is semicoupled to some 

curves of this family.
• Finally, we shall modify U so that it becomes coupled to one of these admissible closed 

curves. This last step will be carried out in the next two sections.

Concerning the first step, the curves which we have in mind are called limaçons of Pascal1 
and have been known in geometry and the arts for centuries [2]. In polar coordinates (�, �) , 
they are defined by the implicit equation

Here, 1 < 𝜆 ≤ 2 is a parameter. Notice that all these closed curves are smooth and simple. 
For � = 2, the corresponding curve is convex, but we will be mostly interested in the case 
� ∈]1, 2[ , for which the curvature changes sign. See Fig. 1. The choice of the scaling coef-
ficient 1/4 has been made so that these curves fit inside the open square ] − 1, 1[×] − 1, 1[ , 
as required by condition (�ii) . Notice finally that our curves are symmetric with respect to 
the ordinate axis, i.e., S(L�) = L�.

One can parameterize these curves as follows:

L� ∶ � =
1

4
(� + sin�).

Fig. 1  Pascal’s limaçons for three possible values of the parameter

1 The French word ‘limaçon’ can be translated as ‘snail.’
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For 1 < 𝜆 < 2 , the parametrization �� crosses a curvature-changing point of L� at 

t� = arccos

(
�2 + 2

3�

)
∈]0,�∕2[ . One easily arrives to the following result:

Lemma 2.2 The closed curves �� are admissible for every � ∈]1, 2[.

This result completes the first step of the proof of Proposition  2.1, so that we turn 
now our attention to the second step. With this purpose, we choose some cutoff function 
m̄ ∈ C∞(ℝ) with

and define �̄� ∶ ℝ
2
→ ℝ

2 as follows:

This definition makes sense because the map r ↦ r + m̄(r) is a diffeomorphism of the real 
line. The diffeomorphism �̄� ∶ ℝ

2
→ ℝ

2 moves each point (x, �) downward inside the verti-
cal line {x} ×ℝ . Moreover,

Finally, let the admissible potential Ū ∶ ℝ
2
→ ℝ , Ū = Ū(x, y) be defined by

In this way, the level curves of Ū have the form �̄�
(
ℝ × {𝜂}

)
 , for � ∈ ℝ . These level 

curves coincide with the integral trajectories of the vector field J∇Ū . It follows from (4) 
that the nonzero vectors J∇Ū(�̄�(x, 𝜂)) and (𝜕�̄�∕𝜕x)(x, 𝜂) are always collinear, and since 
J∇Ū(0, 2) = (1, 0) = (𝜕�̄�∕𝜕x)(0, 2) , there exists a continuous function c̄ ∶ ℝ

2
→ ℝ such 

that

This observation will play a role later. We are now ready to show the following:

Lemma 2.3 Ū ∶ ℝ
2
→ ℝ is an admissible potential. In addition, �� and Ū are semicou-

pled provided that � ∈]1, 2[ is close enough to 2.

Proof One easily checks properties ( Ui)–(Uii)–(Uiii ). In addition, (U�i) follows from direct 
computations for �2 , and from a continuity argument for �� with � close to 2, see Fig. 2. 
The proof is complete. ◻

From now on, we fix � ∈]1, 2[ sufficiently close to 2 so that Lemma 2.3 holds and set 
� ∶= �� ∶ ℝ∕2�ℤ → ℝ

2 . Thus, � and Ū are semicoupled, and in order to prove Proposi-
tion 2.1, we still need a suitable modification U of Ū . We shall construct U by modifying 
the level curves of Ū on a narrow band B around {�(t) ∶ t ∈ [�,� − �]} for some small 
𝜖 > 0 . The details are given in the next two sections.

�� ∶ ℝ∕2�ℤ → L�, ��(t) ∶=
1

4
(� − cos t)

(
sin t

cost

)
.

m̄(r) = 0 if r ∉] − 1, 0[, m̄(r) > 0 if r ∈] − 1, 0[, |m̄�(r)| < 1 ∀r ∈ ℝ,

(2)�̄�(x, r + m̄(r)) ∶=
(
x, r + m̄(r) cos(𝜋x)

)
.

