
To what extent are unstable the maxima of the
potential?

Antonio J. Ureña∗

Abstract. The classical Lagrange-Dirichlet stability theorem states that, for
natural mechanical systems, the strict minima of the potential are dynamically
stable. Its converse, i.e., the instability of the maxima of the potential, has
been proved by several authors including Liapunov (1892), Hagedorn (1971),
or Taliaferro (1980), in various degrees of generality. We complement their
theorems by presenting an example of a smooth potential on the plane having
a maximum and such that the associated dynamical system has a converging
sequence of periodic orbits. This implies that the maximum is not unstable
in a stronger sense considered by Siegel and Moser.

1 Introduction

Consider the Newtonian system of equations

q̈ = −∇V (q) , q ∈ Rd , (1)

where V : Rd → R is a given potential having a local maximum at some point
q∗ ∈ Rd. In his 1892 PhD dissertation [6], Liapunov showed that if this maximum
is nondegenerate, then the corresponding equilibrium is dynamically unstable. Li-
apunov’s instability theorem was extended by Hagedorn [3], who used variational
methods to prove the instability of all isolated maxima of the potential, and Tal-
iaferro [11], who removed the isolatedness assumption from Hagedorn’s theorem.
Results of this type have been named as converses of the Lagrange-Dirichlet stabil-
ity theorem, and the associated literature is very ample, see for instance [4, 7].

In the above-mentioned papers, the word instability is understood as the logical
negation of Liapunov stability. In particular, for equations of the form (1) and more
generally in the Hamiltonian framework, it means both past and future instability;
namely, the two concepts are equivalent. See [9, p. 150] and [8, p. 114-115] (in this
latter reference the statement is made in dimension 2, but the proof works for all
dimensions).

∗Partially supported by Spanish MICINN Grant with FEDER funds MTM2014- 5223.
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However, a stronger notion of instability was considered by Siegel and Moser
in [10, §25]. According to their definition, the equilibrium q∗ ∈ Rd is unstable if
there is a neighborhood N of (q∗, 0) in the phase space such that every globally-
defined solution q : R → Rd of (1), q(t) 6≡ q∗, satisfies (q(tq), q̇(tq)) 6∈ N for some
tq ∈ R. In other words, {(q∗, 0)} is the maximal subset of N which invariant by the
flow. Observe, for instance, that a hyperbolic fixed point is always unstable in this
stronger sense, whereas a nonisolated fixed point never is.

The question which motivates this paper is the following: assume that the po-
tential V attains its maximum at q∗ ∈ Rd, and that this maximum is isolated as a
critical point of V , does it imply that q∗ is unstable in the stronger sense of Siegel
and Moser?

The answer to this question is affirmative in the 1-dimensional case d = 1,
as an easy conservation-of-energy argument shows. It is also affirmative if one
assumes that the Hessian matrix of the (sufficiently smooth) potential V is negative
semidefinite on some neighborhood of q∗; indeed, under this assumption, the function
t 7→ −V (q(t)) is convex as long as q(t) belongs to the neighborhood, as one promptly
checks. However, this question turns out to be false in general. The goal of this
paper is to prove the following:

Theorem 1.1. There exists a C∞ function V : R2 → R satisfying:

(a) V (0, 0) = maxR2 V ,

(b) ∇V (q) 6= (0, 0) for any q 6= 0 ,

(c) there exists a sequence Tn > 0 of positive numbers and a sequence qn : R/TnZ→
R2 of nontrivial periodic solutions of q̈ = −∇V (q) such that

max
t∈R

(‖qn(t)‖+ ‖q̇n(t)‖)→ 0 as n→ +∞ .

We do not know whether such an example exists in the analytic case. In our
construction, the sequence of periods Tn is divergent; one easily checks that this is
necessarily the case if the Hessian matrix of V vanishes at the origin. The closed
orbits qn in our example do not encircle the origin.

A comment may shed some light on how our example can(not) be constructed.
If q : R/TZ → R, q = q(t) is a parameterized closed convex curve of class C2 and
q̈ = −∇V (q) for some C1 potential V : R2 → R, then ∇V (q) points outwards at the
points of our closed curve, so that V has a minimum in the interior of L := q(R).
Therefore, the closed curves qn of Theorem 1.1 cannot be convex.

