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Preface

The massive growth in the scale of data has been observed in recent years, being
a key factor of the Big Data scenario. Big Data can be defined as high volume,
velocity, and variety of data that require a new high-performance processing.
Addressing Big Data is a challenging and time-demanding task that requires a
large computational infrastructure to ensure successful data processing and analysis.
Being a very common scenario in real-life applications, the interest of researchers
and practitioners on the topic has grown significantly during these years. Among Big
Data disciplines, data mining is a key topic, enabling the user to extract knowledge
from enormous amounts of raw data. However, this raw data is not always in the best
condition to be treated, analyzed, and surveyed. The application of preprocessing
techniques is a must in real-world applications, to ensure quality data, Smart Data,
for a proper treatment and analysis. The term Smart Data refers to the challenge of
transforming raw data into quality data that can be appropriately exploited to obtain
valuable insights.

This book aims at offering a general and comprehensible overview of data
preprocessing in Big Data, enabling Smart Data. It contains a comprehensive
description of the topic and focuses on its main features and the most relevant
proposed solutions. Additionally, it considers the different scenarios in Big Data for
which the application of data preprocessing techniques can suppose a real challenge.
Data preprocessing is a multifaceted discipline that includes data preparation,
compounded by integration, cleaning, normalization, and transformation of data;
data reduction tasks such as feature selection, instance selection, and discretization;
and resampling techniques to deal with imbalanced data.

This book stresses the gap with standard data preprocessing techniques and their
Big Data equivalents, showing the challenging difficulties in their development
for the latter. It also covers the different approaches that have been traditionally
applied and the latest proposals in Big Data preprocessing. Specifically, it reviews
data reduction methods, imperfect data approaches, discretization techniques, and
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imbalanced data preprocessing solutions. Finally, this book describes the most pop-
ular Big Data libraries for machine learning, focusing on their data preprocessing
algorithms and utilities.

Granada, Spain Julián Luengo
Granada, Spain Diego García-Gil
Madrid, Spain Sergio Ramírez-Gallego
Granada, Spain Salvador García
Granada, Spain Francisco Herrera
June 2019
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Chapter 1
Introduction

1.1 Big Data

We are immersed in the Information Age where vast amounts of data are available.
Petabytes of data are generated and stored everyday, resulting in a humongous
volume of information; this information arrives at high velocity and its processing
requires real-time processing; this information can be found in many formats, like
structured, semi-structured, or unstructured data, implying variety; it also needs to
be cleaned in order to maintain veracity; finally, this information must provide value
to the organization. These five concepts are one of the most extended definitions of
Big Data [1], as shown in Fig. 1.1. While the volume, velocity, and variety aspects
refer to the data generation process and how to capture and store the data, veracity
and value aspects deal with the quality and the usefulness of the data. These two last
aspects become crucial in any Big Data process, where the extraction of useful and
valuable knowledge is strongly influenced by the quality of the used data.

It is predicted that by 2020, the digital universe will be ten times as big as it
was in 2013, totaling an astonishing 44 zettabytes. This explosion of data is due
to three main reasons [11]: (1) thousands of applications such as sensors, social
media services, and other devices that collect information continuously; (2) the
improvement in storage capacity, technology, and price that has made it preferably
to increase the storage rather than deleting information; (3) the improvement in
machine learning (ML) approaches in the last years, enabling the acquisition of
higher degree of knowledge from data.

Corporations are aware of these developments. Gaining critical business insights
by querying and analyzing such massive amounts of data is becoming a necessity.
This issue is known as business intelligence [39], which refers to decision support
systems that combine data gathering, data storage, and knowledge management with
analysis to provide input to the decision process. Regarding the former issues, a new
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concept appears as a more general field, integrating data warehousing, data mining
(DM), and data visualization for business analytics. This topic is known as data
science.

The premise of Big Data is that having a world rich in data may enable machine
learning and DM techniques [2] to obtain more accurate models than ever before,
but classical methods fail to handle the new data space requirements. In Big Data,
the usage of traditional data preprocessing techniques [17, 18] to enhance the data
is even more time-consuming and resource demanding, being unfeasible in most
cases. The lack of efficient and affordable data preprocessing techniques implies
that the problems in data will affect the models extracted.

Even years after the boom of Big Data, there is still a misleading definition for
the concept itself [16]. We must stress that the topic of Big Data is strongly linked
with the scalability issue [22]. Those models developed in this context must be able
to adapt dynamically the data growth, as well as being fault tolerant to be reliable in
case of time-consuming operations. In order to fulfill these requirements, a change
in the traditional technology and framework for carrying out the learning process is
mandatory.

1.2 Big Data Analytics

Big Data Analytics is nowadays one of the most significant and profitable areas
of development in data science [7, 31]. One of the main reasons of its success is
related with the Internet of Things, the Web 2.0 and the social networks, and all
the myriad of data from different sources that can be collected and processed [3, 6].
These technologies generate data at an exponential rate thanks to the affordability
and great development of storage and network resources.
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However, the real benefit of Big Data is not on the data itself, but in the ability
to uncover (unexpected) patterns and glean knowledge from it with appropriate
data science techniques [37]. In this sense, corporations that are able to extract
valuable knowledge from large volumes of data in a reasonable time may obtain
significant advantages over their competitors [8, 21]. Researchers from academia
are also aware of the interest in developing robust and accurate models for DM in
Big Data applications [43]. There is a clear growing rate in the number of research
studies [34], and the trend is not expected to change in the short future.

The first framework that enabled the processing of large-scale datasets was
MapReduce [9, 10, 33]. This revolutionary tool was intended to process and generate
huge datasets in an automatic and distributed way. It is basically an execution
environment which lays over a distributed file system [36]. By implementing two
primitives, Map and Reduce, the user is able to use a scalable and distributed
tool without worrying about technical nuances, such as failure recovery, data
partitioning, or job communication.

• The Map function is devoted to divide the computation into different subparts,
each one related to a partial set of the data.

• The Reduce function needs to fuse the local outputs into a single final model.

Whereas the procedure to be included in the Map task is, most times, straight-
forward to determine, the hitch comes when deciding how to carry out the models
fusion within the Reduce task. At this point, the design depends on many factors,
namely whether the sub-models are different and independent among them, or they
have a nexus for being able to join them directly.

There are different alternatives on process fusion for Big Data Analytics models
under the MapReduce framework:

• Direct fusion of models: approximate methods. We refer to those that carry out a
direct fusion of partial models via an ensemble system.

• Exact fusion for scalable models: distributed data and models partition. In this
case, they are those designs that carry out a global distribution of both data
and sub-models (the prior types mentioned just considered data division), and
iteratively build the final system.

Apache Hadoop [41] emerged as the most popular open-source implementation
of MapReduce, maintaining the aforementioned features. In spite of its great
popularity, MapReduce (and Hadoop) is not designed to scale well when dealing
with iterative and online processes, typical in ML and stream analytics [26].

Apache Spark [25] was designed as an alternative to Hadoop, capable of
performing faster distributed computing by using in-memory primitives. Thanks
to its ability of loading data into memory and re-using it repeatedly, this tool
overcomes the problem of iterative and online processing presented by MapReduce.
Additionally, Spark is a general-purpose framework that thanks to its generality
allows to implement several distributed programming models on top of it (like
Pregel or HaLoop) [44]. Spark is built on top of a new abstraction model called
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Resilient Distributed Datasets (RDD). This versatile model allows controlling the
persistence and managing the partitioning of data, among other features.

Some competitors to Apache Spark have emerged lastly, especially from the
streaming side. Apache Storm [5] is an open-source distributed real-time processing
platform, which is capable of processing millions of tuples per second and node in a
fault-tolerant way. Apache Flink [4] is a recent top-level Apache project designed for
distributed stream and batch data processing. Both alternatives try to fill the “online”
gap left by Spark, which employs a mini-batch streaming processing instead of a
pure streaming approach.

The performance and quality of the knowledge extracted by a DM method in any
framework does not only depend on the design and performance of the method but
is also very dependent on the quality and suitability of such data. Unfortunately,
negative factors as noise, missing values (MV), inconsistent and superfluous data,
and huge sizes in examples and features highly influence the data used to learn and
extract knowledge. It is well-known that low quality data will lead to low quality
knowledge [32]. Thus data preprocessing [17] is a major and essential stage whose
main goal is to obtain final datasets which can be considered correct and useful for
further DM algorithms.

Big Data also suffer of the aforementioned negative factors. Big Data prepro-
cessing constitutes a challenging task, as the previous existent approaches cannot
be directly applied as the size of the datasets or data streams make them unfeasible.
In this book we gather the most recent proposals in data preprocessing for Big Data,
providing a snapshot of the current state-of-the-art. Besides, we discuss the main
challenges on developments in data preprocessing for Big Data frameworks, as
well as technologies and new learning paradigms where they could be successfully
applied.

1.3 Big Data Preprocessing

The set of techniques used prior to the application of a DM method is named as
data preprocessing for DM [17] and it is known to be one of the most meaningful
issues within the famous knowledge discovery from data process [45], as shown
in Fig. 1.2. Since data will likely be imperfect, containing inconsistencies and
redundancies, is not directly applicable for starting a DM process. We must also
mention the fast growing of data generation rates and their size in business,
industrial, academic, and science applications. The bigger amounts of data collected
require more sophisticated mechanisms to analyze it. Data preprocessing is able to
adapt the data to the requirements posed by each DM algorithm, enabling to process
data that would be unfeasible otherwise.

Albeit data preprocessing is a powerful tool that can enable the user to treat
and process complex data, it may consume large amounts of processing time [32].
It includes a wide range of disciplines, as data preparation and data reduction
techniques. The former includes data transformation, integration, cleaning, and



1.3 Big Data Preprocessing 5

KDD process

PROBLEM
SPECIFICATION

DATA
EXTRACTION

PREPROCESSING

DATA MINING

INTERPRETATION
&

EVALUATION

KNOWLEDGE

Fig. 1.2 KDD process

normalization, while the latter aims to reduce the complexity of the data by
dimensionality reduction, instance reduction, or by discretization, as can be seen
in Fig. 1.3. After the application of a successful data preprocessing stage, the final
dataset obtained can be regarded as a reliable and suitable source for any DM
algorithm applied afterwards.

Data preprocessing is not only limited to classical DM tasks, as classification or
regression. More and more researchers in novel DM fields are paying increasingly
attention to data preprocessing as a tool to improve their models. This wider
adoption of data preprocessing techniques is resulting in adaptations of known
models for related frameworks, or completely novel proposals.

Data preprocessing clearly resembles the concept of Smart Data as one of the
most important stages of a DM process [23]. Its goal is to clean and correct input
data, so that, a ML process may be later applied faster and with a greater accuracy.
With this definition, data preprocessing techniques should enable DM algorithms
to cope with Big Data problems more easily. Unfortunately, these methods are also
heavily affected by the increase in size and complexity of datasets and they may be
unable to provide a preprocessed/smart dataset in a timely manner, and therefore,
need to be redesigned with Big Data technologies.

In the following we will present the main fields of data preprocessing, grouping
them by their types and showing the current open challenges relative to each one.
First, data reduction approaches will be presented, including dimension reduction,
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Fig. 1.3 Data preprocessing tasks, including data and data reduction, MV imputation, noise
filtering, and imbalanced learning

instance reduction, and discretization. Next, we will tackle the preprocessing
techniques to deal with imperfect data, where MV and noise data are included. The
last section will be devoted to resampling for imbalanced problems.

1.3.1 Data Reduction

Data reduction techniques [32] emerged as preprocessing algorithms that aim to
simplify and clean the raw data, enabling data mining algorithms to be applied
not only in a faster way, but also in a more accurate way by removing noisy and
redundant data. Data reduction methods can be divided into three different groups
depending on what they reduce: dimensionality reduction, instance reduction, and
discretization. From the perspective of the attributes space, the most well-known
data reduction processes are feature selection (FS) and feature extraction. Regarding
the reduction of the number of examples, instance reduction techniques can be
divided in instance selection (IS) and instance generation methods. Finally, if
the reduction affects to the values of the data points, we refer to discretization
techniques.
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Dimensionality Reduction

When datasets become large in the number of predictor variables or the number
of instances, DM algorithms face the curse of dimensionality problem. It is
a serious problem as it will impede the operation of most DM algorithms as
the computational cost rise. This subsection will underline the most influential
dimensionality reduction algorithms according to the division established into FS
and feature extraction methods.

Feature Selection

FS is “the process of identifying and removing as much irrelevant and redundant
information as possible” [20]. The goal is to obtain a subset of features from the
original problem that still appropriately describe it. FS can remove irrelevant and
redundant features which may induce accidental correlations in learning algorithms,
diminishing their generalization abilities. The use of FS is also known to decrease
the risk of overfitting in the algorithms used later. FS will also reduce the search
space determined by the features, thus making the learning process faster and also
less memory consuming.

The use of FS can also help in task not directly related to the DM algorithm
applied to the data. FS can be used in the data collection stage, saving cost in time,
sampling, sensing, and personnel used to gather the data. Models and visualizations
made from data with fewer features will be easier to understand and to interpret.

Feature Extraction

FS is not the only way to cope with the curse of dimensionality by reducing
the number of dimensions. Instead of selecting the most promising features,
feature extraction techniques generate a whole new set of features by combining
the original ones. Such a combination can be made obeying different criteria. The
first approaches were based on linear methods, as factor analysis and Principal
Components Analysis (PCA) [24].

More recent techniques try to exploit nonlinear relations among the variables.
They focus on transforming the original set of variables into a smaller number of
projections, sometimes taking into account the geometrical properties of clusters of
instances or patches of the underlying manifolds.

Instance Reduction

A popular approach to minimize the impact of very large datasets in DM algorithms
is the use of instance reduction techniques. They reduce the size of the dataset
without decreasing the quality of the knowledge that can be extracted from it.
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Instance reduction is a complementary task regarding FS. It reduces the quantity of
data by removing instances or by generating new ones. In the following we describe
the most important instance reduction and generation algorithms.

Instance Selection

Nowadays, IS is perceived as necessary [28]. The main problem in IS is to identify
suitable examples from a very large amount of instances and then prepare them as
input for a DM algorithm. Thus, IS is comprised by a series of techniques that must
be able to choose a subset of data that can replace the original dataset and also
being able to fulfill the goal of a DM application. It must be distinguished between
IS, which implies a smart operation of instance categorization, from data sampling,
which constitutes a more randomized approach.

A successful application of IS will produce a minimum data subset that it is
independent from the DM algorithm used afterwards, without losing performance.
Other added benefits of IS is to remove noisy and redundant instances (cleaning), to
allow DM algorithms to operate with large datasets (enabling), and to focus on the
important part of the data (focusing).

Instance Generation

IS methods concern the identification of an optimal subset of representative objects
from the original training data by discarding noisy and redundant examples. Instance
generation (IG) methods, by contrast, besides selecting data, can generate and
replace the original data with new artificial data. This process allows it to fill regions
in the domain of the problem, which have no representative examples in original
data, or to condensate large amounts of instances in less examples. IG methods are
often called prototype generation (PG) methods, as the artificial examples created
tend to act as a representative of a region or a subset of the original instances.

The new prototypes may be generated following diverse criteria. The simplest
approach is to relabel some examples, for example, those that are suspicious of
belonging to a wrong class label. Some PG methods create centroids by merging
similar examples, or by first merging the feature space in several regions and then
creating a set of prototype for each one. Others adjust the position of the prototypes
through the space, by adding or subtracting values to the prototype’s features.

Discretization

DM algorithms require to know the domain and type of the data that will be used as
input. The type of such data may vary, from categorical where no order among the
values can be established, to numerical data where the order among the values there
exist. Decision trees, for instance, make split based on information or separability
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measures that require categorical values in most cases. If continuous data is present,
the discretization of the numerical features is mandatory, either prior to the tree
induction or during its building process.

Discretization is gaining more and more consideration in the scientific commu-
nity [27] and it is one of the most used data preprocessing techniques. It transforms
quantitative data into qualitative data by dividing the numerical features into a
limited number of non-overlapped intervals. Using the boundaries generated, each
numerical value is mapped to each interval, thus becoming discrete. Any DM
algorithm that needs nominal data can benefit from discretization methods, since
many real-world applications usually produce real valued outputs. For example,
three of the ten methods considered as the top ten in DM [42] need an external
or embedded discretization of data: C4.5, Apriori, and Naïve Bayes. In these cases,
discretization is a crucial previous stage.