(3)
�̄�◦S = S◦�̄� , �̄�(x, 𝜂) = (x, 𝜂) if x = 0 or |𝜂| ≥ 1, �̄�(x + 2, 𝜂) = �̄�(x, 𝜂) + (2, 0).

(4)Ū(�̄�(x, 𝜂)) = 𝜂, (x, 𝜂) ∈ ℝ
2.

(5)c̄(x, 𝜂) > 0 and
𝜕�̄�

𝜕x
(x, 𝜂) = c̄(x, 𝜂)J∇Ū(�̄�(x, 𝜂)), (x, 𝜂) ∈ ℝ

2.



1768 A. J. Ureña 

1 3

3  The level curves of Ū as integral trajectories

Let the functions l1, l2 ∶ ℝ∕2�ℤ → ℝ be the components of �̄�−1
◦𝓁 , i.e.,

In other words, l1(t) is the first (horizontal) component of �(t) and l2(t) = Ū(�(t)) (by (4)). 
The function l2 is strictly increasing on [0,�] (by (U�i) ). Set �− ∶= l2(0) and �+ ∶= l2(�) , 
or, what is the same, �(0) = (0, �−) and �(�) = (0, �+) , and notice that �̄�(ℝ × {𝜂}) inter-
sects �(]0,�[) if and only if 𝜂− < 𝜂 < 𝜂+ . This leads us to consider the set

and the function � ∶ Ω → ℝ defined by

In words, � measures the distance in the abscissa coordinate from each point of Ω to the 
intersection point of the corresponding level curve of Ū with �(]0,�[).

We also consider the vector field

The integral trajectories of Z̄ are the level curves of Ū as parameterized by �̄� . We can now 
rephrase (5) as follows: There exists a continuous function ĉ ∶ ℝ

2
→ ℝ such that

Other properties of Z̄ are listed below: 

(Z̄i):  ̄Z(x + 2, y) = Z̄(x, y) and Z̄◦S = −S◦Z̄ on ℝ2;
(Z̄ii):  ̄Z(x, y) ≠ (0, 0) ∀(x, y) ∈ ℝ

2 , Z̄(x, y) = (1, 0) if |y| ≥ 1;
(Z̄iii):  There exists some constant 𝜅 > 0 such that ⟨Z̄(x, y),∇𝜈(x, y)⟩ ≥ 𝜅 on Ω;
(Z̄�i):  ⟨Z̄(�(t)), J�̇(t)⟩ > 0 ∀t ∈]0,𝜋[.

�̄�(l1(t), l2(t)) = �(t), t ∈ ℝ∕2𝜋ℤ.

Ω ∶= {(x, y) ∈ [0, 1] ×ℝ ∶ 𝜂− < Ū(x, y) < 𝜂+} = {�̄�(x, l2(t)) ∶ x ∈ [0, 1], 0 < t < 𝜋},

(6)𝜈
(
�̄�(x, l2(t))

)
∶= x − l1(t), 0 ≤ x ≤ 1, 0 < t < 𝜋.

Z̄ ∶=
𝜕�̄�

𝜕x
◦�̄�−1 ∶ ℝ

2
→ ℝ

2.

(7)ĉ(x, y) > 0 and Z̄(x, y) = ĉ(x, y)J∇Ū(x, y), (x, y) ∈ ℝ
2.

Fig. 2  Some of the level curves of the potential Ū of Lemma 2.3 together with L2 (left picture), and L� 
with � ∈]1, 2[ close to 2 (right picture)
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 Notice that ( ̄Zi)–(Z̄ii ) are direct consequences from (3), while ( ̄Ziii ) follows (with � = 1 ) 
from differentiation with respect to x in (6). The combination of (7) and ( ̄Ziii ) implies 
that ⟨J∇Ū(x, y),∇𝜈(x, y)⟩ > 0 on Ω , and, in particular, ⟨J∇Ū(�(t)),∇𝜈(�(t))⟩ > 0 for any 
t ∈]0,�[ . From the equality �(�(t)) = 0, we deduce that ⟨∇𝜈(�(t)), �̇(t)⟩ = 0 and (by (U�i) ) 
we conclude the existence of some continuous function c ∶]0,�[→ ℝ such that

In combination with ( ̄Ziii ), this implies ( ̄Z�i ). It should be noticed that, by (7), assumption 
( ̄Z�i ) expresses the fact that Ū(�(t)) is strictly increasing for 0 < t < 𝜋.