For this reason, a key advance towards the proof of Theorem 1.1 will consist
in building a closed, simple and nonconvex curve L in the plane, and a potential
U with a non-vanishing gradient which points inwards on the concave section of
L and outwards on the convex part. This construction, formulated more precisely
in Proposition 2.1, will occupy us through Sections 2, 3 and 4. In Section 5 we
shall find a reparametrization γ = γ(t) of L which satisfies a generalized version
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of (1) with a weight. This result will be used in Section 6 to construct a modified
potential function W in the plane, with nonvanishing gradient, and such that the
corresponding Newtonian system has a closed orbit. Actually, W will be periodic in
the first variable, allowing us to see it as defined on a ring circling the origin. The
end of the argument will consist in ‘stacking’ infinitely many copies of W defined
on smaller and smaller rings to obtain the potential V of Theorem 1.1.

2 Admissible closed curves and potentials

The closed curve L will be defined by a 2π-periodic parametrization ` = `(t).
For simplicity reasons, we shall further impose some symmetry conditions on our
problem; thus, from now on we denote by S to the symmetry in R2 with respect to
the y axis, i.e., S(x, y) := (−x, y).

It will be convenient to introduce some definitions here. The parameterized
closed curve ` : R/2πZ→ R2, ` = `(t) will be termed admissible provided that it is
C∞, simple, goes in the counterclockwise direction, and satisfies:

(`i) `(−t) = S(`(t)) ∀t ∈ R/2πZ ,

(`ii) `(R/2πZ) ⊂]− 1, 1[2, `(]0, π[) ⊂]0,+∞[×R ,

(`iii) ˙̀(t) 6= (0, 0) ∀t ∈ R/2πZ ,

and, for some t∗ ∈]0, π/2[,

(`iv) det( ˙̀(t), ῭(t))

{
< 0 if 0 ≤ t < t∗

> 0 if t∗ < t ≤ π
,

d

dt

∣∣∣
t=t∗

det( ˙̀(t), ῭(t)) > 0 .

On the other hand, the function U : R2 → R, U = U(x, y), will be said to be an
admissible potential provided that it is C∞ and satisfies

(Ui): U(x+ 2, y) = U(−x, y) = U(x, y);

(Uii): U(x, y) = y if |y| ≥ 1;

(Uiii): ∇U(x, y) 6= (0, 0) ∀(x, y) ∈ R2 .

Finally, the admissible closed curve ` and the admissible potential U will be
called coupled provided that

(U`i): 〈∇U(`(t)), ˙̀(t)〉 > 0 ∀t ∈]0, π[ ,
d2

dt2

∣∣∣
t=0
U(`(t)) > 0 >

d2

dt2

∣∣∣
t=π

U(`(t)) ,

(U`ii): det(∇U(`(t)), ˙̀(t))

{
< 0 if 0 ≤ t < t∗

> 0 if t∗ < t ≤ π
,

d

dt

∣∣∣
t=t∗

det(∇U(`(t)), ˙̀(t)) > 0,

where t∗ is the same number appearing in assumption (`iv). If only (U`i) is ensured
we shall say that ` and U are semicoupled.

3



Assumption (`iii) means that the closed curve L := {`(t) : t ∈ R/2πZ} is

regular in the geometrical sense. Set J =

(
0 1
−1 0

)
; since the parametrization `

goes in the counterclockwise direction we deduce that J ˙̀(t) points in the normal
outward direction to L at `(t), for every t. Then, by combining (`i) and the
equality det(u, v) = 〈u, Jv〉 we can rephrase (`iv) by saying that the closed curve
L := {`(t) : t ∈ R/2πZ} is convex on the arc t∗ < t < 2π − t∗ and concave for
−t∗ < t < t∗. Similarly, (U`ii) states that ∇U(`(t)) points outwards in the convex
section of L and inwards in the concave part.

Our first task in this paper, announced at the beginning of this section, will
consist in checking that the definitions above are not empty:

Proposition 2.1. There exist an admissible closed curve ` and an admissible po-
tential U which are coupled.

The proof of Proposition 2.1 will be divided into three steps:

• Firstly, we shall present a family {`λ}λ of admissible closed curves.

• Secondly, we shall describe an admissible potential U which is semicoupled to
some curves of this family.