Discretization also produces added benefits. The first is data simplification
and reduction, helping to produce a faster and more accurate learning. The
second is readability, as discrete attributes are usually easier to understand, use,
and explain [27]. Nevertheless these benefits come at price: any discretization
process is expected to generate a loss of information. Minimizing this information
loss is the main goal pursued by the discretizer, but an optimal discretization is a
NP-complete process.

1.3.2 Imperfect Data

Most techniques in DM rely on a dataset that is supposedly complete or noise-free.
However, real-world data is far from being clean or complete. In data preprocessing
it is common to employ techniques to either removing the noisy data or to impute
(fill in) the missing data [19]. The following two subsections are devoted to MV
imputation and noise filtering.

Missing Values Imputation

One big assumption made by DM techniques is that the dataset is complete. The
presence of MV is, however, very common in the acquisition processes. A missing
value is a datum that has not been stored or gathered due to a faulty sampling
process, cost restrictions or limitations in the acquisition process. MV cannot be
avoided in data analysis, and they tend to create severe difficulties for practitioners.

MV treatment is difficult. Inappropriately handling the MV will easily lead to
poor knowledge extracted and also wrong conclusions [38]. MV have been reported
to cause loss of efficiency in the knowledge extraction process, strong biases if the
missingness introduction mechanism is mishandled and severe complications in data
handling.



10 1 Introduction

Many approaches are available to tackle the problematic imposed by the MV
in data preprocessing. The first option is usually to discard those instances that
may contain a MV. However, this approach is rarely beneficial, as eliminating
instances may produce a bias in the learning process, and important information
can be discarded. The seminal works on data imputation come from statistics. They
model the probability functions of the data and take into account the mechanisms
that induce missingness. By using maximum likelihood procedures, they sample
the approximate probabilistic models to fill the MV. Since the true probability
model for a particular datasets is usually unknown, the usage of ML techniques
has become very popular nowadays as they can be applied without providing any
prior information

Noise Treatment

DM algorithms tend to assume that any dataset is a sample of an underlying
distribution with no disturbances. As we have seen in the previous section, data
gathering is rarely perfect, and corruptions often appear. Since the quality of the
results obtained by a DM technique is dependent on the quality of the data, tackling
the problem of noise data is mandatory [12]. In supervised problems, noise can
affect the input features, the output values, or both. When noise is present in the
input attributes, it is usually referred as attribute noise. The worst case is when
the noise affects the output attribute, as this means that the bias introduced will be
greater. As this kind of noise has been deeply studied in classification, it is usually
known as class noise.

In order to treat noise in DM, two main approaches are commonly used in the
data preprocessing literature. The first one is to correct the noise by using data
polishing methods, especially if it affects the labeling of an instance. Even partial
noise correction is claimed to be beneficial, but it is a difficult task and usually
limited to small amounts of noise. The second is to use noise filters, which identify
and remove the noisy instances in the training data and do not require the DM
technique to be modified.

1.3.3 Imbalanced Datasets

In many supervised learning applications, there is a significant difference between
the prior probabilities of different classes, i.e., between the probabilities with
which an example belongs to the different classes of the classification problem.
This situation is known as the class imbalance problem [29]. The hitch with
imbalanced datasets is that standard classification learning algorithms are often
biased towards the majority class (known as the “negative” class) and therefore
there is a higher misclassification rate for the minority class instances (called the
“positive” examples).
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While algorithmic modifications are available for imbalanced problems, our
interest lies in preprocessing techniques to alleviate the bias produced by standard
DM algorithms. These preprocessing techniques proceed by resampling the data to
balance the class distribution. The main advantage is that they are independent of
the DM algorithm applied afterwards.

Two main groups can be distinguished within resampling. The first one is
undersampling methods, which create a subset of the original dataset by eliminating
(majority) instances. The second one is oversampling methods, which create a
superset of the original dataset by replicating some instances or creating new
instances from existing ones.

Non-heuristic techniques as random oversampling or random undersampling
were initially proposed, but they tend to discard information or induce overfit-
ting. Among the more sophisticated, heuristic approaches, “Synthetic Minority
Oversampling TEchnique” (SMOTE) [18] has become one of the most renowned
approaches in this area. It interpolates several minority class examples that lie
together. Since SMOTE can still induce overfitting in the learner, its combination
with a plethora of sampling methods can be found in the specialized literature with
excellent results. Undersampling has the advantage of producing reduced datasets,
and thus interesting approaches based on neighborhood methods, clustering and
even evolutionary algorithms have been successfully applied to generate quality
balanced training sets by discarding majority class examples.

1.4 Big Data Streaming

With the advent of Big Data comes not only an increase in the volume of data, but
also the notion of its velocity. In many emerging real-world problems we cannot
assume that we will deal with a static set of instances. Instead, they may arrive
continuously, leading to a potentially unbounded and ever-growing dataset. It will
expand itself over time and new instances will arrive continuously in batches or
one by one. Such problems are known as data streams [14] and pose many new
challenges to DM methods. One must be able to constantly update the learning
algorithm with new data, to work within time-constraints connected with the speed
of arrival of instances, and to deal with memory limitations [35]. Additionally, data
streams may be non-stationary, leading to occurrences of the phenomenon called
concept drift, where the statistical characteristics of the incoming data may change
over the time. Thus, learning algorithms should take this into consideration and have
adaptation skills that allow for online learning from new instances, but also for quick
changes of underlying decision mechanisms [15].

Despite the importance of data preprocessing, not many proposals in this
domain may be found in the literature for online learning from data streams [46].
Most of methods are just incremental algorithms, originally designed to manage
finite datasets. Direct adaptation of static data preprocessing techniques is not



12 1 Introduction

straightforward since most of techniques assume the whole training set is available
from the beginning and properties of data do not change over time:

• Most of static IS methods require multiple passes over data, at the same time
being mainly based on time-consuming neighbor searches that makes them
useless for handling high-speed data streams [17].

• On the contrary, FS techniques are easily adaptable to online scenarios. Yet, they
suffer from other problems such as concept evolution or dynamic and drifting
feature space [30].

• Online supervised discretization methods also remain fairly unexplored. Most of
standard solutions require several iterations of sharp adjustments before getting
a fully operating solution [40].

Therefore, further development of data preprocessing techniques for data stream
environments is thus a major concern for practitioners and scientists in DM areas.

A data stream is a potentially unbounded and ordered sequence of instances
that arrive over time [13]. Therefore, it imposes specific constraints on the learning
system that cannot be fulfilled by canonical algorithms from this domain. Here we
list the main differences between static and streaming scenarios:

• Instances are not given beforehand, but become available sequentially (one by
one) or in the form of data chunks (block by block) as the stream progresses.

• Instances may arrive rapidly and with various time intervals between each other.
• Streams are of potentially infinite size, thus it is impossible to store all of

incoming data in the memory.
• Each instance may be only accessed a limited number of times (in specific cases

only once) and then discarded to limit the memory and storage space usage.
• Instances must be processed within a limited amount of time to offer real-time

responsiveness and avoid data queuing.
• Access to true class labels is limited due to high cost of label query for each

incoming instance.
• Access to the true labels may be delayed as well, in many cases they are available

after a long period, i.e., for credit approval could be 23 years.
• Statistical characteristics of instances arriving from the stream may be subject to

changes over time.

Let us assume that our stream consists of a set of states S = S1, S2, . . . , Sn,
where Si is generated by a distribution Di . By a stationary data stream we will
consider a sequence of instances characterized by a transition Sj → Sj+1, where
Dj = Dj+1. However, in most modern real-life problems the nature of data may
evolve over time due to various conditions. This phenomenon is known as concept
drift [15] and may be defined as changes in distributions and definitions of learned
concepts over time. Presence of drift can affect the underlying properties of classes
that the learning system aims to discover, thus reducing the relevance of used
classifier as the change progresses. At some point the deterioration of the quality of
used model may be too significant to further consider it as a meaningful component.
Therefore, methods for handling drifts in data streams are of crucial importance to
this area of research.
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Chapter 2
Big Data: Technologies and Tools

2.1 Introduction

Vast amounts of raw data are surrounding us nowadays, data that cannot be
directly treated by humans or manual applications. Technologies, such as the World
Wide Web, engineering and science applications and networks, business services,
and many more generate data in exponential growth thanks to the development
of powerful storage and connection tools. Organized knowledge and information
cannot be easily obtained due to this huge data growth, neither it can be easily
understood nor automatically extracted. These premises have led to the development
of data science or data mining (DM) [1], a well-known discipline which is more and
more present in the current world of the Information Age.

Nowadays, the current volume of data managed by our systems have surpassed
the processing capacity of traditional systems [66], and this applies to DM as well.
The arising of new technologies and services (like cloud computing) as well as the
reduction in hardware price are leading to an ever-growing rate of information on
the Internet. This phenomenon certainly represents a “Big” challenge for the data
analytics community. Big Data can be thus defined as very high volume, velocity,
and variety of data that require a new high-performance processing [35, 39].

Distributed computing has been widely used by data scientists before the advent
of Big Data phenomenon. Many standard and time-consuming algorithms were
replaced by their distributed versions with the aim of speeding up the learning
process [50]. However, for most of current massive problems, a distributed approach
becomes mandatory nowadays since no batch architecture is able to address such
magnitudes.

Although high performance computing (HPC) tools have been used to create dis-
tributed algorithms for many years [26], HPC solutions require a high codification
effort, are not naturally resilient, and any change in the hardware scheme implies a
complete re-design of the algorithm. Consequently, new distributed frameworks and
technologies (like Spark or Hadoop) have emerged to solve these problems [27].
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Novel large-scale processing platforms are intended to bring closer the dis-
tributed technologies to the standard user (engineers and data scientists) by hiding
the technical nuances derived from distributed environments. Complex designs
are required to create and maintain these platforms, which generalizes the use of
distributed computing. On the other hand, Big Data platforms also require additional
algorithms that give support to the machine learning (ML) task. Standard learning
algorithms must be re-designed (sometimes, entirely) if we want to learn from large-
scale datasets.

Here, we classify the myriad of tools and frameworks in Big Data environment
across several broad categories, according to its main role (storage, processing,
high-level components), and its compatible environments (Hadoop Ecosystem,
Apache Spark Framework, etc.). For instance, NoSQL databases are classified as
a distributed storage component, compatible with Hadoop Ecosystem and other
environments. Note that the following classification of Big Data Tools and Platforms
is not an attempt to create a close taxonomy given that most of the tools are quite
versatile (different uses, and work with many environments), and are constantly
mutating.

In the rest of this chapter, we shall start with the discussion of common technical
concepts, techniques, and paradigms which are the basement of core environments.
Afterwards we shall analyze in depth the most popular frameworks in Big Data,
like Hadoop or Spark, and their main components. Next we shall also discuss other
novel platforms for high-speed streaming processing that are gaining importance
in industry. Finally we shall make a comparison between two of the most relevant
large-scale processing platforms nowadays, Spark and Flink.

2.2 Basic Concepts and Techniques

The best way of understanding the complex environment around the phenomenon
of Big Data is by clearly describing the key concepts that are beneath the novel
developments in this area. Starting from the standard cluster or farm of machines
to cutting-edge and complex frameworks like Spark or Flink, we describe here all
components that are part of Big Data solutions from many perspectives: hardware,
methodologies, basic software and appliances, and so on. To better categorize
these concepts, they have been divided into different sections according to the
objective aimed by each one. These categories are: infrastructure, storage and
access, processing, and high-level components.

2.2.1 Infrastructure

The genesis of Big Data starts with the machinery (Big Data cluster) that executes
in parallel the instructions of top-level software. The cluster is logically partitioned
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into two types of nodes according to the main function performed: data nodes or
slaves (computing) and management nodes or masters (management). Apart from
its function, master and slaves can be differentiated by its computing capabilities,
and its amount in the farm of nodes.

Slaves are in charge of watching partitioned data, processing and querying local
data. Data locality property is here quite important, because it guarantees that our
solution can scale-out by adding more resources to the cluster. Data and processing
units must be as close as possible to avoid delays introduced by movements
between partitions. Data nodes are normally disk-intensive, and standard in terms
of computing and memory capabilities.

Masters receive and transform programs from client applications to parallel
instructions that can be understand by slaves. Once client applications hit the master
daemon, it eventually starts or wake several processes in the slaves that finally return
an output following the opposite direction. Among the full set of responsibilities
endorsed to management nodes are: failure recovery, resource management, job
scheduling, monitoring, or security. To accomplish these tasks, masters require a
high computing and memory power. In standard Big Data clusters, it is enough with
keeping two supporting masters that watch out each other.

Both types of nodes are connected over a network connection, typically LAN
(Ethernet or InfiniBand). Some configuration also allows to connect masters of
different data centers across a WAN network to prevent system failures easily. In
each data center, master and slaves are privately interconnected to ingest data, move
data between nodes, and makes queries. There exists also another public network
that acts as a facade between the client and the management service (ssh, VNC, web
interface, etc.).

2.2.2 Storage and Access

Accessing Big Datum in distributed clusters is not trivial task. I/O actions must
consider the availability and concurrency of every disk and processing units in the
cluster. One of the most popular schemes designed to address this problem is the
shared nothing architecture [61], which ensures that there are enough disk units
available to supply the multiple processes running in parallel. Standard Big Data
solutions use this scheme by default, though other virtualized and cloud solutions
can be adopted.

No matter what model is implemented (NoSQL databases, distributed file
system, SQL-based, graph-based, etc.), most of the Big Data systems rely on the
idea of first bringing data into the system without spending too much effort, and
then imposing an schema (“schema on read”) once the data need to be accessed or
processed [67]. This model is much more versatile than that implemented by relation
databases since “schema on read” is loosely affected by constant updates, typically
present in current dynamic systems in business and science.
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Distributed file systems are by far the most popular solution for persistence in Big
Data. In these systems, data are stored following the shared nothing architecture
in the local disks present in the slaves (see Hadoop distributed file systems
(HDFS) [34]). However, a novel approach has arisen to boost performance in storage
by putting more effort in memory-based storage. Briefly, this strategy keeps in
memory almost all data to be processed, and only when the processing is close
to be performed data are persisted in other storage systems like HDFS, Amazon S3,
or NoSQL databases.

Another concern to be addressed is the way of partitioning the data across the
cluster. Given that all data cannot be saved in the same disk, and parallel processes
should not access concurrently to the same disk, partitioning must be carefully tuned
to fully exploit available resources in clusters. There exist multiple approaches to
partition distributed data. For those schemes based on key indexing (key-value or
key-tuple), two main types arise as the most popular: Range partitioning—where
data are ordered and close keys are placed together—and Hash partitioning—where
elements with identical keys are kept in the same partition. Apache Spark adopted
both schemes by default, but there are other alternatives, such as list-based (unique
values of keys are grouped in the same list), block-based (bulk storage), graph-based
or round robin.

In case of failure, Big Data systems need to provide a reliable solution for failure
recovery. The standard solution adopted by most of the systems is to introduce
some redundancy throughout replication, and at the same time to increase its overall
availability. By maintaining several copies from the same partition across different
nodes and/or data centers, replication prevents from failures that might cause service
interruption. Additionally, replication also increases the data locality, which in
turns speeds up subsequent I/O actions. Some in-memory technologies, like Spark,
propose a recovery technique based on lineage/logging [57, 68], where lost data are
locally rebuilt using the logging information in case of alarm.

A myriad of input formats are currently out in the Big Data market [67].
However, the vast majority of formats can be grouped according to the stage they
fit most, and some other common features. For instance, data would be typically
ingested and exported/imported in delimited text format (TSV, CSV, etc.) because
of its great simplicity. Formats like Parquet [49] are very suitable for column-
based operations, like those present in analytics. Row-based formats, like Avro [18],
become reasonable when definitions of columns are unstable, or almost every
column is involved on processing.

Suitable efficient mechanisms for inter-block and intra-block indexing are
mandatory in distributed computing if the requirement of fast disk accesses wants
to be preserved. Two of the most popular models for fast indexing are B-Tree [23]
or Bitmap Index [60]. Another possible solution to deal with indexing is to reduce
the search space by specifying for each register which partitions will surely not
contain it. Techniques, like Bloom Filter [21], have shown to boost performance in
large-scale searching via the use of the previous schemes.
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2.2.3 Distributed Processing Engines

Distributed processing frameworks in Big Data are responsible of ingesting, fil-
tering, transforming, learning, querying, and exporting large amounts of data. Yet
there exist many implementations for this concept, most of the modern distributed
frameworks follow a single instruction multiple datasets [62] scheme in order to
execute the same sequence of instructions simultaneously on a distributed set of
data partitions. Apart from defining the main scheme of execution, these frameworks
also cope with other problems, such as restarting failed processes, job scheduling,
network synchronization, load-balancing, etc. In this section we focus on those
models more relevant for current implementations in distributed computing.