Vector fields Z̄ ∶ ℝ
2
→ ℝ

2 satisfying properties ( ̄Zi)–(Z̄ii)–(Z̄iii)–(Z̄�i ) will be called 
normal in what follows.

4  Bending the level curves of the potential

Our strategy to construct the announced modification of Ū will first need a suitable modifi-
cation of the vector field Z̄ . This modification, denoted Z ∶ ℝ

2
→ ℝ

2 , will satisfy

Lemma 4.1 There exists a normal vector field Z ∶ ℝ
2
→ ℝ

2 with (9) and satisfying

where t∗ is the same number appearing in assumption (�iv).

Remark 4.2 Condition (10) expresses the fact that, as �̈  , JZ(�(t)) points outward (with 
respect to L = �(ℝ∕2�ℤ) ) on the concave part of L  and inward on the convex part of L  . 
At the end of this section, we shall construct an admissible potential U such that −∇U has 
the same property.

Proof of  Lemma  4.1 All four vectors �̇(0),−�̇(𝜋), Z̄(�(0)), Z̄(�(𝜋)) are positive multi-
ples of (1, 0). Consequently, ⟨Z̄(�(0)), �̇(0)⟩ > 0 > ⟨Z̄(�(𝜋)), �̇(𝜋)⟩ , and there exists some 
0 < 𝜖 < t∗ such that

On the other hand, in view of (8) there is some small constant c1 > 0 with

Choose now �� ∈]0, �[ with 0 < 𝜖 − 𝜖� < min{l1(t), 1 − l1(t) ∶ 𝜖� ≤ t ≤ 𝜋 − 𝜖�}, and con-
sider the open set

(8)c(t) > 0 and ∇𝜈(�(t)) = c(t)J�̇(t), 0 < t < 𝜋.

(9)Z(x, y) = Z̄(x, y) on ([0, 1] ×ℝ)�Ω.

(10)⟨Z(�(t)), �̇(t)⟩
�

> 0 if 0 ≤ t < t∗
< 0 if t∗ < t ≤ 𝜋

,
d

dt

���t=t∗⟨Z(�(t)), �̇(t)⟩ < 0,

⟨Z̄(�(t)), �̇(t)⟩
�

> 0 if 0 ≤ t ≤ 𝜖,
< 0 if 𝜋 − 𝜖 ≤ t ≤ 𝜋.

(11)⟨∇𝜈(�(t)), J�̇(t) − c1(t − t∗)�̇(t)⟩ > 0 for all t ∈ [𝜖,𝜋 − 𝜖].

B ∶=
{
�̄�(s, l2(t)) ∶ 𝜖� < t < 𝜋 − 𝜖�, |s − l1(t)| < 𝜖 − 𝜖�

}

={(x, y) ∈ Ω ∶ l2(𝜖
�) < U(x, y) < l2(𝜋 − 𝜖�), |𝜈(x, y)| < 𝜖 − 𝜖�} ⊂]0, 1[×] − 1, 1[.
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If � − �� is small enough, then (by (11)) there exists a C∞ vector field Ẑ ∶ B → ℝ
2 with

To conclude, fix some cutoff function m ∈ C∞(ℝ2) satisfying

and define Z ∶ [0, 1] ×ℝ → ℝ
2 by Z ∶=

{
(1 − m)Z̄ + m�Z on B

Z̄ on ([0, 1] ×ℝ)�B
.

The extension of Z to ℝ2 determined by ( Zi ) is normal and satisfies (9)–(10). It com-
pletes the proof.   ◻

The vector field Z has been built with the aim of using its integral curves as the 
level sets of the modified potential U; with this fact in mind, we consider the function 
� = �(s, �) , defined by

The vector field Z being bounded and smooth, � is well defined on ℝ2 . The result below 
shows some properties of � which mirror those of �̄� listed in (3). Here, we denote by ( Zi ), 
( Zii ), etc., to properties ( ̄Zi ), ( ̄Zii)..., but referred to the vector field Z instead of Z̄.