• Finally, we shall modify U so that it becomes coupled to one of these admissible
closed curves. This last step will be carried out in the next two sections.

Concerning the first step, the curves which we have in mind are called limaçons
of Pascal1 and have been known in geometry and the arts for centuries [2]. In polar
coordinates (ϑ, %), they are defined by the implicit equation

Lλ : % =
1

4
(λ+ sinϑ) .

Here, 1 < λ ≤ 2 is a parameter. Notice that all these closed curves are smooth
and simple. For λ = 2 the corresponding curve is convex, but we will be mostly
interested in the case λ ∈]1, 2[, for which the curvature changes sign. See Fig. 1.
The choice of the scaling coefficient 1/4 has been made so that these curves fit inside
the open square ]− 1, 1[×]− 1, 1[, as required by condition (`ii). Notice finally that
our curves are symmetric with respect to the ordinate axis, i.e. S(Lλ) = Lλ.

One can parameterize these curves as follows:

`λ : R/2πZ→ Lλ , `λ(t) :=
1

4
(λ− cos t)

(
sin t
− cos t

)
.

For 1 < λ < 2, the parametrization `λ crosses a curvature-changing point of Lλ at

tλ = arccos

(
λ2 + 2

3λ

)
∈]0, π/2[. One easily arrives to the following result:

1The French word ‘limaçon’ can be translated as ‘snail’.
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Figure 1: Pascal’s limaçons for three possible values of the parameter.

Lemma 2.2. The closed curves `λ are admissible for every λ ∈]1, 2[.

This result completes the first step of the proof of Proposition 2.1, so that we
turn now our attention to the second step. With this purpose we choose some cutoff
function m̄ ∈ C∞(R) with

m̄(r) = 0 if r 6∈]− 1, 0[ , m̄(r) > 0 if r ∈]− 1, 0[ , |m̄′(r)| < 1 ∀r ∈ R ,

and define ψ̄ : R2 → R2 as follows:

ψ̄(x, r + m̄(r)) :=
(
x, r + m̄(r) cos(πx)

)
. (2)

This definition makes sense because the map r 7→ r + m̄(r) is a diffeomorphism of
the real line. The diffeomorphism ψ̄ : R2 → R2 moves each point (x, η) downwards
inside the vertical line {x} × R. Moreover,

ψ̄ ◦S = S ◦ ψ̄, ψ̄(x, η) = (x, η) if x = 0 or |η| ≥ 1, ψ̄(x+ 2, η) = ψ̄(x, η) + (2, 0) .
(3)

Finally, let the admissible potential Ū : R2 → R, Ū = Ū(x, y) be defined by

Ū(ψ̄(x, η)) = η , (x, η) ∈ R2 . (4)

In this way, the level curves of Ū have the form ψ̄
(
R× {η}

)
, for η ∈ R. These level

curves coincide with the integral trajectories of the vector field J∇Ū . It follows from
(4) that the nonzero vectors J∇Ū(ψ̄(x, η)) and (∂ψ̄/∂x)(x, η) are always collinear,
and since J∇Ū(0, 2) = (1, 0) = (∂ψ̄/∂x)(0, 2), there exists a continuous function
c̄ : R2 → R such that

c̄(x, η) > 0 and
∂ψ̄

∂x
(x, η) = c̄(x, η)J∇Ū(ψ̄(x, η)) , (x, η) ∈ R2 . (5)

This observation will play a role later. We are now ready to show

Lemma 2.3. Ū : R2 → R is an admissible potential. In addition, `λ and Ū are
semicoupled provided that λ ∈]1, 2[ is close enough to 2.
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Figure 2: Some of the level curves of the potential Ū of Lemma 2.3 together with
L2 (left picture), and Lλ with λ ∈]1, 2[ close to 2 (right picture).

Proof. One easily checks properties (Ui)-(Uii)-(Uiii). In addition, (U`i) follows from
direct computations for `2, and from a continuity argument for `λ with λ close to 2,
see Fig. 2. The proof is complete.

From now on we fix λ ∈]1, 2[ sufficiently close to 2 so that Lemma 2.3 holds and
set ` := `λ : R/2πZ → R2. Thus, ` and Ū are semicoupled, and in order to prove
Proposition 2.1 we still need a suitable modification U of Ū . We shall construct U
by modifying the level curves of Ū on a narrow band B around {`(t) : t ∈ [ε, π− ε]}
for some small ε > 0. The details are given in the next two sections.