DAG: Directed Acyclic Graph Parallel Processing

All DAG-based distributed frameworks for Big Data [25], like Spark, organize their
jobs by splitting them into a smaller set of atomic tasks. In this model vertices
correspond with parallel tasks, whereas edges are associated with exchange of
information. As shown in Fig. 2.1, vertices can have multiple connections between
inputs and outputs, which imply that the same task can be run in different data and
the same data in different partitions. Data flows are physically supported by shared
memory, pipes, or disks. Instructions are duplicated and sent from the master to the
slave nodes for a parallel execution.

Figure 2.1 depicts a DAG execution program with 4 tasks and different partition
configurations for each task. For instance, the top-most task in the graph is formed
by 3 partitions. Once this task has finished, two dependent tasks (3 and 4) are started.
Dependencies between partitions are not trivial as can be seen in the figure. Right-
most partition in task 2 only depends on two input partitions, whereas left-most
partitions has a single dependency. Finally, the input of task 4 is connected with the
output of tasks 2 and 3. It is thus noteworthy to remark the differences between data
(black dashed lines) and task dependencies (blue lines).

BSP: Bulk Synchronous Parallel Processing

BSP [64] systems are formed by a series of connected supersteps, implemented
as directed graphs. In this scheme input data is the starting point. From here to
the end, a set of supersteps are applied on partitioned data in order to obtain the
final output. As mentioned before, each superstep corresponds with an independent
graph associated with a subtask to be solved. Once all compounding subtasks end,
bulk synchronization of all outputs is committed. At this point vertices may send
messages to the next superstep, or receive some from previous steps, and also to
modify its state and outgoing edges.



20 2 Big Data: Technologies and Tools

Fig. 2.1 Direct acyclic graph parallel processing

Figure 2.2 shows a toy example for BSP processing with two supersteps and
one synchronization barrier. Subtasks in each superstep are depicted as rectangles
with variable height (task duration), and data flows as dashed lines. Synchronization
barrier acts as a time proxy between stages. Although subtask cannot start before
every previous subtask has finished, however, communication between stages is
allowed.

MapReduce Processing Scheme

MapReduce [24] was introduced by Google to ease the implementation of its
parallel processing workflows. The main objective was to replace complex and non-
intuitive programming on distributed computing (beforehand addressed by HPC
platforms) by a modern transparent platform with only two functions: Map and
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Fig. 2.2 BSP processing

Reduce. These two user-defined functions allow the users to utilize distributed
resources without complaining about network, scheduling, failure recovery, etc.

Map function first reads data and transforms them into a key-value format.
Transformations may apply any sequence of operations on data in a record level
before sending the tuples across the network. Output keys are then grouped by
key-value so that coincident keys are grouped together among with a list of values.
These keys are partitioned and sent to the Reducers according to some key-based
scheme previously defined (see Sect. 2.2.2). Finally, reducers typically perform
some simplification on the received arrays to eventually generate tuples with a
single key and value. Figure 2.3 gives an overview of the MapReduce process from
a simplified perspective.

Notice that MapReduce can be deemed as a specific implementation of DAG-
based processing, with only two functions as vertices. Despite these limitations,
many Big Data technologies provide a wrapper implementation of MapReduce for
end users (like Spark) due to its great popularity.
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Fig. 2.3 MapReduce processing scheme

2.2.4 Other Service Management Components

On the top of processing component, there should exist another software layer that
manages and checks that the system is working properly. Management services are
essential for Big Data centers that can go beyond thousands of nodes, and where the
failure rate is more than occasional. In this section we cover some high-level topics,
like resource management or high availability.

Resource Management

Although computing and memory power are typically offered to the user as a single
and global pool of resources, beneath there are a long list of single disks, processors,
and memory cells to be managed. Thus, one of the major issues faced by Big
Data technologies is to efficiently distribute, control, and coordinate the resources
available in each machine integrated in the cluster.

In Big Data technologies, daemon processes (long-lived) or short-lived processes
offer different alternatives to control resources in single nodes. Daemon processes
constantly reside in the slave machines. Their job is to continuously accept and
execute short tasks from the master node. In counterpart, short-lived processes are
created in the slaves machines to address a specific task. Once this task has ended,
the process is removed from the pool, and a new short-lived thread is added (if
proceed). Sometimes these short processes can deal with many jobs if they are
programmed to accept whatever is sent within a time window.

Daemon processes reduce the starting overhead since they are only created once,
however, they can become idle if no request need to be addressed. In fact they can
be deemed as the only valid alternative for streaming processing. On the other hand,
short-lived processes act worse when many requests must be served as it increase the
overall overhead time. Nevertheless they are easy to maintain and resource-efficient.
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Typically, management services run in both sides: slaves and masters. The slave
service informs to the master process about the slots of resources available in that
node. The master service schedules the resources according to all the information
collected from the subordinated services, and decides how to distribute resources.

High Availability

Two types of failure recovery must be faced by Big Data technologies to meet
the high availability requirement. The first one can be provoked by the death of
a management service or even the own slave node. This failure is managed by the
master node by re-allocating the lost processes in another node and by restarting
the dead process. The most catastrophic scenario emerges when the management
process in the master dies, or its machine goes down. In this case, master node can
be replaced by a secondary master node or by another strategy planned for high
availability.

2.3 Hadoop Ecosystem

Undoubtedly Hadoop MapReduce can be deemed as the keystone technology in the
Big Data space. After the presentation of MapReduce by Google designers [24],
Hadoop MapReduce was grown by the community, and became the most used and
powerful open-source implementation of MapReduce. Nowadays leading compa-
nies like Yahoo have scaled from 100-node Hadoop clusters to 42K nodes and
hundreds of petabytes [36].

The main idea behind Hadoop was to create a common framework which can
process large-scale data on a cluster of commodity hardware, without incurring
in a high cost in developing (in contrast to HPC solutions) and execution time.
Hadoop MapReduce was originally composed by two elements: the first one
is the distributed storing solution called HDFS, and the second one is a data
processing framework that allows to run MapReduce-like jobs. Apart from these two
main goals, Hadoop implements primitives to address scalability, failure recovery,
resource scheduling, etc.

But Hadoop is today more than a single technology, but a complete software
stack and ecosystem formed by several components that address diverse purposes.
The common factor is that all of them are built on Hadoop, and tightly depend on
this technology. Some of these projects are actually Apache top-level projects [12],
whereas others are continuously evolving or being created. In this section, we
focus on enumerating the main components of Hadoop, as well as the cutting-edge
elements recently developed for the ecosystem. All components are divided into
several categories: storage, processing, high-level components. Figure 2.4 depicts a
simplified scheme with the most popular components.
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Fig. 2.4 Hadoop ecosystem

2.3.1 Distributed Storage Components

HDFS [34] is the main module of Apache Hadoop to support distributed storage.
This module, which comes as a default, implements almost all concepts discussed
in Sect. 2.2.2. The main abstraction here is the distributed file, which is composed
by many data blocks or partitions of custom size. These partitions are distributed
and allocated in the data nodes, trying to balance the disk load as much as possible.
HDFS also allows replication of blocks across different nodes and racks. In HDFS,
the first block is ensured to be placed in the same processing node, whereas the
other two replicas are sent to different racks to prevent abrupt ends due to inter-rack
issues.

HDFS was thought to work with several storage formats. It offers several APIs to
read/write registers. Some relevant APIs are: InputFormat (to read customizable reg-
isters) or RecordWriter (to write record-shaped elements). Users can also develop
their own storage format, and to compress data according to their requirements.



2.3 Hadoop Ecosystem 25

Persistence in Hadoop is mainly performed in disk. However, there are some novel
advances to optimize persistence by introducing some memory usage. For instance,
in Apache Hadoop version 3.0 was introduced the option of memory usage as
storage medium.

Beyond distributed files, distributed storage can be addressed by non-relational
databases, commonly known as NoSQL databases [56]. As the former ones were
not able to adapt to high throughput problems in the Big Data scenario, NoSQL
databases were created to provide simpler database designs, better scalability, and
proper adaptation. Specific data structures were designed too (tuples, columns,
graphs, or documents) to make NoSQL more versatile and rapid than other relational
solutions for some purposes. As mentioned before, maybe the most relevant feature
of NoSQL databases are its great versatility. These databases can be utilized as
caching layer for high-speed data or as store for non-transactional data (web logs),
among many other use cases.

In general, NoSQL databases [46] are formed by several logical layers. Logical
data model layer is the main layer, which provides loosely typed data schemes for
incoming data (map, column family, etc.). Data distribution layer ensures scaling-
out on multiples nodes in an elastic way, maintaining at the same time the CAP
theorem [33]. Persistence layer allows to save information in disk or memory or a
trade-off of both. And finally, interface layer supports several non-SQL interfaces
(REST, API, etc.) to access data.

MongoDB [45] is probably the most well-known open-source NoSQL database.
It provides document object model for storing objects present at programming time.
High-level objects are previously transformed into a JSON-based key/value tuple at
runtime, and at the same time they are organized in collections (similar to tables).
By doing so there is no need to define a schema, and the retrieval of a single register
is much faster.

In-memory databases were designed to replace the hegemonic schema held by
standard database systems until date. In-memory database systems, which focus
on the utilization of memory of nodes, are intended to replace disk-based storage
with fast and predictable accesses to memory. However these databases provide
as an extra the feature of spill data to disk asynchronously in case of memory
overflow. One of the main characteristics of in-memory solutions written in Java
is the replacement of Java Heap memory by off-heap memory, not affected by GC
pauses.

Some experts group in-memory solutions along with NoSQL technologies since
many databases support NoSQL-based structures like columnar or document. In
fact, in-memory databases meet similar use cases as NoSQL databases. They are
recommended where applications require high throughput, fast analytical process-
ing, or an intermediate temporary storage previous to the final storage. Among the
long list of open-source options for memory-based storage, we can highlight some
popular solutions like Hazelcast [37] or Apache Ignite [9].
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2.3.2 Distributed Processing Components

Although MapReduce [24] is the native processing solution in Apache Hadoop,
today it supports multiple alternatives with different processing schemes. All these
solutions have in common that use a set of data nodes to run tasks on the local data
blocks, and one master node (or more) to coordinate these tasks. Modern processing
frameworks can be categorized into two folds according to their relationship with
the Hadoop Ecosystem: the former ones are those which are exclusively designed
to work within the ecosystem. Some examples are Hadoop MapReduce and Tez.
Secondly, there are other technologies that are developed to run on multiple
platforms, like Apache Spark and Apache Flink which can run on Hadoop. Most of
these components are dependency-free, and can be interconnected easily. However
some of them have acquired a major entity, and has grown in complexity and size
forming a completely isolated software stack. For instance, University of Berkeley
has developed a complete ecosystem around Apache Spark that deserves a complete
section due to its magnitude. In the next sections, we will highlight both pluggable
and complex components separately.

Apart from Hadoop MapReduce (henceforth called Hadoop MapReduce) which
has been already analyzed, Hadoop’s creators designed Apache Tez [16] which
transforms processing jobs into DAGs. Thanks to Tez, users can run any arbitrary
complex DAG of jobs in HDFS. Tez thus solve interactive and iterative processes,
like those present in Hive, Pig or Cascading. Its most relevant contribution is that
Tez translate any complex job to a single MapReduce phase. Furthermore, it does
not need to store intermediate files and reuses idle resources, which highly boost the
overall performance.

Hadoop MapReduce evolves to a more general component, called yet another
resource negotiator (YARN) [17], which provides extra management and mainte-
nance services relied to other components in the past. YARN also acts as a facade
for different types of distributed processing engines based on HDFS, such as Spark,
Flink, or Storm. In short, YARN was intended as a generic purpose system that
separates the responsibilities of resource management (performed by YARN) and
running management (performed by the given application).

Among the full set of advantages claimed by YARN, we can highlight its capacity
to run several application on the same cluster without the necessity of moving data.
In fact, YARN allows reusing resources across alike applications in parallel, which
improves the overall usage of resources. In case of nonconformity, YARN allows
users to write its own master to give full support to their requirements.

2.3.3 High-Level Components

Built on the processing layer there exist a wide range of high-level applications
that gives full support to several user tasks, such as SQL-based queries, analytical
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processing, or ML. High-level applications translate user logic programs to a lower
level so that the processing engine can understand and process them, and lastly
provide trustworthy insights from data. All high-level components shown in this
section are not only focused on Hadoop, namely they can work with other engines
(e.g.: some algorithms in Mahout can run on Spark, or Spark can run on YARN).
The opposite is also true. One distributed processing engine can give support to
multiple components, which is asserted by the complete ecosystem built around
Hadoop MapReduce.

In this section we outline the most popular open-source high-level applications
by dividing them into several categories: SQL-based, workflow, graph processing,
and ML components.

SQL-Based Components

SQL-based components are those that support ANSI SQL instructions to query and
write data. In spite of relational relationships are far from appropriate in many large-
scale databases and problems, they are so popular today that Big Data technologies
must implement at least some basic functionalities from SQL environment. In this
section, we present some open-source solutions for SQL-related problems.

Apache Hive [8] is the native data warehousing solution for Hadoop. It addresses
ELT use cases (extract, load, and transform), as well as reporting through SQL
interfaces. New developments in Hive add the capability of serving queries in OLAP
spaces with sub-second time (Hive LLAP). One advantage of Hive is the possibility
of using different processing models to solve ETL queries. In fact Hive has been
tested on Tez with better performance results, and on Spark as of Hive 1.1. Hive is
able to impose structure too on several input data formats like text, ORC, Parquet
(columnar), or Avro.

Apache Drill [3] is SQL-based data exploration and query platform which
explore data in Hadoop without requiring a formal scheme for input data. Drill
utilizes a model inspired by Google’s Dremel [43], which perform queries efficiently
by separating out the schema from the input data. Apache Drill consists of several
Drillbit services, which can act both as drivers and as slaves. Whenever a new query
arrives to the system, an idle Drillbit accepts the request, creates an optimized plan
for the query, and manages the entire process as leading process. The other idle
Drillbit processes (determined by the Zookeeper service) receive orders from the
driver Drillbit, which organizes the plan to obtain the optimal data locality.

Workflow Components

Workflow components are part of a high-level abstraction layer which allow
developers to easily write processing pipelines that describe all the stages to be
performed (such as read, select, aggregate, join, etc.). Workflow programs typically
have their own scripting language based on popular languages like Java or Python.
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All these alternatives are implemented using DAG model which allows them to
yield custom and flexible programs. Here we outline the most important workflow
components built for Hadoop.

Apache Pig [11] is a popular workflow component especially designed for ELT
processes in data warehousing. This provides its own scripting language, called Pig
Latin, to create high-level programs that can be executed on MapReduce, Tez, or
even Spark. Pig can impose structure on several data formats, and connect with
Hive so that both can be run in the same pipeline.

Cascading [2] is a distributed tool to create enterprise applications for Big
Data without too much knowledge about MapReduce. Cascading offers a set of
instructions (sinks, sources, flows, pipes, and taps) to construct Java-based pipelines
for Big Data processing. It also supports platforms like Tez, Flink, or Spark.

Graph Processing Components

Graph processing components are convenient for processing data whose best
representation is that based on vertices and edges instead of typical table, or array-
like structures. Examples for such data are social networks, payment transactions,
disease outbreaks, etc. Graph processing components are typically used with their
own APIs, however, in Spark some primitives are shared among several APIs.

Apache Giraph [7] is the iterative graph processing system built in Hadoop for
scalable processing of graph-based data. Inspired by Pregel architecture, Giraph
utilizes the BSP strategy to process input graphs. For example, in a social network
scenario, vertices represent real users, whereas edges represent friendship relations.
The input for graph processing defines graph topology, and also the initial values of
vertices and edges.

Machine Learning Software

Since the magnitude of learning problems has been growing exponentially, data
scientists demand rapid tools that efficiently extract knowledge from large-scale
data. This problem has been solved by MapReduce and other platforms by providing
scalable algorithms and miscellaneous utilities in form of ML libraries. These
libraries are compatible with the main Hadoop engine, and use as input the data
stored in the storage components.

Apache Mahout [10] was the main contribution from Apache Hadoop to
this field. Although it can be deemed as mainly obsolete nowadays, Mahout is
considered as the first attempt to fill the gap of scalable ML support for Big Data.
Mahout comprises several algorithms for plenty of tasks, such as classification,
clustering, pattern-mining, etc. Among a long list of golden algorithms in Mahout,
we can highlight Random Forest or Naïve Bayes.