Lemma 4.3 � ∶ ℝ
2
→ ℝ

2 is an orientation-preserving  diffeomorphism of class C∞ . 
Furthermore,

for some smooth function P ∶ ℝ →]0,+∞[ with P(�) = 2 if |�| ≥ 1.

Proof We start by observing that � ∶ ℝ
2
→ ℝ

2 is injective. Indeed, the contrary would 
lead to the existence of an integral curve of Z crossing twice the y-axis. However, ( Zi)–
(Zii ) imply that Z(0, y) is a positive multiple of (1, 0) for every y ∈ ℝ , and this leads to a 
contradiction.

Next, we observe that �̄�(s, 𝜂) ∈ ([0, 1] ×ℝ)�Ω if (s, �) ∈ [0, 1] × (ℝ�]�−, �+[) . By (9), 
we deduce that

so that, by the previously observed injectivity,

We claim that 𝜓([0,+∞[×{𝜂}) ⊄ [0, 1] ×ℝ for any � ∈ ℝ , i.e., no integral curve of Z can 
remain in [0, 1] ×ℝ for all future time. Indeed, arguing by contradiction, if the contrary hap-
pened we observe (by (9)) that 𝜂− < 𝜂 < 𝜂+ . Then, (13) implies that 𝜓([0,+∞[×{𝜂}) ⊂ Ω . 
Thus, by ( Ziii)

�Z(�(t)) = J�̇(t) − c1(t − t∗)�̇(t) ∀t ∈]𝜖
�,𝜋 − 𝜖�[, ⟨∇𝜈(x, y), �Z(x, y)⟩ > 0 on B.

0 ≤ m ≤ 1 on ℝ
2, supp(m) ⊂ B, m(�(t)) = 1 ∀t ∈ [𝜖,𝜋 − 𝜖],

��

�s
(s, �) = Z(�(s, �)), �(0, �) = (0, �).

(12)�◦S = S◦� , �(s, �) = (s, �) if |�| ≥ 1, �(s + P(�), �) = �(s, �) + (2, 0),

𝜓
(
[0, 1] × (ℝ�]𝜂−, 𝜂+[)

)
= �̄�

(
[0, 1] × (ℝ�]𝜂−, 𝜂+[)

)
= ([0, 1] ×ℝ)�Ω,

(13)𝜓([0,+∞[×]𝜂−, 𝜂+[) ∩ ([0, 1] ×ℝ) ⊂ Ω.

d

ds
�
(
�(s, �)

) ≥ �, s ≥ 0,
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for some constant 𝜅 > 0 . In particular, �
(
�(s, �)

)
→ +∞ as s → +∞ , which is a contradic-

tion since � is bounded on Ω.
In particular, we see that for every � ∈ ℝ there exists some P(𝜂) > 0 such that 

�(P(�)∕2, �) ∈ {1} ×ℝ . In fact, since Z(1,  y) is a positive multiple of (1,  0) for every 
y ∈ ℝ (this can be argued as before), we see that the number P(�) is unique and is indeed a 
smooth function of � with P(�) = 2 if |𝜂| > 1 . Together with ( Zi ), this implies (12).

We see now that |�(s, �)| → ∞ as |s| → ∞ uniformly with respect to � ∈ ℝ . On the 
other hand, �(s, �) = (s, �) if |�| ≥ 1 (by ( Zii)), and we deduce that

Now, a well-known argument (see, e.g., [1, p. 23]) implies that �(ℝ2) = ℝ
2 . In conse-

quence, � ∶ ℝ
2
→ ℝ

2 is a homeomorphism.
Fix now some point (s0, �0) ∈ ℝ

2, and denote by P ∶ ℝ
2
→ ℝ

2 , (x, y) ↦ P(x, y) to the 
Poincaré map associated with the vector field Z and the time period s0 . It is well known that 
P is a diffeomorphism from ℝ2 to itself. From the equality �(s, �) = P(�(s − s0, �)), we get

and we deduce that � ∶ ℝ
2
→ ℝ

2 is an orientation-preserving local diffeomorphism and 
thus (since it was already shown to be a homeomorphism) a global diffeomorphism. The 
proof is complete.