3 The level curves of Ū as integral trajectories

Let the functions l1, l2 : R/2πZ→ R be the components of ψ̄−1 ◦ `, i.e.

ψ̄(l1(t), l2(t)) = `(t) , t ∈ R/2πZ .

In other words, l1(t) is the first (horizontal) component of `(t) and l2(t) = Ū(`(t))
(by (4)). The function l2 is strictly increasing on [0, π] (by (U`i)). Set η− := l2(0)
and η+ := l2(π), or, what is the same, `(0) = (0, η−) and `(π) = (0, η+), and notice
that ψ̄(R × {η}) intersects `(]0, π[) if and only if η− < η < η+. This leads us to
consider the set

Ω := {(x, y) ∈ [0, 1]×R : η− < Ū(x, y) < η+} = {ψ̄(x, l2(t)) : x ∈ [0, 1], 0 < t < π} ,

and the function ν : Ω→ R defined by

ν
(
ψ̄(x, l2(t))

)
:= x− l1(t) , 0 ≤ x ≤ 1, 0 < t < π . (6)

In words ν measures the distance in the abscissa coordinate from each point of Ω to
the intersection point of the corresponding level curve of Ū with `(]0, π[).

We also consider the vector field

Z̄ :=
∂ψ̄

∂x
◦ ψ̄−1 : R2 → R2 .
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The integral trajectories of Z̄ are the level curves of Ū as parameterized by ψ̄. We
can now rephrase (5) as follows: there exists a continuous function ĉ : R2 → R such
that

ĉ(x, y) > 0 and Z̄(x, y) = ĉ(x, y)J∇Ū(x, y) , (x, y) ∈ R2 . (7)

Other properties of Z̄ are listed below:

(Z̄i): Z̄(x+ 2, y) = Z̄(x, y) and Z̄ ◦ S = −S ◦ Z̄ on R2;

(Z̄ii): Z̄(x, y) 6= (0, 0) ∀(x, y) ∈ R2, Z̄(x, y) = (1, 0) if |y| ≥ 1;

(Z̄iii): There exists some constant κ > 0 such that 〈Z̄(x, y),∇ν(x, y)〉 ≥ κ on Ω;

(Z̄`i): 〈Z̄(`(t)), J ˙̀(t)〉 > 0 ∀t ∈]0, π[ .

Notice that (Z̄i)-(Z̄ii) are direct consequences from (3), while (Z̄iii) follows (with κ =
1) from differentiation with respect to x in (6). The combination of (7) and (Z̄iii) im-
plies that 〈J∇Ū(x, y),∇ν(x, y)〉 > 0 on Ω, and, in particular, 〈J∇Ū(`(t)),∇ν(`(t))〉 >
0 for any t ∈]0, π[. From the equality ν(`(t)) = 0 we deduce that 〈∇ν(`(t)), ˙̀(t)〉 = 0
and (by (U`i)) we conclude the existence of some continuous function c :]0, π[→ R
such that

c(t) > 0 and ∇ν(`(t)) = c(t)J ˙̀(t) , 0 < t < π . (8)

In combination with (Z̄iii), this implies (Z̄`i). It should be noticed that, by (7),
assumption (Z̄`i) expresses the fact that Ū(`(t)) is strictly increasing for 0 < t < π.

Vector fields Z̄ : R2 → R2 satisfying properties (Z̄i)-(Z̄ii)-(Z̄iii)-(Z̄`i) will be
called normal in what follows.

4 Bending the level curves of the potential

Our strategy to construct the announced modification of Ū will first need a suitable
modification of the vector field Z̄. This modification, denoted Z : R2 → R2, will
satisfy

Z(x, y) = Z̄(x, y) on ([0, 1]× R)\Ω . (9)

Lemma 4.1. There exists a normal vector field Z : R2 → R2 with (9) and satisfying

〈Z(`(t)), ˙̀(t)〉

{
> 0 if 0 ≤ t < t∗

< 0 if t∗ < t ≤ π
,

d

dt

∣∣∣
t=t∗
〈Z(`(t)), ˙̀(t)〉 < 0 , (10)

where t∗ is the same number appearing in assumption (`iv).