The most recent version (0.13.0) provides three new major features: novel
support for Apache Spark and Flink, a vector math experimentation for R, and GPU
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support based on large matrix multiplications. Although Mahout was originally
designed for Hadoop, some algorithms have been implemented on Spark as a
consequence of the latter one’s popularity. Mahout is also able to run on top of
Flink, being only compatible for static processing though.

2.4 Apache Spark

Apache Spark [13] was born in 2010 with the publication of the resilient distributed
datasets (RDD) structures [68], the key idea behind Spark. Although Apache
Spark has a close relationship with many components from Hadoop Ecosystem,
Spark provides specific support for every step in the Big Data stack, such as
its own processing engine, and machine learning library. In fact Apache Spark
provides several persistence options to save processed data (local, network, NoSQL
databases, or cloud), not originally provided by Hadoop. Figure 2.5 provides an
overview of Apache Spark stack, with high-level components at the top, and some
of the supported data sources and formats at the bottom.

Its outstanding popularity and remarkable differences with Hadoop promoted
Apache Spark to the top-level market of Big Data platforms. The main contribution
of Spark is its great capacity to rapidly process data by using in-memory distributed
operations, specially designed for online and iterative computing. Some additional
optimizations have also been introduced in Spark with respect to Hadoop in the
shuffling and persistence stages of MapReduce jobs.

Comparing both platforms, it is easy to prove that Spark is able to complete
iterative processes 100× faster than Hadoop. As an extra proof, Spark won the
Daytona GraySort test [59] in 2014, beating the record set by Hadoop in sorting
100 terabytes of data.

In the following, we analyze the main engine for Spark processing as well as
some of the most relevant high-level components included in Apache Spark stack.

2.4.1 Spark Processing Engine

Apache Spark [38] is a distributed computing platform which can process large
volume data sets in memory with a very fast response time, thanks to its memory-
intensive scheme. Spark was originally thought to tackle iterative and interactive
problems, which repeatedly load and/or write partial data in each interaction. Spark
is compatible with several programming languages (Scala, Java, Python, and R),
data storages (local file server/NFS, Cassandra, Amazon S3, etc.), and management
frameworks (Tachyon, Mesos, YARN, etc.).

The heart of Spark is formed by RDD, which transparently controls how data
are distributed and transformed across the cluster. Users just need to define some
high-level functions that will be applied and managed by RDD. These elements are
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Fig. 2.5 Apache Spark framework

created whenever data are read from any source, or as a result of a transformation.
RDD consists of a collection of data partitions distributed across several data nodes.
A wide range of operations are provided for transforming RDD, such as filtering,
grouping, set operations, among others. Furthermore RDD are also highly versatile
as they allow users to customize partitioning for an optimized data placement or to
preserve data in several formats and contexts.

In Spark, fault tolerance is solved by annotating operations in a structure
called lineage. Spark transformations annotated in the lineage are only performed
whenever trigger I/O operations appear in the log. In case of failure, Spark re-
computes the affected branch in the lineage log. Although replication is normally
skipped, Spark allows to spill data in local disk in case the memory capacity is not
sufficient.

Spark developers provided another high-level abstraction, called DataFrames,
which introduces the concept of formal schema in RDD. DataFrames are distributed
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and structured collections of data organized by named columns. They can be seen as
a table in a relational database or a DataFrame in R, or Python (Pandas). As a plus,
relational query plans built by DataFrames are optimized by the Spark’s Catalyst
optimizer throughout the previously defined schema. Also thanks to the scheme,
Spark is able to understand data and remove costly Java serialization actions.

A compromise between structure awareness and the optimization benefits of Cat-
alyst is achieved by the novel Dataset API. Datasets are strongly typed collections
of objects connected to a relational schema. Among the benefits of datasets, we
can find compile-time type safety, which means applications can be sanitized before
running. Furthermore, datasets provide encoders for free to directly convert JVM
objects to the binary tabular Tungsten format. These efficient in-memory formats
improve memory usage and allow to directly apply operations on serialized data.
Datasets are intended to be the single interface in future Spark for handling data.

Spark SQL

Spark SQL provides a single point access for efficient processing of structured data,
such as Hive tables, parquet files, and JSON files. This interface helps users in
accessing data using standard SQL queries. DataFrames are the main supporters
of Spark SQL, though new Dataset API is also compatible with queries. Spark SQL
makes easier to mix SQL queries with learning algorithms, streaming processing,
or graphs.

GraphX

Likewise Spark SQL, GraphX provides a single interface for graph processing using
Spark engine. This component unifies ETL, learning and exploratory analysis, and
others into a single Spark API. RDD in GraphX can be viewed as both graphs
and collections at the same level. Graph operators and transformations can be
interchangeably performed with tiny effort. Users can also write custom iterative
graph programs following the Pregel API designed by Google. GraphX includes
several golden algorithms for graph processing like PageRank or Label Propagation.

Spark Streaming

Spark Streaming provides stateful common semantics to write streaming jobs for
Spark engine. This API enables scalable, high throughput, fault-tolerant stream
processing of unbounded data streams. Input can be ingested from many sources
like Kafka, Flume, or TCP sockets, and can be processed using complex functions
like map, join, and window. As part of Spark, code for processing and ingesting
streaming events may be integrated with SQL queries, predictive models, etc.
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Internally, Spark Streaming receives unbounded data and divides them into
discrete batches, which are later processed by the Spark engine to generate a stream
of results also represented as batches. Discretized Streams or DStreams are the main
structure used to represent these streams in form of RDD. Each RDD is formed
by data from a certain discrete interval. Any transformation applied on a DStream
translates to individual operations on the underlying RDD.

2.4.2 MLlib

MLlib project [44] was born in 2012 as an extra component of Spark. It was
released and open-sourced in 2013 under the Apache 2.0 license. From its inception,
the number of contributions and people involved in the project has been growing
steadily. Apart from official API, Spark provides a community package index [58]
(Spark Packages) to assemble all open-source algorithms that work with MLlib.

MLlib is a Spark library geared towards offering distributed ML support to Spark
engine. This library includes several out-of-the-box algorithms for alike tasks, such
as classification, clustering, regression, recommendation, even data preprocessing.
Apart from distributed implementations of standard algorithms, MLlib offers:

• Common utilities: for distributed linear algebra, statistical analysis, internal
format for model export, data generators, etc.

• Algorithmic optimizations: from the long list of optimizations included, we
can highlight some: decisions trees, which borrow some ideas from PLANET
project [47] (parallelized learning both within trees and across them); or general-
ized linear models, which benefit from employing fast C++-based linear algebra
for internal computations.

• Pipeline API: as the learning process in large-scale datasets is tedious and
expensive, MLlib includes an internal package (spark.ml) that provides an
uniform high-level API to create complex multi-stage pipelines that connect
several and alike components (preprocessing, learning, evaluation, etc.). spark.ml
allows model selection or hyper-parameter tuning, and different validations
strategies like k-fold cross validation.

• Spark integration: MLlib is perfectly integrated with other Spark components.
Spark GraphX has several graph-based implementations in MLlib, like LDA.
Likewise, several algorithms for online learning are available in Spark Streaming,
such as online k-Means. In any case, most of the components in the ASF stack
are prepared to effortlessly cooperate with MLlib.

MLlib also includes several of the most popular and widely used algorithms for
classification and regression.
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Logistic Regression

Logistic regression is a linear method that predicts a categorical response using
the probability. The loss function is given by the logistic loss. It can be used
for both binary problems (binomial logistic regression) and multiclass problems
(multinomial logistic regression).

Spark’s implementation of the logistic regression algorithm uses the limited-
memory BFGS (L-BFGS) algorithm [40] for optimization of the memory used.

Decision Tree

Decision trees are one of the most popular methods in ML for both classification
and regression tasks. They are easy to interpret, can handle categorical features, and
extend to the multiclass classification problem among other features.

A decision tree uses a tree-like graph for decision-making [54]. It starts with a
single node which divides into possible outcomes. Each of those outcomes leads to
additional nodes, which in turn are divided into other nodes. The end nodes are the
decision of a certain branch of the tree.

Spark’s implementation of the decision tree is optimized for scalability. The key
optimizations are: level-wise training, for selecting the splits for all nodes at the
same level of the tree, approximate quantiles, bin-wise computation, for saving
computation on each iteration by precomputing the binned representations of each
instance, and the avoiding of the map operation.

Random Forest

Ensembles are algorithms that combine a set of models build upon other machine
learning algorithms. Random Forests are a combination of decision trees where each
tree is trained independently using a random sample of the data.

Spark’s Random Forest implementation builds upon the decision tree code,
which distributes the learning of single trees. Many of the optimizations are based
upon Google’s PLANET project [48]. Random Forests are easily paralleled since
each tree can be trained independently. Spark’s Random Forest does exactly that, a
variable number of subtrees are trained in parallel.

GBTs: Gradient-Boosted Trees

Like Random Forest, GBTs are also ensembles of decision trees. Decision trees
are trained iteratively, minimizing a loss function. Each iteration, the algorithm
uses the current model to predict the label of each instance in the train set. Then
it compares the predicted label with the real one. The dataset is then relabeled to put
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more emphasis on the instances with bad predictions. The next iteration, the trained
decision tree will help with the wrong predictions [29].

GBTs can be employed for both binary classification and regression, using both
continuous and categorical features.

MLP: MultiLayer Perceptron

MLP classifiers are based on the feedforward artificial neural network [53]. They
are composed of multiple layers fully connected to each other. Every node in the
input layer represents the input data. All nodes transform the input data by a linear
combination with the nodes.

SVM: Linear Support Vector Machine

SVM builds a hyperplane (or a set of hyperplanes) in a high-dimensional space.
They can be used for classification, regression, or other tasks. Spark’s implementa-
tion of SVM optimizes the hinge loss [52] using OWLQN optimizer.

OVA: One-vs-All

OVA is a popular strategy for multiclass classification when using a binary classifier
[30]. OVA learns a model from each class, considering the instances of that class as
positive samples, and the rest of the instances as negative samples.

Naïve Bayes

Naïve Bayes is a simple probabilistic classifier for multiclass problems based on the
Bayes theorem [55]. It constructs rules that will be used for assigning examples to
a certain class, while assuming independence between every pair of attributes.

Naïve Bayes is a very efficient algorithm as it only needs a single pass over the
training data for computing the conditional probability distribution of each attribute
for a certain label.

MLlib supports both Bernoulli and multinomial Naïve Bayes.

Linear Regression

Linear regression is a statistic technique employed for studying the relation between
variables. There are two types of linear regressions: simple linear regression in the
case of one explanatory variable and multiple linear regression in the presence of
two or more explanatory variables.
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Generalized Linear Regression

Contrary to the linear regression, where the response is assumed to follow a
Gaussian distribution, the generalized linear regression follows an exponential
distribution.

Apache Spark’s implementation of generalized linear regression also provides
summary statistics, including p-values, residuals, Akaike information criterion, and
deviances, among others.

Survival Regression

MLlib implements the accelerated failure time (AFT) model [65], which is used to
analyze survivorship data.

Different from a proportional hazards model [28] designed for the same purpose,
the AFT model is easier to parallelize because each instance contributes to the
objective function independently.

Isotonic Regression

Isotonic (or monotonic) regression [19] is the technique of fitting a free-form line to
a sequence of observations. However, it has certain constraints: the fitted free-form
line must be non-decreasing (or non-increasing) everywhere, and it must lie as close
to the observations as possible.

2.4.3 Spark Packages

Spark Packages is an open-source community package index for Apache Spark
[58]. It keeps track of the different libraries and packages created for improving
the Apache Spark ecosystem. Currently, it contains more than 400 packages,
categorized depending on the purpose of the package.

ML is one of the most prolific categories of Spark Packages, containing almost
100 contributions. These packages extend Apache Spark’s MLlib with new algo-
rithms. Here we present two elemental algorithms used for preprocessing data:

• KNN_IS: The K-nearest neighbors (KNN) algorithm experiences a series of
difficulties to deal with big datasets, such as high computational cost, high
storage requirements, sensitivity to noise, and inability to work with incomplete
information. In Big Data environments, Maillo et al. [42] proposed a technolog-
ical solution based on Apache Spark for the standard KNN algorithm to partly
alleviate some of problems stated above (memory consumption and computation
cost) by means of a distributed computation of nearest neighbors. In Fig. 2.6 we
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KNN IS

This is an open-source Spark package about an exact k-nearest neighbors
classification based on Apache Spark. We take advantage of its in-memory
operations to simultaneously classify big amounts of unseen cases against a
big training dataset. The map phase computes the k-nearest neighbors in
different splits of the training data. Afterwards, multiple reducers process the
definitive neighbors from the list obtained in the map phase. The key point of
this proposal lies on the management of the test set, maintaining it in memory
when it is possible. Otherwise, this is split into a minimum number of pieces,
applying a MapReduce per chunk, using the caching skills of Spark to reuse
the previously partitioned training set.

spark-shell --packages JMailloH:KNN IS:3.0

https://spark-packages.org/package/JMailloH/KNN_IS

Fig. 2.6 Spark package: KNN_IS

spark-knn

k-Nearest Neighbors algorithm implemented on Apache Spark. This uses a
hybrid spill tree approach to achieve high accuracy and search efficiency. It
scales very well both horizontally and in terms of number of observations/di-
mensions.

spark-shell --packages saurfang:spark-knn:0.2.0

https://spark-packages.org/package/saurfang/spark-knn

Fig. 2.7 Spark package: KNN hybrid spill tree

can find a Spark Package associated with this research in the third-party Apache
Spark Repository.

• spark-knn: In [41], a hybrid spill tree is proposed to compute parallel KNN,
hybridizing metric trees and spill trees to speed up the classification and
maintain a good performance. This approximate approach dramatically reduces
the computational costs of the KNN algorithm in a Big Data context with a high
number of instances. In Fig. 2.7 we can find an open-source implementation of
this hybrid spill tree available as a Spark Package.
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Spark Packages also provides a way to interconnect other frameworks with
Apache Spark. For example, spark-sklearn1 integrates the Spark computing frame-
work with the popular scikit-learn library [22]. CaffeOnSpark2 enables deep
learning in Spark clusters. Finally, sparkling-water3 connects worlds of H2O [63]
and Spark.

2.5 Streaming Processing Frameworks for Big Data

Streaming processing frameworks are those platforms mainly designed to process
unbounded and continuous streams of data in controlled time periods. These systems
typically process streams in forms of batches or windows, which are aggregated to
provide partial results in each time.

The usual model implemented by these systems is the producer–consumer agent
model, where each agent intercepts streaming data, processes data, and eventually
sends the result to the next element. Agents are networked to implement complex
logic models and relationships.

Streaming processing technologies are normally integrated with other frame-
works (e.g., Hadoop, Spark, etc.), as extra services. These systems are only
responsible of processing streaming events and providing results to other external
services.

2.5.1 Apache Flink

Apache Flink [4] is a distributed processing component focused on streaming
processing, which was designed to solve problems derived from micro-batch models
(Spark Streaming). Flink also supports batch data processing with programming
abstractions in Java and Scala, though it is treated as a special case of streaming
processing. In Flink, every job is implemented as a stream computation, and every
task is executed as cyclic data flow with several iterations. Flink provides two
operators for iterations [5], namely standard and delta iterator. In standard iterator,
Flink only works with a single partial solution, whereas delta iterator utilizes two
worksets: the next entry set to process and the solution set.

Apache Flink offers a high fault tolerance mechanism to consistently recover
the state of data streaming applications. This mechanism is generating consistent
snapshots of the distributed data stream and operator state. In case of failure, the
system can fall back to these snapshots.

1https://spark-packages.org/package/databricks/spark-sklearn.
2https://spark-packages.org/package/yahoo/CaffeOnSpark.
3https://spark-packages.org/package/h2oai/sparkling-water.

https://spark-packages.org/package/databricks/spark-sklearn
https://spark-packages.org/package/yahoo/CaffeOnSpark
https://spark-packages.org/package/h2oai/sparkling-water
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Apache Flink has four big libraries built on those main APIs:

• Gelly: is the graph processing system in Flink. It contains methods and utilities
for the development of graph analytic applications.

• FlinkML: this library aims to provide a set of scalable ML algorithms and an
intuitive API. Until now, FlinkML provides few alternatives for some fields in
machine learning: SVM with CoCoA or multiple linear regression for supervised
learning, KNN join for unsupervised learning, scalers and polynomial features
for preprocessing, alternating least squares for recommendation, and other
utilities for validation and outlier selection, among others. FlinkML also allows
users to build complex analysis pipelines via chaining operations (like in MLlib).
These pipelines are inspired by the design introduced by scikit-learn in [22].
FlinkML is described in detail in Sect. 9.4.