  ◻

The end of the proof of Proposition 2.1 Define

so that

Now, (Ui)–(Uii) follow from (12), while (Uiii) is clear from the definition of U. Since it was 
observed (in Lemma 4.3) that � is orientation-preserving, statement (U�i) follows from the 
combination of (Z�i) and (15) (for its first part) and the analogous assumption satisfied by 
U (in its second part). Finally, (U�ii) arises from (10)–(15). It completes the proof.   ◻

5  A conformally Newtonian equation

From now on, we fix an admissible closed curve � and a coupled admissible potential 
U; the existence of such a pair is ensured by Proposition  2.1. The combination of condi-
tions (�i) − (Ui) on one hand, and (�iv) − (U�ii) on the other, implies that the function 
� ∶ ℝ∕2�ℤ → ℝ defined by

lim|(s,�)|→∞
|�(s, �)| = ∞.

𝜕𝜓

𝜕s
(s0, 𝜂0) = 𝛾

𝜕P

𝜕x
(0, 𝜂0) for some 𝛾 > 0,

𝜕𝜓

𝜕𝜂
(s0, 𝜂0) =

𝜕P

𝜕y
(0, 𝜂0),

(14)U ∶ ℝ
2
→ ℝ, U(�(s, �)) ∶= �,

(15)∇U(�(s, �)) = −
1

det(� �(s, �))
JZ(�(s, �)).

𝜒(t) ∶=
det(�̇(t), �̈(t))

det(∇U(�(t)), �̇(t))
, t ∈ (ℝ∕2𝜋ℤ)�{−t∗, t∗},
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and extended to ±t∗ by continuity, is actually C∞-smooth, even and positive. This fact will 
be used in the proof of our next result.

Lemma 5.1 Under the above, there exist some T > 0 , a C∞ diffeomorphism 
� ∶ ℝ∕Tℤ → ℝ∕2�ℤ and a C∞ function w ∶ ℝ∕Tℤ → ℝ such that

(i) �(−t) = −�(t) , w(−t) = w(t) > 0 ∀t ∈ ℝ∕Tℤ,

and, letting �(t) ∶= �(�(t)) , one has: 

 (ii) �̈�(t) = −w(t)∇U(𝛾(t)) ∀t ∈ ℝ∕Tℤ.

Proof Differentiating twice in the equality �(t) = �(�(t)), we see that statement (ii) above 
is equivalent to

where, for simplicity, we have dropped the dependence on the time variable t from the 
notation. This equation in ℝ2 can be equivalently rewritten as the system

or what is the same (isolating w in the second equation and replacing its value into the first 
one),

where h(𝜏) ∶=
�⟨�̈(𝜏), �̇(𝜏)⟩ + 𝜒(𝜏)⟨∇U(�(𝜏)), �̇(𝜏)⟩�∕��̇(𝜏)�2 . Integration of the first 

equation transforms the system above into

where H(�) ∶= ∫
�

0

h(r)dr . Notice that h is 2�-periodic and odd, implying that H is 2�

-periodic and even.
We fix now an arbitrary number c > 0 (for instance, c = 1 ) and observe that the solution 

� = �(t) of the first equation of (16) with �(0) = 0 is an odd diffeomorphism from ℝ into 
itself satisfying �(t + T) = �(t) + 2� for T = �−1(2�) . We define w as in the second equa-
tion of (16) and observe that (i)–(ii) hold. This proves the lemma.   ◻

6  From conformally Newtonian to Newtonian

The following lemma could be taken from an elementary course of real analysis, and we 
state it without proof.

𝜏 �̇(𝜏) + �̇�2�̈(𝜏) = −w∇U(�(𝜏)),

�
𝜏 ��̇(𝜏)�2 + �̇�2⟨�̈(𝜏), �̇(𝜏)⟩ = −w⟨∇U(�(𝜏)), �̇(𝜏)⟩
�̇�2 det(�̈(𝜏), �̇(𝜏)) = −w det(∇U(�(𝜏)), �̇(𝜏))

,

{
𝜏∕�̇� = −h(𝜏)�̇�
w = 𝜒(𝜏) �̇�2

,

(16)
{

�̇� = ce−H(𝜏) for some constant c > 0

w = 𝜒(𝜏) �̇�2
,
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Lemma 6.1 Let a > 0 be some positive number and u,w ∶ [−a, a] → ℝ be even functions 
of class C∞ . Assume that ü(0) > 0 and u̇(t) > 0 ∀t ∈]0, a] . Then, there exists a C∞ function 
f ∶ ℝ → ℝ such that w(t) = f (u(t)) for any t ∈ [−a, a].