Remark 4.2. Condition (10) expresses the fact that, as ῭, JZ(`(t)) points outwards
(with respect to L = `(R/2πZ)) on the concave part of L , and inwards on the con-
vex part of L . At the end of this section we shall construct an admissible potential
U such that −∇U has the same property.
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Proof of Lemma 4.1. All four vectors ˙̀(0),− ˙̀(π), Z̄(`(0)), Z̄(`(π)) are positive mul-
tiples of (1, 0). Consequently, 〈Z̄(`(0)), ˙̀(0)〉 > 0 > 〈Z̄(`(π)), ˙̀(π)〉, and there exists
some 0 < ε < t∗ such that

〈Z̄(`(t)), ˙̀(t)〉

{
> 0 if 0 ≤ t ≤ ε ,

< 0 if π − ε ≤ t ≤ π .

On the other hand, in view of (8) there is some small constant c1 > 0 with

〈∇ν(`(t)), J ˙̀(t)− c1(t− t∗) ˙̀(t)〉 > 0 for all t ∈ [ε, π − ε] . (11)

Choose now ε′ ∈]0, ε[ with 0 < ε − ε′ < min{l1(t), 1 − l1(t) : ε′ ≤ t ≤ π − ε′} and
consider the open set

B :=
{
ψ̄(s, l2(t)) : ε′ < t < π − ε′, |s− l1(t)| < ε− ε′

}
=

= {(x, y) ∈ Ω : l2(ε
′) < U(x, y) < l2(π − ε′), |ν(x, y)| < ε− ε′} ⊂]0, 1[×]− 1, 1[ .

If ε − ε′ is small enough then (by (11)) there exists a C∞ vector field Ẑ : B → R2

with

Ẑ(`(t)) = J ˙̀(t)− c1(t− t∗) ˙̀(t) ∀t ∈]ε′, π − ε′[, 〈∇ν(x, y), Ẑ(x, y)〉 > 0 on B .

To conclude, fix some cutoff function m ∈ C∞(R2) satisfying

0 ≤ m ≤ 1 on R2 , supp(m) ⊂ B , m(`(t)) = 1 ∀t ∈ [ε, π − ε] ,

and define Z : [0, 1]× R→ R2 by Z :=

{
(1−m)Z̄ +mẐ on B
Z̄ on ([0, 1]× R)\B

.

The extension of Z to R2 determined by (Zi) is normal and satisfies (9)-(10). It
completes the proof.

The vector field Z has been built with the aim of using its integral curves as
the level sets of the modified potential U ; with this fact in mind we consider the
function ψ = ψ(s, η), defined by

∂ψ

∂s
(s, η) = Z(ψ(s, η)) , ψ(0, η) = (0, η) .

The vector field Z being bounded and smooth, ψ is well defined on R2. The result
below shows some properties of ψ which mirror those of ψ̄ listed in (3). Here, we
denote by (Zi), (Zii), etc, to properties (Z̄i), (Z̄ii)... but referred to the vector field
Z instead of Z̄.

Lemma 4.3. ψ : R2 → R2 is an orientation-preserving diffeomorphism of class C∞.
Furthermore,

ψ ◦ S = S ◦ψ , ψ(s, η) = (s, η) if |η| ≥ 1 , ψ(s+P (η), η) = ψ(s, η) + (2, 0) , (12)

for some smooth function P : R→]0,+∞[ with P (η) = 2 if |η| ≥ 1.
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Proof. We start by observing that ψ : R2 → R2 is injective. Indeed, the contrary
would lead to the existence of an integral curve of Z crossing twice the y axis.
However, (Zi)-(Zii) imply that Z(0, y) is a positive multiple of (1, 0) for every y ∈ R,
and this leads to a contradiction.