• Table API and SQL: is a SQL-like expression language for relational stream and
batch processing that can be embedded in Flink’s data APIs.

• FlinkCEP: is the complex event processing library. It allows to detect complex
events patterns in streams.

FlinkML also includes some of the most popular and widely used algorithms for
supervised and unsupervised learning.

Supervised Learning

FlinkML includes two algorithms for supervised learning. It also comes with an
optimization framework for finding the best parameters for a certain model:

• SVM with CoCoA: it is an SVM classifier using a linear optimizer. The
communication-efficient distributed dual coordinate ascent algorithm (CoCoA)
[32] and the stochastic dual coordinate ascent (SDCA) algorithms are used in
Flink to solve the previously defined minimization problem. CoCoA consists of
several iterations of SDCA on each partition, and a final phase of aggregation of
partial results. The result is a final gradient state, which is replicated across all
nodes and used in further steps.

• Multiple linear regression: it uses stochastic gradient descent (SGD) [51] to
approximate the gradient solutions with squared loss. In SGD a sample of data
(called mini batches) is used to compute subgradients in each phase. Only the
partial results from each worker are sent across the network in order to update
the global gradient.

• Optimization framework: FlinkML also provides an optimization framework.
This framework is focused on supervised learning. It can be used to find a model,
defined by a set of parameters that minimize a function given a set of labeled
examples. It supports different loss functions (squared, hinge, and logistic loss)
as well as two regularization types (L1 and L2). It also allows the use of SGD for
finding the local minimum of the function.
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Unsupervised Learning

The unsupervised section of FlinkML is completed with an exact KNN join
algorithm [20].

This algorithm uses a brute-force approach for computing the distance between
every pair of training and test examples. For speeding up the computation of the
distances, the algorithm uses a quadtree. The quadtree is very efficient with many
examples, but scales poorly with the increasing number of dimensions. That is why
the algorithm will automatically choose whether or not to use the quadtree.

2.5.2 Apache Flume

Apache Flume [6] was originally developed for processing application logs; how-
ever, the current version of Flume supports any type of streaming data. Flume is
based on four key concepts: source, sink, channel, and interceptors. Whereas sources
are intended to be the origin of streaming data, sinks act as the former destinations
for processed data. Channels are arbitrary systems in charge of transferring data
from sources to sinks. Lastly, interceptors alter or remove moving events.

Flume comprises multiple sources, sinks, channels, and configurations to create
complex data flow pipelines for processing purposes. Flume is specially thought
for simple streaming use cases (filtering or aggregations) since these features are
natively implemented in Flume. For complex problems, Flume also allows custom
code. Easy deploy and configuration of Flume is another valuable advantage of
its use.

2.5.3 Apache Storm

Apache Storm [15] is another distributed processing framework for processing high
volume of unbounded streaming events in real time. Storm is a versatile tool that
offers support for several use cases (analytics, ML, unbounded computation) and
data sources (HDFS, Cassandra, etc.). Storm is much more suitable for complex
processing requirements than Flume thanks to its complete Trident API, full of
operators.

The core abstractions in Storm are: the Stream (represents an unbounded
sequence of tuples), the Spouts (read events from a source), and the Bolts (consumes
input streams, process them, and emits transformed streams). All these components
are connected forming a network (Topology) in order to run complex use cases of
stream transformations.

Resulting topologies are submitted to storm clusters for execution. Edges in
topology represent the subscriptions of Bolts to one or more nodes (Bolt or Spout).
When a node emits some tuples, they are sent to every Bolt that subscribes to the
stream part of the node.
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2.6 Spark vs. Flink: A Thorough Comparison Between Two
Outstanding Platforms

In this section, we make a thorough comparison between two of the most promising
distributing processing engines for large-scale ML: Apache Spark and Apache
Flink [31]. The main differences and analogies between both engines are presented
in order to outline which are the best scenarios for each platform.

The first remarkable difference between both frameworks lies in the way each
tool ingests streams of data. Whereas Flink is a native streaming processing
framework that can work with batch data, Spark was originally designed to work
with static data through its RDD. Spark uses micro-batching to deal with streams.
Micro-batching divides incoming data and processes small parts one at a time.
Its main advantage is that the structure chosen by Spark, called DStream, is a
simple queue of RDD. This approach allows to easily interleave between streaming
and batch APIs. However, micro-batching are not well prepared for systems that
require very low latency. Nevertheless, Flink fits perfectly well in those systems as
it natively uses streams for all type of workloads [32].

Unlike Hadoop MapReduce, Spark and Flink have support for data re-utilization
and iterations. Spark keeps data in memory across iterations through an explicit
caching. However, Spark plans its executions as acyclic graph plans, which implies
that it needs to schedule and run the same set of instructions in each iteration. In
contrast, Flink implements a thoroughly iterative processing in its engine based on
cyclic data flows (one iteration, one schedule). Additionally, it offers delta iterations
to leverage operations that only changes part of data.

Till the advent of Tungsten optimization project, Spark mainly used the JVM’s
heap memory to store objects [14]. Although it is straightforward solution, it may
suffers from overflow memory problems and GC pauses. Thanks to Tungsten, these
problems started to disappear. DataFrames allows Spark to manage its own memory
stack and to exploit the memory hierarchy available in modern computers (L1 and
L2 CPU caches). Flink’s designers, however, had these facts into consideration
from the early stages [5]. Flink’s team thus proposed to maintain a self-controlled
memory stack, with its own type extraction and serialization strategy based on
binary format. The advantages derived from these tunes are: less memory errors,
less GC pressure, and a better space data representation, among others.

Regarding optimization, both frameworks have mechanisms that analyze the
code submitted by the user and yield the best pipeline code for a given execution
graph; Spark through the DataFrames API and Flink as first citizen. For instance,
in Flink a join operation can be planned as a complete shuffling of two sets, or as a
broadcast of the smallest one. Spark also offers a manual optimization, which allows
the user to control partitioning and memory caching.
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Chapter 3
Smart Data

3.1 Introduction

Data is the natural resource of the twenty-first century. Such resource is vastly
gathered, resulting in huge amounts of data that are stored every second. These
high dimensional data pools, along with their associated technologies, are often
referred to as Big Data. Big Data as concept is defined around five aspects [12]:
data volume, data velocity, data variety, data veracity, and data value. While the
volume, variety, and velocity aspects refer to the data generation process and how
to capture and store the data, veracity and value aspects deal with the quality and
the usefulness of the data. These two last aspects become crucial in any Big Data
[16], where the extraction of useful and valuable knowledge is strongly influenced
by the quality of the used data. Nowadays, Big Data as a discipline has already
gone through its implantation cycle and is nowadays transversal for any data driven
enterprise. Thus, Big Data solutions and technologies represent the current way
to reach competitiveness and growth in our society, where connected devices are
rapidly increasing, generating data at ever growing rates.

Recently, Smart Data (focusing on veracity and value) has been introduced,
aiming to filter out, or amend, the imperfections and to highlight the valuable
data, which can be effectively used by companies and governments for planning,
operation, monitoring, control, and intelligent decision-making. Three key attributes
are needed for data to be smart, it must be accurate, actionable, and agile:

• Accurate: data must be what it says it is with enough precision to drive value.
Data quality matters.

• Actionable: data must drive an immediate scalable action in a way that maximizes
a business objective like media reach across platforms. Scalable action matters.

• Agile: data must be available in real time and ready to adapt to the changing
business environment. Flexibility matters.
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A challenge that becomes even trickier is the management of the quality of the
data in Big Data environments. Advanced Big Data modeling and analytics are
indispensable for discovering the underlying structure from retrieved data in order
to acquire Smart Data. Data must be appropriately sorted, structured, analyzed to
get smarter analysis and be usable in the future; make data actionable in order to
address customer and business challenges putting data in the context of purpose [3].
In this book we provide several preprocessing techniques for Big Data, transforming
raw, corrupted datasets into Smart Data.

In the rest of this chapter we shall discuss the state of Smart Data in the literature,
differentiating the “Big” component of the data from the “Smart” part of it.

3.2 From Big Data to Smart Data

Big Data is an appealing discipline that presents an immense potential for global
economic growth and promises to enhance competitiveness of high technological
countries. As in any knowledge extraction process, vast amounts of data are
analyzed, processed, and interpreted in order to generate profits in terms of
either economic or advantages for society. Once the Big Data has been analyzed,
processed, interpreted, and cleaned, it is possible to access it in a structured way.
This transformation is the difference between “Big” and “Smart” Data [15], as can
be seen in Fig. 3.1.

The first step in this transformation is to perform an integration process, where
the semantics and domains from several large sources are unified under a common
structure. The usage of ontologies to support the integration is a recent approach [4],
but graph databases are also an option where the data is stored in a relational form,
as in healthcare domains [20].

Even when the integration phase ends, the data is still far from being “smart”:
the accumulated noise in Big Data tasks creates problems, especially when the
dimensionality is large [6]. As data grows, noise accumulates and algorithmic
instability appears [7], particularly when a massive sample pool has been integrated
from heterogeneous sources. Thus, in order to be “smart,” the data still needs to
be cleaned even after its integration. Unfortunately, there is a lack of proposals for
noise cleaning in Big Data environments. Since data cleaning usually imposes the
creation of several classifiers and data partitioning [9], efficient solutions for large
volume of data are challenging. Thus, in order to be “smart,” the data still needs to
be cleaned even after its integration, and data preprocessing is the set of techniques
utilized to encompass this task [10, 11].

An alternative way to deal with redundant or contradictory data is the use of
data reduction techniques. These methods aim to reduce the original data, trying
to maintain the integrity and information as much as possible. Their application
is especially suitable when execution times of learning algorithms are prohibitive,
forcing the practitioner to reduce the input size to a manageable volume with the
maximum quality possible. In this area the most relevant reduction techniques
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Big Data

Data
Preprocessing

Smart Data

Fig. 3.1 Moving from “Big” to “Smart” Data

are feature selection (FS), instance selection (IS), and discretization algorithms.
Some FS algorithms for Big Data have already been proposed [19, 22, 25] and IS
techniques are also drawing the attention of researchers as well [29]. Discretization,
which is a mandatory step for some learning algorithms, has been already tackled
by adapting sequential procedures to modern Big Data frameworks [21].

We must also pay attention to the label distribution in supervised problems
in Big Data problems. Class imbalance, which is already a challenge in classic
machine learning problems, acquires a new dimension in Big Data, where the
overwhelming amount of examples mislead learning algorithms to mostly consider
only the majority examples. In traditional machine learning, data resampling was the
preferred choice. While data resampling is already available in Big Data frameworks
[5, 23], the introduced artificial minority examples can be a problem, as they
increment the computing cost of the posterior learning algorithms. For this reason,
novel preprocessing approaches are being explored by researchers [8].

Once the data is “smart,” it can hold the valuable data and allows interactions in
“real time,” like transactional activities and other business intelligence applications.
The goal is to evolve from a data-centered organization to a learning organization,
where the focus is set on the knowledge extracted instead of struggling with the
data management [13]. However, Big Data generates great challenges to achieve
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this since its high dimensionality and large example size imply noise accumulation,
algorithmic instability and the massive sample pool is often aggregated from
heterogeneous sources [7]. While FS, discretization or imbalanced algorithms to
cope with the high dimensionality have drawn the attention of current Big Data
frameworks (such as Spark’s MLlib [17]) and researchers [21, 25, 27], algorithms
to clean noise are still a challenge. In summary, challenges are still present to fully
operate a transition between Big Data to Smart Data [28].

3.3 Smart Data and Internet of Things: Smart Cities
and Beyond

More and more sensor-based devices are deployed for various applications to collect
a huge amount of data for understanding the world. We have already mentioned
that such data gathering process is at the foundation of Big Data. Traditionally,
the connected devices would transfer all the monitored information to the cloud,
under the cloud computing paradigm [1]. Although elastic to computational problem
demands, cloud computing as a service presents latency problems. Extracting the
value from data in these cases implies transferring and processing the huge volumes
of raw data, transforming it to Smart Data, and sending back the decisions or
knowledge obtained.

As the cost of the sensor devices drops, the cloud computing paradigm is
evolving. Sensor’s capabilities are increasing, enabling them to become smarter
because they can generate Smart Data (which means processing out the noise and
hold the valuable data) [26] at the very edge of the process. Internet of Things
(IoT) [2] and the success of rich cloud services have pushed the horizon of a new
computing paradigm, edge computing, which calls for processing the data at the
edge of the network. Figure 3.2 depicts the displacement of computing task from the
cloud servers to the very end of the connected, processing network. Thus, opposed
to cloud computing the edge computing paradigm arises [24], where the processing
(or at least part of it) is carried out locally, enabling lower response times and less
network congestion.

The natural application of the edge computing power is to process the data,
generating Smart Data locally, which can be rapidly exploited by stakeholders.
Envisioning a technological landscape where most of the connected devices are
smart in our everyday life has led to the term smart cities [30]. In such a vision, the
unification of services is achieved by the local processing in IoT and by generating
Smart Data in situ.

Nevertheless, smart cities are not the only scenario where smart devices will
transform the society. Another prominent example is the presence of cyber-physical
devices in industry, the so-called Industry 4.0 [14], in which information is closely
monitored and synchronized between the physical factory floor and the cyber



References 49

Connected
Cities Connected

Devices

Connected
Transport

Fig. 3.2 Cloud computing (top) opposed to edge computing (bottom). The computing power
moves from the remote servers to the network’s edges, allowing lower latencies and new
opportunities

computational space. Thanks to information analytics applied over the networked
machines, the smart information processed and generated will enable the industry
devices to perform more efficiently, collaboratively, and resiliently [18].
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Chapter 4
Dimensionality Reduction for Big Data

4.1 Introduction

Popular 5Vs scheme has served to practitioners and data scientists to establish the
most relevant challenges of Big Data [30]. Although there is a growing consensus
about Big Data and the immediate challenges behind each “V,” 5Vs scheme can
be deemed as subjective and in continuous evolution. For example, when we talk
about volume the idea of millions of tuples comes to our mind: several clients,
patients, etc. However, it is noteworthy to remark that recent research on volume
has only geared towards one side of the coin (longitude), and has obviated the “Big
Dimensionality” side (broadness). Yet several works on high-dimensional small
sample size problems are present in the literature, the study of high volume in both
sides remains under-explored. The explosion of dimensions in real-world problem
brings about new challenges to data analytics.

Causes of feature explosion are many and diverse. One is related to the different
representations that data can take. As there exist many ways to describe a problem,
there will be many alike representations, and thus, features to model it. Depending
on expert’s experience, background, and understanding of the input domain, feature
descriptors can vary in order to meet the mental representation imposed by the
expert. For instance, in text mining, practitioners work simultaneously with several
feature types such as words, n-grams, part-of-speech tagging templates, etc., in
order to achieve complete and comprehensive representations [26]. Not only text,
but also imagery data with millions of features are common in today’s real-world
applications [18]. Finally, novel advancements in computing infrastructure, and
outstanding technologies to process, storage and transmit distributed data have also
boosted the development of Big Dimensionality.

Notice that in this context more features may not necessarily imply more discrim-
inative power for algorithms. Features may just bring noise, or tiny importance to the
prediction process. This fact motivates the application of some smart election among
the overwhelming set of features so that only a reduced set of relevant features are
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considered during the learning phase. Feature selection (FS) and feature extraction
are among the most relevant tasks in data mining to accomplish this though task.
Both schemes enable models to perform faster, reduce storage requirements, and
in some cases improve accuracy (when reducing variance does not suppose an
increment on biased error).

Nowadays, the current volume of data managed by our systems has surpassed
the processing capability of standard systems and algorithms. Feature reduction
is presented as an enabling remedy for large-scale learners. However, reduction
methods first need to address the issues that prevent its operation on Big Data.
Particularly, one has to cope with the explosive combinatorial effects of “curse of
Big Dimensionality” while promoting high-value feature subsets from the original
set of irrelevant, and redundant features.

In the rest of this chapter, we shall start with the discussion of the big
dimensionality problem, as well as the benefits that can be exploited from this
curse (Sect. 4.2). Afterwards we shall outline the proposals developed until now to
deal with dimensionality reduction (Sect. 4.3). Hereinafter, we shall study in depth
one of the most relevant distributed selection solutions for high-dimensional data
(Sect. 4.4). Then, we study the problem of dimensionality reduction in Big Data
streaming scenarios (Sect. 4.5). Finally, we summarize the chapter and draw some
conclusions (Sect. 4.6).