Remark Setting u+ ∶= u||]0,a] ∶]0, a] →]u(0), u(a)] , it is clear from the assumptions that 
f ||]u(0),u(a)] = w◦u−1

+
∈ C∞(]u(0), u(a)]) . Consequently, the interest of the lemma is to 

ensure that the derivatives of all orders of f are continuous up to u(0).

From this moment on, we shall work on the cylinder (ℝ∕2ℤ) ×ℝ with coordinates (�, y) , 
instead of the plane ℝ2 . Notice that, by assumption (Ui) , one can actually see the potential U of 
Proposition 2.1 as being defined on this cylinder.

Corollary 6.2 There exists a C∞ potential W ∶ (ℝ∕2ℤ) ×ℝ → ℝ , W = W(�, y) , with 

(W1)  W(�, y) ≡ 1 if y ≤ −1,      W(�, y) ≡ 0 if y ≥ 1,
(W2)  ∇W(�, y) ≠ (0, 0) if |y| < 1,

 and, for some 0 < 𝜀1 < 1 , 

(W3)  (𝜕W∕𝜕y)(𝜃, y) < 0 if 1 − 𝜀1 < |y| < 1,

 and such that the equation �̈� = −∇W(𝛾) has a closed orbit

Proof Let U ∶ (ℝ∕2ℤ) ×ℝ → ℝ and � ∶ ℝ∕2�ℤ →] − 1, 1[2 be as given by Proposi-
tion 2.1; let w ∶ ℝ →]0,+∞[ and � ∶= 𝓁◦� ∶ ℝ∕Tℤ → ℝ

2 be as given by Lemma 5.1, and 
set u(t) ∶= U(�(t)) . This is an even function, both with respect to t = 0 and with respect to 
t = T∕2 , and it follows from Lemma 6.1 that there exists a C∞ function f ∶ ℝ →]0,+∞[ 
with w(t) = f (u(t)) = f (U(�(t))) for any t. Set F(r) ∶= ∫ r

−1
f (u)du, and choose some smooth 

function � ∶ ℝ → ℝ with 

(�1)  �(r) ≡ 0 on ] − ∞, 0],   �(r) ≡ 1 on [F(1),+∞[,
(�2)  𝜑�(r) > 0 on ]0, F(1)[,
(�3)  𝜑�(r) ≡ 𝜑∗ > 0 on 

[
F(min�(ℝ) U),F(max�(ℝ) U)

]
,

 and define � ∶ ℝ →] − 1, 1[2 and W ∶ (ℝ∕2ℤ) ×ℝ → ℝ by

where we denote by � ∶ (ℝ∕2ℤ) ×ℝ → (ℝ∕2ℤ) ×ℝ the symmetry �(�, y) ∶= (�,−y) . 
The result follows.   ◻

� ∶ ℝ∕Tℤ →] − 1, 1[2.

�(t) ∶= �(�(
√
�∗ t)), W ∶= �◦F◦U◦�,
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7  From the cylinder into a ring

It will be convenient to consider, for any 𝜌 > 1 , the open ring

We observe the following geometrical property: For each 0 < 𝛼 < 1, there exists some 
𝜌(𝛼) > 1 such that, for any � ≥ �(�) , one has

In these situations, one can use the following:

Lemma 7.1 Let 0 < 𝛼 < 1 < 𝜌 be such that (17) holds. Then, there exists a C∞ diffeomor-
phism Γ ∶ (ℝ∕2ℤ) × [−1, 1] → R� with Γ((ℝ∕2ℤ) × {±1}) = {q ∈ ℝ

2 ∶ |q| = � ± 1} and

This result is elementary, and its proof will be skipped. It will play a role in the proof 
of the following:

Proposition 7.2 There exist some 𝜌 > 1 and a C∞ potential V ∶ ℝ
2
→ ℝ satisfying: 

(V1)  V(q) = 1 if |q| ≤ � − 1,      V(q) = 0 if |q| ≥ � + 1,
(V2)  ∇V(q) ≠ (0, 0) ∀q ∈ R�,

 and, for some 0 < 𝜀 < 1 , 

(V3)  ⟨∇V(q), q⟩ ≤ 0 if dist(q, 𝜕R𝜌) < 𝜀,

 and such that the equation q̈ = −∇V(q) has a closed orbit q ∶ ℝ∕Tℤ → R�.
Proof Choose W ∶ (ℝ∕2ℤ) ×ℝ → ℝ and � ∶ ℝ∕Tℤ →] − 1, 1[2 as given by Corollary 
6.2. Pick some 0 < 𝛼 < 1 such that 𝛾(ℝ) ⊂] − 𝛼, 𝛼[×] − 𝛼, 𝛼[ , and fix 𝜌 > 1 big enough so 
that (17) holds. Choose Γ as in Lemma 7.1, and set

and q ∶= Γ◦� = (0, �) + � . Now, it is clear that V and q are both C∞ ; furthermore, (V1), (V2) 
and (V3) follow, respectively, from (W1), (W2) and (W3) . The proof is complete.   ◻

Remark There is an alternative way to deduce Proposition 7.2 (for the ring of radii e±� 
instead of R� ) from Corollary 6.2 without any need of Lemma 7.1. Indeed, the complex 
exponential z ↦ e�z is a conformal map, and one can use an argument due to Goursat [3] to 
transform Newtonian equations on the cylinder into Newtonian equations on the ring. We 
have opted by the proof above because of its conceptual simplicity.

R𝜌 ∶= {q ∈ ℝ
2 ∶ 𝜌 − 1 < |q| < 𝜌 + 1}.

(17)[−𝛼, 𝛼] × [𝜌 − 𝛼, 𝜌 + 𝛼] ⊂ R𝜌.

Γ(x, y) = (x, y + �) if (x, y) ∈ [−�, �] × [−�, �].

V ∶ ℝ
2
→ ℝ, V(q) ∶=

⎧
⎪⎨⎪⎩

W(Γ−1(q)) if q ∈ R�

1 if �q� ≤ � − 1

0 if �q� ≥ � + 1

,
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We are now ready to prove the main result of this paper.

Proof of  Theorem  1.1 Choose V ∶ ℝ
2
→ ℝ , 0 < 𝜀 < 1 and q ∶ ℝ∕Tℤ → R� as given by 

Proposition 7.2. For any nonnegative integer n, we define

Set 𝜇 ∶= (𝜌 + 1)∕(𝜌 − 1) > 1 , and G ∶=
⋃

n≥0] �+1−��n+1
,
�−1+�

�n
[. (The intervals are nonempty 

and nonoverlapping.) Choose some C∞ function h ∶ [0,+∞[→ ℝ with

and define V ∶ ℝ
2
→ ℝ by:

In this way, it is clear that V ∈ C∞(ℝ2) . It has a (degenerate) maximum at the origin, which 
(by (V2)-(V3)-(18)) is the only critical point of V on {q ∈ ℝ

2 ∶ |q| ≤ � + 1} . Finally, one 
checks that, setting Tn ∶= 2n∕2

√
Mn �

n2∕2−n T  , then qn(t) ∶= (1∕�n)q(Tt∕Tn) is a solution 
of q̈ = −∇V(q) for each n. The proof is complete.   ◻

Acknowledgements I am grateful to R. Ortega for interesting discussions on this paper, as well as pointing 
to me the connections to reference [3].
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Mn ∶= max

{
|��V(q)| ∶ q ∈ ℝ

2

� = (�1, �2) ∈ ℤ
2, �i ≥ 0, �1 + �2 ≤ n

}
.

(18)h�(r) < 0 if r ∈ G, h�(r) = 0 if r ∈ [0,+∞[�G,

V(q) ∶= h(|q|) +
∞∑
n=0

(
1

2n Mn �
n2

)
V(�nq), q ∈ ℝ

2.
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