Next we observe that ψ̄(s, η) ∈ ([0, 1]×R)\Ω if (s, η) ∈ [0, 1]× (R\]η−, η+[). By
(9) we deduce that

ψ
(
[0, 1]× (R\]η−, η+[)

)
= ψ̄

(
[0, 1]× (R\]η−, η+[)

)
= ([0, 1]× R)\Ω ,

so that, by the previously-observed injectivity,

ψ([0,+∞[×]η−, η+[) ∩ ([0, 1]× R) ⊂ Ω . (13)

We claim that ψ([0,+∞[×{η}) 6⊂ [0, 1]×R for any η ∈ R, i.e., no integral curve
of Z can remain in [0, 1] × R for all future time. Indeed, arguing by contradiction,
if the contrary happened we observe (by (9)) that η− < η < η+. Then (13) implies
that ψ([0,+∞[×{η}) ⊂ Ω. Thus, by (Ziii)

d

ds
ν
(
ψ(s, η)

)
≥ κ , s ≥ 0 ,

for some constant κ > 0. In particular, ν
(
ψ(s, η)

)
→ +∞ as s → +∞, which is a

contradiction since ν is bounded on Ω.

In particular we see that for every η ∈ R there exists some P (η) > 0 such that
ψ(P (η)/2, η) ∈ {1} × R. In fact, since Z(1, y) is a positive multiple of (1, 0) for
every y ∈ R (this can be argued as before), we see that the number P (η) is unique
and is indeed a smooth function of η with P (η) = 2 if |η| > 1. Together with (Zi),
this implies (12).

We see now that |ψ(s, η)| → ∞ as |s| → ∞ uniformly with respect to η ∈ R. On
the other hand, ψ(s, η) = (s, η) if |η| ≥ 1 (by (Zii)), and we deduce that

lim
|(s,η)|→∞

|ψ(s, η)| =∞ .

Now, a well-known argument (see, e.g., [1, p. 23]) implies that ψ(R2) = R2. In
consequence, ψ : R2 → R2 is a homeomorphism.

Fix now some point (s0, η0) ∈ R2 and denote by P : R2 → R2, (x, y) 7→ P (x, y)
to the Poincaré map associated to the vector field Z and the time period s0. It
is well-known that P is a diffeomorphism from R2 to itself. From the equality
ψ(s, η) = P (ψ(s− s0, η)) we get

∂ψ

∂s
(s0, η0) = γ

∂P

∂x
(0, η0) for some γ > 0,

∂ψ

∂η
(s0, η0) =

∂P

∂y
(0, η0),

and we deduce that ψ : R2 → R2 is an (orientation-preserving) local diffeomorphism
and thus (since it was already shown to be a homeomorphism), a global diffeomor-
phism. The proof is complete.
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The end of the proof of Proposition 2.1. Define

U : R2 → R , U(ψ(s, η)) := η , (14)

so that

∇U(ψ(s, η)) = − 1

det(ψ′(s, η))
JZ(ψ(s, η)) . (15)

Now, (Ui)− (Uii) follow from (12), while (Uiii) is clear from the definition of U .
Since it was observed (in Lemma 4.3) that ψ is orientation-preserving, statement
(U`i) follows from the combination of (Z`i) and (15) (for its first part) and the
analogous assumption satisfied by U (in its second part). Finally, (U`ii) arises from
(10)-(15). It completes the proof.

5 A conformally-Newtonian equation

From now on, we fix an admissible closed curve ` and a coupled admissible potential
U ; the existence such a pair is ensured by Proposition 2.1. The combination of
conditions (`i)-(Ui) on one hand, and (`iv)-(U`ii) on the other, implies that the
function χ : R/2πZ→ R defined by

χ(t) :=
det( ˙̀(t), ῭(t))

det(∇U(`(t)), ˙̀(t))
, t ∈ (R/2πZ)\{−t∗, t∗} ,

and extended to ±t∗ by continuity, is actually C∞-smooth, even and positive. This
fact will be used in the proof of our next result.

Lemma 5.1. Under the above, there exist some T > 0, a C∞ diffeomorphism
τ : R/TZ→ R/2πZ and a C∞ function w : R/TZ→ R such that

(i) τ(−t) = −τ(t), w(−t) = w(t) > 0 ∀t ∈ R/TZ ,

and, letting γ(t) := `(τ(t)), one has:

(ii) γ̈(t) = −w(t)∇U(γ(t)) ∀t ∈ R/TZ.