4.2 The Curse of Big Dimensionality

Advancements on technology is one of the main causes of the development of
Big Dimensionality. Existing gaps between contemporary processing and storage
capacities that demonstrate our ability to capture and store data have far outpaced
our ability to process and utilize it. Moore’s law reports that processing capacity
double every 18 months, while disk storage capacity doubles every 9 months
(storage law).

For instance, technology of embedded cameras in cell phones is progressing
steeply each year boosted by innovations in integrated hardware (flashlight, pro-
cessor, sensor size, and techniques). The recent developments in smartphones and
also in its image capturing and processing abilities are encouraging users to replace
old-fashioned cameras by unique portable devices capable of capturing HD images
and video. Among with these developments, the giant popularity of online social
networks, like Facebook, Twitter, or Instagram, forecasts an accelerated expansion
of phone pictures on the Internet.

Behind images, pixel is the basic unit adopted by most feature generators, and
processing algorithms. Over the last decade, the resolution of embedded cameras in
cell phones has grown from 0.11 megapixels (SHARP J-SH04)1 to 4096 megapixels

1https://en.wikipedia.org/wiki/Camera_phone.

https://en.wikipedia.org/wiki/Camera_phone
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with new 4K-ready devices in 2017. Previous phenomenon evidences that the
growth of dimensions is unstoppable right now, and seems to continue in next years,
which will intensify the challenges in Big Data.

Another source of interest is the Internet. The content stored in the big web grows
every day, and seems to be endless thanks to storage developments, among other
technology advancements. Only the multimedia content stored in the Internet (text,
image, 3D graphics, audio, and video) represents over 60% of its traffic [36], and
online video more than half of multimedia content.

Online video provides even more descriptors (motion, acoustic, text, etc.) than
pictures as video is far more complex than a sequence of images. In recent years
video format has evolved with increasing resolution and metadata, reaching 4096
megapixels in each frame.

On the other hand, processing capabilities in today’s systems have improved too
in order to give support to the increasing amount of users browsing through the
Internet. Uploading and presenting videos, pictures, and other content are some
activities that demand large-scale analysis, summarization, collection, aggregation,
and querying.

Feature uptrend is not only specific from the multimedia field, but also can be
found in science. For instance, microarray data consists of thousands of biomarkers
(features) where only some relevant genes are selected for further in vitro study [15].
This task is usually performed by an analytical program which discerns between
relevant and useless genes. Thanks to the recent developments in biotechnology,
new bio-inspired formats have arisen to more concisely define the behavior of genes.
Single-nucleotide polymorphism is a novel format that allows representations of
millions of features, which is a quantum leap compared with the thousand scale
used previously.

Focusing on popular public datasets, we perform an analysis on the rise of Big
Dimensionality in two popular data science repositories, namely UC Irvine Machine
Learning Repository (UCI) [16] and LIBSVM [9]. UCI and LIBSVM have evolved
from small samples to larger sizes up to millions of dimensions. LIBSVM covers
a wide spectrum of datasets from many fields such as imagery (Corel), biology
(Leukemia), physic (Higgs), text (Webspam), time-series (Gas Sensor), and video
(YouTube MVG), among others. Table 4.1 outlines the main characteristics of some
datasets created in the period 1985–2015, and uploaded to these repositories.

To illustrate the evolution of dimensions on these popular repositories, we depict
in Fig. 4.1 the number of features for datasets published in these repositories from
the 1985 to 2015. From here, an exponential growth in dimensionality can be
highlighted across all repositories. For example, in LIBSVM, the smallest dataset
is USPS (256 dimensions), whereas the largest one is KDD2010 (almost 30 million
dimensions). This means that in 2010 the upper limit in size is 100,000 times larger
than in only 16 years before. Following this upward trend, we may assert that future
systems will need to be prepared to deal with billions of features.

Worst of all, Big Dimensionality is far from being embraced by current research
in FS. In [47], authors show that the dimensionality managed by a long list of
algorithms lags significantly behind that produced by current datasets. As a further
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Table 4.1 Evolution of
dimensions (# features) in
popular data repositories
(UCI and LIBSVM) from
1985 to 2015

Repository Dataset # Dimensions Year

LETTER UCI 16 1991

SOYBEAN UCI 35 1987

CHESS UCI 36 1989

H2O UCI 38 1993

CONNECT-4 UCI 42 1995

SPECTF UCI 44 2001

MOLECULAR UCI 58 1990

MAMMALS UCI 72 1992

INSURANCE UCI 86 2000

COREL UCI 89 1999

SPECTROMETER UCI 102 1988

ISOLET UCI 617 1994

INTERNET AD UCI 1558 1998

P53 UCI 5409 2010

BAG OF WORDS UCI 100,000 2008

PEMS-SF UCI 138,672 2011

YouTube MVG UCI 1,000,000 2013

Gas sensor UCI 1,950,000 2013

URL UCI 3,231,961 2009

USPS LIBSVM 256 1994

COLON-CANCER LIBSVM 2000 1999

GISETTE LIBSVM 5000 2003

Leukemia LIBSVM 7129 1999

BREAST-CANCER LIBSVM 7129 2001

REAL-SIM LIBSVM 20,958 1998

SIAM LIBSVM 30,438 2007

RCV1 LIBSVM 47,236 2004

SECTOR LIBSVM 55,197 1998

News20 LIBSVM 62,061 1995

News20.binary LIBSVM 1,355,191 2005

LOG1P LIBSVM 4,272,227 2009

Webspam LIBSVM 16,609,143 2006

KDD2010 LIBSVM 29,890,095 2010

proof, authors show that less than 80% of methods do not dare to process datasets
with more than 10,000 dimensions, and only a 5% of these methods tackle datasets
with millions of features.

Given this gap between immense dimensionality and outdated methods, it
has surged an urgent need for creating novel approaches, paradigms, and method-
ologies that can deal with such amount of features. Novel dimensionality reduction
is required to cope with complex requirements, such as fast processing and reduced
storage, while providing relevant subset of features. Large-scale feature reduction
can be addressed from two perspectives: either by designing novel sequential
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Fig. 4.1 Evolution of dimensions (# features) in common datasets from popular repositories (UCI
and LIBSVM) from 1985 to 2015

methods that explicitly address the requirements above or by creating distributed
solutions inspired by standard methods [35]. Neither of them are easy to implement
as several technical and algorithmic nuances must be carefully addressed.

Focusing on sequential approaches, filter methods [6] (rank features by some
criteria) could be deemed as a sure bet in the Big Data context because of its
great efficiency, and the possibility of offering preliminary results throughout a
greedy selection process. Nevertheless, most of the filters mainly focus on predictive
information and pay little attention on feature relations. This behavior negatively
affects problems where an important number of intrinsic interactions are present,
such as in microarray data analysis. Furthermore, filter algorithms usually get
trapped in local optima.

A possible solution here is to replace individual scores by some kind of
subset-level contribution measurement, which evaluate the importance of linkages
between selected features. Some examples that implement inter-feature interactions
are graph-based FS algorithms [29], and some information-based selectors like
minimum redundancy maximum relevance (mRMR) [32]. The latter approach, for
instance, selects those features more related to the class, and less related among
them.

Although more effective, subset-based selectors fail whenever they have to com-
pute interactions between millions of dimensions since its underlying computational
time complexity is quadratic. Imagine the case of KDD2010, where millions of
comparisons must be performed between features (pairwise comparison). This
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originates trillions of pairwise correlations to be computed, which is intractable for
current systems. Generally, many empirical works have shown that filter selectors
are not designed to scale above tens of thousands of features. Notice that this
supposes a big and unprecedented challenge for the data science community.

Some notable wrapper (rely on classifier weights) and embedded (selection is
integrated in learning) methods in the literature have proven to cope with huge
set of dimensions (from thousands of features) elegantly. For example, support
vector machines (SVM) based on recursive feature elimination (SVM-RFE) [19]
rely on support vectors to evaluate feature individually, and then removes those
less important from the final set. For a leap in efficiency, l1-norm regularizer
may be included in SVM [17]. In recent years, other techniques based on group
discovery [48] and feature generation machines [40] have been proposed to further
improve selection in large environments.

As mentioned before feature correlation possesses an important role in FS. It
is especially important in methods that evaluate groups of features. Graph-guided
fused lasso is among the first group selection techniques in using a graph to select
groups. Octagonal shrinkage and clustering algorithm for regression reduce similar
feature tuples by adding the l∞-regularizer [7]. An efficient projection strategy was
introduced in [50] to boost up the grouping process.

Besides the drawbacks previously presented, there still exist good news about Big
Dimensionality (the blessing of Big Dimensionality), though they are less abundant.
A correlation study performed by Zhai et al. [48] on two versions of the News20
dataset shows that more than 99% of features present correlation scores lower than
0.1. This comes to say that most of the features are either uncorrelated or those
correlated are extremely sparse. In fact, correlated features are far less abundant
in News20.binary (1,355,191 dimensions) than in News20 (62,601 dimensions).
Previous results are quite positive in the sense that FS could leverage upon the
inversely proportional relationship between dimensionality and correlation to easily
select a very reduced group of relevant features.

4.3 Distributed Proposals for Dimensionality Reduction

This section aims at detailing a thorough list of distributed contributions on Big
Data dimensionality reduction. Table 4.2 classifies all contributions in the literature
according to the following features: number of features, number of instances,
maximum size managed by each algorithm, as well as the framework upon they
have been developed. The size has been computed by multiplying the total number
features by the number of instances (8 bytes per datum). For sparse methods (e.g.:
[37] or [40]), only the non-sparse cells have been considered.2

2Although feature generation machine is not a distributed method as such, it has been included
here for its outstanding relevance in the comparison.
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Table 4.2 Dimensionality reduction methods for Big Data

Methods # Features # Instances Size (GB) Framework

[35] 630 65,003,913 305.1196 Apache Spark

[33] 630 65,003,913 305.1196 Hadoop MapReduce

[42] 630 65,003,913 305.1196 Hadoop MapReduce

[49] 1156 5,670,000 48.8350 MPI

[40] 29,890,095 19,264,097 4.1623 C++/MATLAB

[37] 100,000 10,000,000 1.4901 MapReduce

[31] 100 1,600,000 1.1921 Apache Spark

[43] 127 1,131,571 1.0707 Hadoop MapReduce

[23] 54,675 2096 0.8538 Hadoop MapReduce

[39] 54 581,012 0.2338 Hadoop MapReduce

[11] 20 1,000,000 0.1490 MapReduce

[10] – – 0.0976 Hadoop MapReduce

[20] 256 38,232 0.0729 Hadoop MapReduce

[46] 11,852 50,000 0.0397 Hadoop MapReduce

[44] 20,000 2600 0.0387 Hadoop MapReduce

[25] 2728 13,000 0.2642 Twister

[41] 52 5253 0.0020 Hadoop MapReduce

[13] – – 0.0000 Hadoop MapReduce

[27] – – 0.0000 Hadoop MapReduce

[21] – – 0.0000 Hadoop MapReduce

The methods are ordered by total size (number of features × number of instances × 8
bytes/datum). Those methods with no information about number of features or instances have
been set to zero

From Table 4.2, we can conclude that methods in [33, 35, 42] are the only capable
of selecting features in datasets with hundreds of gigabytes, whereas [35, 40] are
capable of dealing with millions of features. From the previous list, we can highlight
the algorithm from [35] as the most competitive option since it is able to process
huge datasets in both dimensions (feature and instance side). It is also noteworthy to
remark that most of the methods are developed on Hadoop MapReduce; a platform
that has largely shown its deficiencies at dealing with learning/iterative processes.
Additionally, most of the methods test their performance on datasets with less than
a thousand of features, which is quite far from reality as shown in Fig. 4.1.

As mentioned before, FS has a key role to play in dealing with large-scale
datasets, especially those that present an ultra-high dimensionality. However, FS
methods, like many other learning methods, suffer from the “curse of dimension-
ality” [47], and consequently, are not expected to scale well. New paradigms and
tools have emerged to give support to this task [5], such as Apache Spark, Flink,
or Hadoop MapReduce. Most of them are centered in the use of parallel processing
to distribute the massive complexity burden across several nodes. Here, a list of the
contributions for FS for Big Data is presented:
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• [35]: authors designed a novel distributed FS framework for the Apache Spark
platform. It was inspired by a previous sequential framework based on infor-
mation theory and developed by Brown et al. [8]. The distributed framework
includes most of the state-of-the-art filtering selectors in the literature, like
mRMR or InfoGain. By considering redundancy and relevance measures in their
computations, this framework is able to evaluate interactions of features from two
perspectives: redundancy and relevance of features. This model will be described
in detail in Sect. 4.4 as an illustrative example of how to distribute the FS process
in a cluster environment.

• [33]: Peralta et al. proposed a different approach (called MR-EFS) based on
independent genetic algorithm processes (executed on each partition), and a
voting scheme to aggregate partial solutions.

By using a single MapReduce phase, MR-EFS is able to select the most
relevant features in the input dataset. The map phase in MR-EFS consists of
applying a CHC-based FS algorithm on each data partition. The result is a binary
vector indicating if each feature is locally selected or not. Then, a single reduce
phase is performed by averaging partial binary vectors. The final scheme is sent to
the master for the final reduction phase. Dataset reduction is achieved by applying
an extra MapReduce phase. Each map processes an instance and generates a
new one that only contains the features previously selected. Finally, the instances
generated are concatenated to form the final reduced dataset, without the need
for an extra reduce phase.

• [42]: Triguero et al. proposed an evolutionary feature weighting model to learn
the feature weights per map. They introduced a reduce phase adding the weights
and using a threshold to select the most relevant instance. This model was the
winner solution in the ECBDL’14 competition.

In this algorithm, each Map performs a whole differential evolution feature
weighting cycle in order to weight features according to the local structure of
data. That is, a complete loop of mutation, crossover, and selection operators for a
given number of iterations. Then, mappers will emit a resulting vector of weights
measuring the importance of each feature regarding this subset of the training set.
The proposed scheme only uses one single reducer to sum all the partial weights
in each map, so that aggregated information by feature is provided to the master
node.

• [49]: Zhao et al. proposed a FS framework for both unsupervised and supervised
learning, which includes several measures, such as the Akaike information
criterion, the Bayesian information criterion, and the corrected Hannan–Quinn
information criterion. This framework has been implemented on message passing
interface (MPI).

• [40]: Tan et al. propose an adaptive feature scaling scheme that reformulates
the FS problem as a convex semi-infinite programming (SIP) problem. They
first control the number of features to be selected by scaling and constraining
(through l1-norm) input features. The resulting problems are then transformed
to meet the convex requirement by applying a convex SIP scheme. A feature
generation machine is chosen as solver for this transformed problem, which
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includes top relevant features per iteration and solves a sequence of much reduced
multiple kernel learning subproblems. Authors certify the global convergence of
the model.

In order to improve the scalability of the method, Tan proposes to address the
primal form of the multiple kernel problems through a modified approximate
primal gradient method. The utilization of cache is also attached to further
improve the performance.

One of the main advantages of feature generation machines is that as they only
work with a small subset of features (kernels) in the subproblem optimization,
they are particularly appropriate for high-dimensional problems.

• [37]: Singh et al. proposed a new approximate heuristic, optimized for logistic
regression in MapReduce, which employs a greedy search to select features
increasingly. It also utilizes approximate log-likelihood computations based on
histogram data to speed up the whole process.

• [31]: A filter method based on column subset selection was implemented by
Ordozgoiti et al. However, as stated by the authors, this Spark algorithm is
designed for datasets with millions of features, but not for high-dimensional
problems.

• [43]: Wang et al. designed a family of FS algorithms for online learning.
The algorithm selects those features with larger weights, according to a linear
classifier based on L1-norm.

• [23]: Kumar et al. implemented three FS algorithms (ANOVA, Kruskal–Wallis,
and Friedman test) based on statistical test. All of them were parallelized on
Hadoop MapReduce so as each feature is evaluated independently.

• [39]: Sun et al. designed a method that computes the total combinatory mutual
information, and the contribution degree between all feature variables and class
variable. It uses an iterative process (implemented on Hadoop) to select the most
relevant features.

• [11]: A FS method based on differential privacy (Laplacian Noise) and a Gini-
index measure was designed by Chen et al. This technique was implemented
using a general MapReduce model. In the map phase, the algorithm computes
the Gini value for each feature on each data partition. Then, these values are
aggregated to form a rank of features.

• [10]: A simple version of TF-IDF (for Hadoop MapReduce) was designed by
Chao et al. to deal with text mining problem on Big Data. In [25], another
approach for FS in text mining is presented. In each map, TF-IDF information is
used to compute the probability distribution function for each feature, assuming
that all of them are Gaussian. In the same map, mutual information scores are
calculated and sent to the reduce phase, which compares and selects the best
ones.

• [20]: He et al. implemented on Hadoop a FS method using positive approxima-
tion as an accelerator for traditional rough sets.

• [46]: Eftim et al. propose an information-based FS algorithm, similar to [35].
In counterpart to [35], which greatly reduces the number of pairs generated,
this framework computes information gain by shuffling all pairs feature-value
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and class across the network. Although not very elegant, this process allows to
calculate simple and conditional likelihoods for the subsequent selection phase.

• [44]: A parallel implementation of the Relief algorithm is proposed here. Relief
is based on the idea that relevant features are those that help to distinguish close
instances in the input space. Returning to the distributed design, it performs
vertical splitting of original data to create subsets of features distributed across
the cluster. In the map phase, the Relief algorithm is applied on each subset to
classify the features by a weighting measure. These weights will serve to select
those features with a scores greater than a given threshold (reduce phase).

• [41]: Tanupabrungsun et al. proposed a genetic algorithm approach with a
wrapper fitness function. K-nearest neighbors are used to evaluate the solutions
in binary format (one gene per feature). In this work, the Hadoop master process
is in charge of the management of the population, whereas the fitness evaluation
is parallelized. To do that the whole test set is replicated across all nodes so that
the computation of distances is also parallel. The reducer combines solutions to
obtain the generational results.

• [13]: Dalavi et al. proposed a novel weighting scheme based on supervised
learning (using SVMs) for Hadoop MapReduce. Data nodes are responsible for
converting the documents into contribution vectors, which will be evaluated by a
SVM classifier.

• [27]: Meena et al. designed an evolutionary approach based on ant colony
optimization with the aim of finding the optimal subset of features. It parallelizes
on Hadoop MapReduce some parts of the algorithm, such as tokenization, the
computation of association degrees, and the evaluation of solutions.

• [21]: Hodge et al. proposed an unified framework which uses binary correlation
matrix memories to store and retrieve patterns using matrix calculus. They
propose to compute sequentially these matrices, and then, to distribute them on
Hadoop to obtain the final coefficients.

Concluding this section, we remark that almost every method in this list
evaluates features independently without considering complex interactions between
features (direct parallelization). Only methods such as [33, 35, 40, 42] consider the
underlying relationships between the whole set of features. Although more complex
to implement, we want to remark that inclusion of feature interactions is crucial to
improve the performance of selection algorithms in this new context of Big Data.

4.4 An Information Theoretical Feature Selection
Framework for Apache Spark

In this section, we will analyze an information theoretical FS framework, focused on
the large-scale FS problem [35]. This algorithm is inspired by an information-based
FS framework proposed by Brown et al. [8], which includes many common filtering
methods. In this work, Brown et al. show that algorithms such as mRMR and other
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spark-infotheoretic-feature-selection

This package contains a generic implementation of greedy Information The-
oretic Feature Selection (FS) methods. The implementation is based on the
common theoretic framework presented by Gavin Brown. Implementations of
mRMR, InfoGain, JMI and other commonly used FS filters are provided.

spark-shell --packages sramirez:spark-infotheoretic-
feature-selection:1.4.4

http://spark-packages.org/package/sramirez/
spark-infotheoretic-feature-selection

Fig. 4.2 Spark package: information theoretical FS framework

algorithms are special cases of conditional mutual information (CMI) when certain
specific independence assumptions are made about both the class and input features.
The distributed approach designed in [35] proves that these criteria are not only a
sound theoretical formulation, but also fit well within modern Big Data platforms,
and allow us to distribute several FS methods and their complexity across a cluster
of machines.

This framework contains a generic implementation of several information theory-
based FS methods—including mRMR, conditional mutual information maximiza-
tion (CMIM), and joint mutual information (JMI). In Fig. 4.2 we can find a Spark
Package associated with this research.

Below we first briefly present Brown’s framework, and analyze its adaptation
to the Big Data environment. We then describe in detail how the selection process
and the underlying information theory operations were implemented in a distributed
manner using Spark’s primitives.

4.4.1 Information Theory-Based Filter Methods

Information measures tell us how much information has been acquired by the
receiver when sent a message [28]. In predictive learning, we associate the message
with the output feature in classification.

A commonly used uncertainty function is mutual information (MI) [12], which
measures the amount of information one random variable contains about another,
in other words, it expresses the reduction in the uncertainty of one random variable
due to knowledge of the other variable:
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I (A;B) = H(A) − H(A|B)

=
∑

a∈A

∑

b∈B

p(a, b) log
p(a, b)

p(a)p(b)
,

(4.1)

where A and B are the two random variables with marginal probability mass
functions p(a) and p(b), respectively, p(a, b) is the joint mass function, and H

is the entropy.
MI can likewise be conditioned to a third random variable. Thus, CMI is

denoted as:

I (A;B|C) = H(A|C) − H(A|B,C)

=
∑

c∈C

p(c)
∑

a∈A

∑

b∈B

p(a, b, c) log
p(a, b, c)

p(a, c)p(b, c)
,

(4.2)

where C is a third random variable with marginal probability mass function p(c)

and p(a, c), p(b, c), and p(a, b, c) are the joint mass functions.
Filtering methods are based on a quantitative criterion or index, also known as

the relevance index or scoring. This index measures the usefulness of each feature
for a specific classification problem. Through the relevance of a feature for the class
(self-interaction), we can rank features and select the most relevant ones. However,
features can also be ranked using a more complex criterion such as whether it is
more redundant than another feature (multi-interaction). For instance, redundant
features (variables that carry similar information) can be discarded using the MI
criterion [4]:

Jmif s(Xi) = I (Xi;Y ) − β
∑

Xj ∈S

I (Xi;Xj),

where S ⊆ Sθ is the current set of selected features and β is a weight factor.
Considered is the MI between each candidate Xi �∈ S and the class. Also introduced
is a penalty proportional to the redundancy, calculated as the MI between the current
set of selected features and each candidate feature.

A wide range of methods have been described in the literature that are built on
these information theory measures. To homogenize the use of all the criteria, Brown
et al. [8] proposed a generic expression that allows multiple information theory
criteria to be ensembled in a single FS framework, based on a greedy optimization
process that assesses features using a simple scoring criterion. Through certain
independence assumptions, many criteria can be transformed as linear combinations
of the Shannon entropy terms MI and CMI [12]. In some cases, more complex
criteria are expressed as non-linear combinations of these terms (e.g., max or min).
For a detailed description of the transformation processes and a comprehensive list
of adapted FS methods, please refer to [8]. The generic formula proposed by Brown
is as follows:
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J = I (Xi;Y ) − β
∑

Xj ∈S

I (Xj ;Xi) + γ
∑

Xj ∈S

I (Xj ;Xi |Y ), (4.3)

where γ represents a weight factor for the conditional redundancy component.
The formula can be divided into three components, representing the relevance

of a feature Xi , the redundancy between two features Xi and Xj , and the
conditional redundancy between two features Xi,Xj and the class Y . Through
the aforementioned assumptions, many criteria were re-written to fit the generic
formulation in such a way that all the methods could be implemented using a slight
variation on this formula.

4.4.2 Feature Selection Filtering Framework for Big Data

This section starts by describing the proposed FS framework for Big Data; outlining
the main changes made to adapt the classical approach to the new Big Data environ-
ment. The implications arising from the distributed implementation of Eq. (4.3), as
well as the complexity derived from the parallelization of core operations (namely
MI and CMI) is also given.

The main improvements performed to make possible the redesign of Brown’s
framework are described below:

• Columnar transformation: The access pattern presented by most FS methods
is feature-wise, in contrast to many other machine learning algorithms, which are
instance-wise (operated by row). Although this may be considered a minor issue,
it can significantly degrade the performance since the natural way to compute
relevance and redundancy in FS methods is normally via columns. This issue
is especially important for distributed frameworks like Spark, where the data
partitioning scheme has a significant impact on performance.

• Broadcasting features: Once all features values have been grouped and par-
titioned into different partitions, data movement has to be minimal to avoid
superfluous network and CPU usage. If the MI process is performed locally in
each partition, the overall algorithm will run efficiently (almost linearly). Data
movement is minimized by replicating the output feature and the last selected
feature in each iteration.

• Pre-computed data caching: The first term in the generic criterion of Eq. (4.3)
is relevance, which basically implies calculating MI for all the input features
and the output (relevance). This operation is performed once at the start of our
algorithm, then cached to be reused in subsequent evaluations of Eq. (4.3). Like-
wise, subsequent marginal and joint proportions derived from these operations
are also kept so as to omit some computations. This also helps isolate redundancy
computation by feature as it replicates permanent information in all nodes.
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Algorithm 1 Main FS algorithm
Input: D Dataset, an RDD of samples.
Input: ns Number of features to select.
Input: npart Number of partitions to set.
Input: cindex Index of the output feature.
Output: Sθ Index list of selected features
1: Dc ← columnarT ransf ormation(D, ns, npart)

2: ni ← D.nrows; nf ← D.ncols

3: REL ← computeRelevances(Dc, cindex, ni)

4: CRIT ← initCriteria(REL)

5: pbest ← CRIT .max

6: sf eat ← Set (pbest )

7: while |S| < |Sθ | do
8: RED ← computeRedundancies(Dc, pbest .index)

9: CRIT ← updateCriteria(CRIT ,RED)

10: pbest ← CRIT .max

11: sf eat ← addT o(pbest , sf eat)

12: end while
13: return (sf eat)

• Greedy approach: Brown proposed a greedy search process in which only one
feature is selected in each iteration. This approach transforms the quadratic com-
plexity of typical FS algorithms into a more manageable complexity determined
by the number of features to select.

Algorithm 1 is the main FS algorithm in this framework, in charge of deciding
which feature to select in a sequential manner. Roughly speaking, it calculates the
initial relevance for all the features, and then iterates to select the best features
according to Eq. (4.3) and the underlying MI and CMI values.

The first step consists of transforming the data into columnar format. Algorithm 2
shows in detail this transformation. The idea behind this transformation is to
transpose the local data matrix provided by each partition. The result is a new local
matrix, so that each row contains the local points belonging to a given feature.
In order to put all features parts together in the same data partitions, resulting
rows are sorted by key (feature ID, data partition ID). This operation maintains
the partitioning scheme and reduces the number of pairs sent to be shuffled.
Additionally, once data are transformed, they can be cached and reused in the
subsequent loop.

Figure 4.3 depicts this process using a small example with four instances in a
single partition, and n features. This figure shows how all instances in a partition
are transposed to form new rows/elements, one per feature. Then, a key-value pair
is generated for each new row, where the key is formed by the feature id and the
partition id, and the value by a single feature row. Finally, pairs with the same feature
id are placed in the same partition, and locally ordered by old partition id.

Once the data matrix is transformed, the algorithm obtains the relevance for each
feature in X, initializing the criterion value (partial result according to Eq. (4.3)) and
creating the initial ranking of the features. Relevance values are saved as part of the
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Algorithm 2 Function that transforms row-wise data into a column-wise for-
mat (columnarTransformation)
Input: D Dataset, an RDD of samples.
Input: nf Number of features.
Input: npart Number of partitions to set.
Output: Column-wise data (RDD of feature vectors).
1: Dc ←
2: map partitions part ∈ D

3: matrix ← new Matrix(nf )(part.length)

4: for j = 0 until part.length do
5: for i = 0 until nf do
6: matrix(i)(j) ← part (j)(i)

7: end for
8: end for
9: for k = 0 until nf do

10: EMIT < k, (part.index,matrix(k)) >

11: end for
12: end map
13: return (Dc.sortByKey(npart))

Fig. 4.3 Columnar transformation scheme. F and I indicate features and instances, respectively.
Each rectangle on the left represents a single register in partition 1, and each rectangle on the
right represents a transposed feature block in the new columnar format. A key-value pair is finally
generated for each new row

previous expression and are reused in subsequent steps to update the criteria. The
most relevant feature, pbest , is then selected and added to the set sf eat , initially
empty. The iterative phase begins by calculating MI and CMI between pbest , each
candidate Xi and Y . The resulting values update the accumulated redundancies
(simple and conditional) of the criteria. In each iteration, the most relevant candidate
features are selected as the new pbest and are added to sf eat . The loop ends once
ns features (where ns = |Sθ |) have been selected or when no more features remain
to be selected.
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Thanks to the columnar format, relevance and redundancy functions are able
to compute scores for features in each partition locally. This is done by replicat-
ing/broadcasting3 only the last selected feature and the class across the nodes, or
just the class for relevance. As result, histograms for all the candidate features with
respect to the auxiliary variables are computed locally.

As shown in Sect. 4.4.1, joint and marginal proportions needed to compute
mutual information values can be easily calculated from histograms by aggregating
rows and columns, and fetching individual cells from these tables. These likelihoods
will serve to obtain the simple and conditional mutual information increments
that update the ranking of features in each iteration. In case of relevance, plenty
of information can be saved and reused in further iterations, for example, prior
and posterior probabilities. Algorithm 3 depicts how relevances are computed
in a distributed way, whereas Algorithm 4 focus on redundancy. Concerning
redundancies, 3-dimensional histograms are generated involving an extra column
that represents the last selected feature.

Algorithm 3 Compute mutual information between the set of features X and
Y . (computeRelevances)
Input: Dc RDD of tuples (index, (block, vector)).
Input: yind Index of Y .
Input: ni Number of instances.
Output: MI values for all input features.
1: ycol ← Dc.lookup(yind)

2: bycol ← broadcast (ycol)

3: counter ← broadcast (getMaxByFeature(Dc))

4: H ← getHistograms(Dc, yind, bycol, null, null)

5: joint ← getP roportions(H, ni)

6: marginal ← getP roportions(aggregateByRow(joint), ni)

7: return (computeMutualInf o(H, yind, null))

Algorithm 4 Compute CMI and MI between pbest , the set of candidate features,
and Y . (computeRedundancies)
Input: Dc RDD of tuples (index, (block, vector)).
Input: jind Index of pbest .
Output: CMI values for all input features.
1: jcol ← Dc.lookup(jind)

2: bjcol ← broadcast (jcol)

3: H ← getHistograms(Dc, j ind, bjcol, yind, bycol)

4: return (computeMutualInf o(H, jind, yind))

3Broadcast operation in Spark sends a single copy of the variable to each node.
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4.4.3 High-Dimensional Feature Selection: An Experimental
Framework

In this section we show that the distributed framework presented above for large-
scale selection perform well in both sides of Big Data—number of dimensions and
longitude. Additionally, this section also aims at showing that FS also proves useful
in Big Data classification, where most of the features tend to be irrelevant and have
no influence on the output variable (Sect. 4.2).

For such purpose, the previous framework is applied on two different scenarios,
one with millions of features and millions of sparse instances, and another with
millions of instances, but a more manageable but still complex number of features
(less than one thousand). The dataset elected for the first task is ECBDL14, used as a
reference dataset at the international GECCO-2014 conference, and which consists
of 631 features (including both numerical and categorical attributes) and 32 million
instances. In this binary classification problem the class distribution is imbalanced,
with 98% of negative instances. To fix the imbalance problem, we have applied the
MapReduce version of the Random OverSampling (ROS) algorithm [14] to generate
a final dataset with 65 millions of examples. The second dataset is kddb, a sparse
dataset with almost 30 millions of features and 20 millions of training instances
which come from the LibSVM dataset repository [9].

For the comparison study, the mRMR algorithm [32] has been chosen as the
FS algorithm, SVM, and Naïve Bayes [1] as the reference classifiers (already
implemented in the MLlib library [38]). The parameters of the classifiers were
set as recommended in the authors’ specifications. For evaluation purposes, two
common evaluation metrics were used to evaluate the quality of selections: area
under the receiver operating characteristic curve (AUROC, henceforth AUC) to
evaluate classifier accuracy, and training modeling time to evaluate FS performance.

Finally, the maximum level of parallelism (number of partitions) was set to
864, twice the total number of cores available in the cluster. The cluster used
is composed of eighteen computing nodes and one master node. The computing
nodes have the following features: 2 processors x Intel Xeon CPU E5-2620, 6 cores
per processor, 2.00 GHz, 15 MB cache, QDR InfiniBand Network (40 Gbps), 2 TB
HDD, 64 GB RAM. We used the following configuration for the software: Hadoop
2.5.0-cdh5.3.1 from Cloudera’s open-source Apache Hadoop distribution,4 HDFS
replication factor 2, HDFS default block size 128 MB, Apache Spark and MLlib
1.2.0, 432 cores (24 cores/node), 864 RAM GB (48 GB/node).