Proof. Differentiating twice in the equality γ(t) = `(τ(t)) we see that statement (ii)
above is equivalent to

τ̈ ˙̀(τ) + τ̇ 2 ῭(τ) = −w∇U(`(τ)) ,

where, for simplicity, we have dropped the dependence on the time variable t from
the notation. This equation in R2 can be equivalently rewritten as the system{

τ̈ | ˙̀(τ)|2 + τ̇ 2〈῭(τ), ˙̀(τ)〉 = −w〈∇U(`(τ)), ˙̀(τ)〉
τ̇ 2 det(῭(τ), ˙̀(τ)) = −w det(∇U(`(τ)), ˙̀(τ))

,
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or what is the same (isolating w in the second equation and replacing its value into
the first one), {

τ̈ /τ̇ = −h(τ)τ̇

w = χ(τ) τ̇ 2
,

where h(τ) :=
(
〈῭(τ), ˙̀(τ)〉 + χ(τ)〈∇U(`(τ)), ˙̀(τ)〉

)
/| ˙̀(τ)|2. Integration of the first

equation transforms the system above into{
τ̇ = ce−H(τ) for some constant c > 0

w = χ(τ) τ̇ 2
, (16)

where H(τ) :=

∫ τ

0

h(r)dr. Notice that h is 2π-periodic and odd, implying that H

is 2π-periodic and even.

We fix now an arbitrary number c > 0 (for instance, c = 1), and observe that the
solution τ = τ(t) of the first equation of (16) with τ(0) = 0 is an odd diffeomorphism
from R into itself satisfying τ(t + T ) = τ(t) + 2π for T = τ−1(2π). We define w
as in the second equation of (16), and observe that (i)-(ii) hold. This proves the
lemma.

6 From conformally-Newtonian to Newtonian

The following lemma could be taken from an elementary course of real analysis, and
we state it without proof.

Lemma 6.1. Let a > 0 be some positive number and u,w : [−a, a] → R be even
functions of class C∞. Assume that ü(0) > 0 and u̇(t) > 0 ∀t ∈]0, a]. Then, there
exists a C∞ function f : R→ R such that w(t) = f(u(t)) for any t ∈ [−a, a].

Remark: Setting u+ := u
∣∣
]0,a]

:]0, a] →]u(0), u(a)], it is clear from the assump-

tions that f
∣∣
]u(0),u(a)]

= w ◦u−1+ ∈ C∞(]u(0), u(a)]). Consequently, the interest of the

lemma is to ensure that the derivatives of all orders of f are continuous up to u(0).

From this moment on we shall work on the cylinder (R/2Z)×R with coordinates
(θ, y), instead of the plane R2. Notice that, by assumption (Ui), one can actually
see the potential U of Proposition 2.1 as being defined on this cylinder.

Corollary 6.2. There exists a C∞ potential W : (R/2Z) × R → R, W = W (θ, y),
with

(W1) W (θ, y) ≡ 1 if y ≤ −1, W (θ, y) ≡ 0 if y ≥ 1 ,

(W2) ∇W (θ, y) 6= (0, 0) if |y| < 1 ,

and, for some 0 < ε1 < 1 ,

(W3) (∂W/∂y)(θ, y) < 0 if 1− ε1 < |y| < 1 ,
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and such that the equation γ̈ = −∇W (γ) has a closed orbit

γ : R/TZ→]− 1, 1[2 .

Proof. Let U : (R/2Z)×R→ R and ` : R/2πZ→]−1, 1[2 be as given by Proposition
2.1; let w : R→]0,+∞[ and γ := `◦ τ : R/TZ→ R2 be as given by Lemma 5.1, and
set u(t) := U(γ(t)). This is an even function, both with respect to t = 0 and with
respect to t = T/2, and it follows from Lemma 6.1 that there exists a C∞ function
f : R→]0,+∞[ with w(t) = f(u(t)) = f(U(γ(t))) for any t. Set F (r) :=

∫ r
−1 f(u)du

and choose some smooth function ϕ : R→ R with

(ϕ1) ϕ(r) ≡ 0 on ]−∞, 0] , ϕ(r) ≡ 1 on [F (1),+∞[ ,

(ϕ2) ϕ′(r) > 0 on ]0, F (1)[,

(ϕ3) ϕ′(r) ≡ ϕ∗ > 0 on
[
F (minγ(R) U), F (maxγ(R) U)

]
,

and define γ : R→]− 1, 1[2 and W : (R/2Z)× R→ R by

γ(t) := S(γ(
√
ϕ∗ t)) , W := ϕ ◦ F ◦ U ◦S ,

where we denote by S : (R/2Z)×R→ (R/2Z)×R the symmetry S(θ, y) := (θ,−y).
The result follows.

7 From the cylinder into a ring

It will be convenient to consider, for any ρ > 1, the open ring

Rρ := {q ∈ R2 : ρ− 1 < |q| < ρ+ 1} .

We observe the following geometrical property: for each 0 < α < 1 there exists some
ρ(α) > 1 such that, for any ρ ≥ ρ(α), one has

[−α, α]× [ρ− α, ρ+ α] ⊂ Rρ . (17)

In these situations one can use the following

Lemma 7.1. Let 0 < α < 1 < ρ be such that (17) holds. Then, there exists a C∞

diffeomorphism Γ : (R/2Z) × [−1, 1] → Rρ with Γ((R/2Z) × {±1}) = {q ∈ R2 :
|q| = ρ± 1} and

Γ(x, y) = (x, y + ρ) if (x, y) ∈ [−α, α]× [−α, α] .

This result is elementary and its proof will be skipped. It will play a role in the
proof of the following

Proposition 7.2. There exists some ρ > 1 and a C∞ potential V : R2 → R
satisfying:
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(V1) V(q) = 1 if |q| ≤ ρ− 1, V(q) = 0 if |q| ≥ ρ+ 1 ,

(V2) ∇V(q) 6= (0, 0) ∀q ∈ Rρ,

and, for some 0 < ε < 1,

(V3) 〈∇V(q), q〉 ≤ 0 if dist(q, ∂Rρ) < ε,

and such that the equation q̈ = −∇V(q) has a closed orbit q : R/TZ→ Rρ.

Proof. Choose W : (R/2Z)×R→ R and γ : R/TZ→]−1, 1[2 as given by Corollary
6.2. Pick some 0 < α < 1 such that γ(R) ⊂] − α, α[×] − α, α[, and fix ρ > 1 big
enough so that (17) holds. Choose Γ as in Lemma 7.1 and set

V : R2 → R , V(q) :=


W (Γ−1(q)) if q ∈ Rρ

1 if |q| ≤ ρ− 1

0 if |q| ≥ ρ+ 1

,

and q := Γ ◦ γ = (0, ρ) + γ. Now, it is clear that V and q are both C∞; furthermore,
(V1), (V2) and (V3) follow, respectively, from (W1), (W2) and (W3). The proof is
complete.

Remark. There is an alternative way to deduce Proposition 7.2 (for the ring of
radii e±π instead of Rρ) from Corollary 6.2 without any need of Lemma 7.1. Indeed,
the complex exponential z 7→ eπz is a conformal map, and one can use an argument
due to Goursat [5] to transform Newtonian equations on the cylinder into Newtonian
equations on the ring. We have opted by the proof above because of its conceptual
simplicity.

We are now ready to prove the main result of this paper.

Proof of Theorem 1.1. Choose V : R2 → R, 0 < ε < 1 and q : R/TZ→ Rρ as given
by Proposition 7.2. For any nonnegative integer n we define

Mn := max

{
|∂αV(q)| : q ∈ R2

α = (α1, α2) ∈ Z2, αi ≥ 0, α1 + α2 ≤ n

}
.

Set µ := (ρ + 1)/(ρ − 1) > 1, and G :=
⋃
n≥0

]
ρ+1−ε
µn+1 ,

ρ−1+ε
µn

[
(the intervals are

nonempty and nonoverlapping). Choose some C∞ function h : [0,+∞[→ R with

h′(r) < 0 if r ∈ G , h′(r) = 0 if r ∈ [0,+∞[\G , (18)

and define V : R2 → R by:

V (q) := h(|q|) +
∞∑
n=0

(
1

2nMn µn
2

)
V(µnq) , q ∈ R2 .

In this way, it is clear that V ∈ C∞(R2). It has a (degenerate) maximum at
the origin, which (by (V2)-(V3)-(18)) is the only critical point of V on {q ∈ R2 :
|q| ≤ ρ + 1}. Finally, one checks that, setting Tn := 2n/2

√
Mn µ

n2/2−n T , then
qn(t) := (1/µn)q(Tt/Tn) is a solution of q̈ = −∇V (q) for each n. The proof is
complete.
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