Time performance of the framework is evaluated in Table 4.3. It presents the time
results obtained by mRMR using different ranking thresholds (number of selected
features).

4http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-homepage.
html.

http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-homepage.html
http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-homepage.html
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Table 4.3 Selection time by
dataset and threshold (in
seconds)

# Features kddb ECBDL14

10 283.61 332.90

25 774.43 596.31

50 1365.82 1084.58

100 2789.55 2420.94

Fig. 4.4 Selection time by number of cores available (in seconds)

As can be observed here the distributed solution produces competitive results in
every vase, irrespective of the number of iterations accomplished (represented by
the number of features to select). It is noteworthy to remark that the model was able
to rank 100 features in less than 1 h in both datasets.

As an extra study on scalability we have measure the effect of increasing the
number of cores in the cluster. ECBDL14 was utilized as reference with the same
configuration. Figure 4.4 depicts how distributed selection performed depending on
the number of cores (10–100). As expected, the study reveals a decreasing behavior
as the number of cores increased.5

Usefulness of selection for large-scale classification is evaluated in Table 4.4.
This show the accuracy results for SVM and Naive Bayes using different FS
schemes on ECBDL14. The kddb dataset was omitted because none of the classifiers
was able to run on the whole dataset.

5Note that the whole memory available in the cluster was only available from the 10-core value.
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Table 4.4 AUC results for
SVM and Naïve Bayes
classification with reduced set
of features

# Features ECBDL14 (SVM) ECBDL14 (NB)

All 0.5070 0.5122

10 0.5074 0.5144

25 0.5069 0.5155

50 0.5078 0.5148

100 0.5066 0.5153

Results show that there is no improvement or loss in accuracy when using
FS. Although it is not the best scenario, reduction here is highly positive since
subsequent learning phase will be surely more simple and rapid with far less
features. Even with only ten features selected, AUC remains the same. Results also
show that plenty of features do not provide extra information to this problem.

The thorough study performed in this section has shown that the distributed
solution is capable of selecting features in a competitive time interval when applied
to datasets that are huge—in both number of instances and features. Furthermore,
solutions have shown to be useful on improving the simplicity of data and the
subsequent learning process.

4.5 Dimensionality Reduction in Big Data Streaming

FS is one of the most extended data preprocessing techniques. Although we can find
many proposals for static Big Data preprocessing, there is little research devoted to
the continuous Big Data problem. Apache Flink is a recent and novel Big Data
framework, following the MapReduce paradigm, focused on distributed stream and
batch data processing [3].

In this section, we will describe a data stream library named DPASF (Data
Preprocessing Algorithms for Streaming in Flink), focused on Big Data stream
preprocessing [2]. The library is composed of six of the most popular and widely
used data preprocessing algorithms for Apache Flink. It contains three algorithms
for performing FS, and three algorithms for discretization. In this section, we focus
on the FS methods. In Fig. 4.5 we can find the algorithm implementations associated
with this research.

4.5.1 Information Gain

This FS scheme described in [22] is composed of two steps: an incremental feature
ranking method, and an incremental learning algorithm that can consider a subset
of the features during prediction.
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FlinkML DPASF

Big Data library oriented to online data preprocessing for Apache Flink. This
library contains six of the most popular and widely used algorithms for data
preprocessing in data streaming. It is composed of three feature selection
algorithms and three discretization algorithms.

https://sci2s.ugr.es/BigDaPFlink

Fig. 4.5 FlinkML: DPASF library

Algorithm 5 InfoGain algorithm
Input: data a DataSet LabeledVector (label, features)
Input: selectNF Number of features to select
Output: DataSet with the most selectNF important features
1: f reqs ← f requencies(data, groupBy = label)

2: H ← Entropy(f reqs)

3: gains ←
4: map i ∈ 0 until nFeatures

5: f reqs ← f requencies(data, f eaturei)

6: px ← probs(f reqs)

7: H ← entropy(f reqs)

8: H(Y |Featurei) ← ConditionalEntropy(f reqs)

9: H − H(Y |Featurei)

10: end map
11: return selectF eatures(selectNF, gains)

For this algorithm, the conditional entropy with respect to the class is computed
with

H(X|Y ) = −
∑

j

P (yj )
∑

i

P (xi |yj ) log2(P (xi |yj )), (4.4)

then, the information gain (IG) is computed for each attribute with

IG(X|Y ) = H(X) − H(X|Y ). (4.5)

Once the algorithm has all information gain values for each attribute, the top N

are selected as best features.
Algorithm 5 shows the pseudocode for information gain. First the frequencies

of each value with respect to the class label are computed. With this information,
the total entropy of the dataset is calculated. Next, for each attribute, its frequency,
probability, entropy, and conditional entropy are computed. Finally, the information
gain for the i-th attribute its computed and stored in gains. Algorithm 6 shows the
process of the frequencies calculation.
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Algorithm 6 Frequencies function
Input: attr attribute to compute frequencies to
Input: f function to group by
Output: Frequencies for attr using f
1: grouped ← groupBy(data, f )

2: f reqs ← reduceGroup(grouped)

3: return f reqs

4.5.2 OFS: Online Feature Selection

OFS [43] is an ε-greedy online FS method based on weights, generated by an online
classifier (like neural networks) which makes a balance between exploration and
exploitation of features.

The main idea behind this algorithm is that when a vector x falls within a L1
ball, most of its numerical values are concentrated in its largest elements; therefore,
removing the smallest values will result in a small change in the original vector x as
measured by the Lq norm. This way, the classifier is restricted to a L1 ball:

ΔR =
{

w ∈ Rd : ||w||1 ≤ R
}

. (4.6)

OFS maintains an online classifier wt with at most B nonzero elements. When an
instance (xt , yt ) is incorrectly classified, the classifier gets updated through online
gradient descent and then it is projected to a L2 ball to delimit the classifier norm.
If the resulting classifier ŵt+1 has more than B nonzero elements, the elements with
the largest absolute value will be kept in ŵt+1.

The above approach presents an inefficiency, even although the classifier consists
of B nonzero elements, full knowledge of the instances is required, that is, each
attribute xt must be measured and computed. As a solution, OFS limits online FS to
no more than B attributes of xt .

Algorithm 7 shows the pseudocode for OFS. This algorithm maps each label and
feature with their corresponding value for the original OFS algorithm. Finally, it
returns the selected features.

4.5.3 FCBF: Fast Correlation-Based Filter

FCBF [45] is a FS method that considers the class relevance and the dependency
between each feature pair. It is based on information theory, and employs Sym-
metrical Uncertainty (SU) to calculate the dependency among the attributes and the
class relevance. FCBF starts with the complete set of features and, heuristically,
applies a backward selection method with a sequential search to remove redundant
and irrelevant attributes. The algorithm stops when there are no attributes left to
eliminate.
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Algorithm 7 OFS algorithm
Input: data a DataSet LabeledVector (label, features)
Input: η parameter
Input: λ parameter
Input: selectNF Number of features to select
Output: DataSet with the most selectNF important features
1: f s ← OFS(η, λ)

2: weights ←
3: map (label, f eatures) ∈ data

4: f s(label, f eatures)

5: end map
6: return selectF eatures(selectNF,weights)

The algorithm chooses as a correlation measure the entropy of a variable X,
which is defined as

H(X) = −
∑

i

P (xi) log P(xi) (4.7)

and the entropy of X after observing values of another variable Y is defined as

H(X|Y ) = −
∑

j

P (yj )
∑

i

P (xi |yj ) log2(P (xi |yj )), (4.8)

where P(xi) is the prior probability for all values of X and P(xi |yj ) is the posterior
probability of X given the values of Y . According to IG, a feature Y is more
correlated to X than to a feature Z if IG(X|Y ) > IG(Z|Y ).

Now we are ready to define the main measure for FCBF, Symmetrical Uncer-
tainty [34]. As a pre-requisite, data must be normalized in order to be comparable.

SU(X, Y ) = 2

[
IG(X|Y )

H(X) + H(Y)

]
(4.9)

SU compensates the bias in IG toward features with more values and normalizes
its values to the range [0, 1]. A SU value of 1 indicates total correlation, whereas a
value of 0 indicates independence.

The algorithm follows a two-step approach, first, it has to decide if a feature is
relevant to the class and two, decide if those features are redundant with respect to
each other.

To solve the first step, a user-defined SU threshold can be defined. If SUi,c is the
SU value for feature Fi with the class c, the subset S′ of relevant features can be
defined with a threshold δ such that ∀Fi ∈ S′, 1 ≤ i ≤ N, SUi,c ≥ δ.

For the second step, in order to avoid analysis of pairwise correlations between all
features, a method to decide whether the level of correlation between two features
in S′ is high enough to produce redundancy is needed in order to remove one of
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them. Examining the value SUj,i∀Fj ∈ S′(j �= i) allows the level to which Fj is
correlated by the rest of features in S′ to be estimated.

The last piece of the algorithm comprises two definitions:

Definition 4.1 (Predominant Correlation) The correlation between a feature Fi

and the class C is predominant iff SUi,c ≥ δ and ∀Fj ∈ S′(j �= i)�Fj such that
SUj,i ≥ SUi,c

If such feature Fj exists for a feature Fi , it is called a redundant peer of Fi and
it is added to a set SPi

identifying all the redundant peers for Fi . SPi
is divided

into two parts: S+
Pi

and S−
Pi

, where S+
Pi

= {Fj |Fj ∈ SPi
, SUj,c > SUi,c} and S−

Pi= {Fj |Fj ∈ SPi
, SUj,c ≤ SUi,c}

Definition 4.2 (Predominant Feature) A feature is predominant to the class if its
correlation to the class is predominant or can become predominant after removing
all its redundant peers.

According to the above definitions, a feature will be a good feature if it is
predominant in predicting the class. These two definitions along with the following
heuristics can effectively identify predominant features and remove the need of
pairwise comparisons.

Heuristic 1 (When S+
Pi

= ∅) Fi is a predominant feature, delete all features in S−
Pi

and stop searching for redundant peers for those features.

Heuristic 2 (When S+
Pi

�= ∅) All features in S+
Pi

are processed before making
decisions in Fi . If none of them become predominant go to Heuristic 1, or else
remove Fi and decide if features in S−

Pi
need to be removed based on other features

in S′.

Heuristic 3 (Start Point) The algorithm begins examining the feature with the
largest SUi,c, as this feature is always predominant and acts as a starting point for
the removal of redundant features.

Algorithm 8 shows pseudocode for FCBF, the SU value is computed for each
attribute in parallel. All SU values are then filtered according to the threshold
parameter and then sorted in descending order. With these final sorted values, the
FCBF algorithm is applied as originally described in [45].

Algorithm 9 shows how Symmetrical Uncertainty is computed in a distributed
fashion. First, each parallel partition computes the partial counts of each value, then
this partial counts are aggregated using a reduce function in order to compute the
total counts. With this information, probabilities for each value are computed and the
entropy and mutual information are calculated. Finally, it returns the corresponding
SU value for that attribute.

In classic scenarios, when performing dimensionality reduction the full set of
data is available. Big Data streaming is a special task, as the full data is not available,
and the available data can be seen only for a short amount of time. For this reason,
classic data reduction algorithms are not able to tackle this problem. In this section
we have shown a library, composed of three data reduction algorithms focused on
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Algorithm 8 FCBF algorithm
Input: data a DataSet LabeledVector (label, features)
Input: thr threshold
Output: DataSet with the most important features
1: su ←
2: for i = 0 until nAttrs do
3: attr ←
4: map instance ∈ data

5: (label, f eaturei)

6: end map
7: yield SU(attr)

8: end for
9: suSorted ← f ilter(su > thr).SortDesc

10: sBest ← FCBF(suSorted)

11: return sBest

Algorithm 9 Symmetrical Uncertainty (SU) function
Input: attr Attribute to compute SU to
Output: SU value for attr
1: xypartialCounts ←
2: map partitions (y, x) ∈ attr

3: xPartialCounts ← computeCounts(x)

4: yPartialCounts ← computeCounts(y)

5: (xPartialCounts, yPartialCounts)

6: end map
7: totalCounts ← reduce(xypartialCounts)

8: su ←
9: map (xcounts, ycounts, x, y) ∈ totalCounts

10: px ← prob(x)

11: py ← prob(y)

12: hx ← entropy(x)

13: hy ← entropy(y)

14: mu ← mutualInf ormation(x, y)

15: 2mu
hx+hy

16: end map

Big Data streams named DPASF. This library uses Apache Flink as its Big Data
streaming core framework. The proposed algorithms are able to evolve with the
data, and to select the best features.

4.6 Summary and Conclusions

Dimensionality reduction is the set of techniques devoted to reduce the number of
features in the data. More features are not always better, as they may contain noise
or be highly correlated with others. Storage reduction is also an important side of
dimensionality reduction.
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In this chapter we have reviewed the most recent techniques for dimensionality
reduction for both batch and streaming data. For static data, one of the most powerful
solutions is a framework with several information theory-based FS methods. On the
other hand, for streaming data, we have analyzed three methods that perform FS in
Big Data streaming scenarios.

The Big Data explosion presents some challenges for the dimensionality reduc-
tion task, but it also brings new opportunities [24]. Big Data problems with
ultra-high dimensionality are becoming more common. This new challenge can be
found in many real-world applications, such as text mining or information retrieval.
Big Data dimensionality reduction algorithms may not scale well enough to tackle
this amount of features. For these problems, new algorithms with linear or sublinear
running times will be required.

Regarding dimensionality reduction in Big Data streaming environments, little
research has been devoted to it so far. There are still many open challenges, like
the selection of relevant and timely features in just one pass over the data, which
will require the future efforts of experts in the field. While Big Data streaming
is becoming more and more popular, the necessity for dimensionality reduction
algorithms for selecting the best features in the data stream is more and more
pressing everyday.
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Chapter 5
Data Reduction for Big Data

5.1 Introduction

Data reduction techniques [19] emerged as preprocessing algorithms that simplify
and clean raw data early in the early stages while retaining as much information as
possible. These techniques are used to both obtain a representative sample of the
original data and alleviate data storage requirements [41]. This process does not
only obtain a relevant sample of the original data, but also aims at eliminating noisy
instances, and redundant or irrelevant data, improving the later data mining (DM)
process.

In the literature, there are two main approaches to perform data reduction,
consisting of reducing the number of input attributes or the instances. Focusing
on reducing attributes, the most popular data reduction techniques are FS and
feature extraction [28], which are designed to either select the most representative
features or construct a new whole set of them. Similarly, from the instances point
of view, we can differentiate between instance selection (IS) methods [18] and
instance generation (IG) methods [38]. The objective of an IS method is to obtain
a subset SS ⊂ T R such that SS does not contain redundant or noisy examples and
Acc(SS) � Acc(T R), where Acc(SS) is the classification accuracy when using
SS as the training set. Likewise, IG methods may generate artificial data points if
needed for a better representation of the training set. The purpose of an IG method
is to obtain a generated set IGS, which consists of p, p < n, instances, which can
be either selected or generated from the examples of T R.

Most existing instance reduction methods were actually conceived to address the
weaknesses of the k-nearest neighbors (KNN) algorithm [10]. These methods are
known as prototype reduction (PR) techniques. Prototype selection (PS) methods are
IS methods that use an instance-based classifier with a distance measure, commonly
KNN, for finding a representing subset of the training set. Classical selection
methods, such as reduced-NN, edited-NN, or condensed-NN, utilize the NN rule
to evaluate instances. Here the neighbor set helps to decide if a given instance
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is relevant (must be preserved), or redundant or noisy (to be removed). One of
the classic and most widely used algorithms for PS is the fast condensed nearest
neighbor (FCNN), which is an order-independent algorithm to find a consistent
subset of the training dataset using the NN rule [1]. Another simple yet powerful
example is the random mutation hill climbing (RMHC) [37]; it randomly selects a
subset of the training data and performs RMHC iteratively to select the best subset
using KNN as a classifier. The IS problem can be seen as a binary optimization
problem which consists of whether or not to select a training example [15]. For
this reason, evolutionary algorithms have been used for PS, with very promising
results. In these algorithms, the fitness function usually consists of classifying the
whole training set using the KNN algorithm [5]. To date, one of the best performing
algorithms for evolutionary PS is [17], which is a steady-state memetic algorithm
(SSMA) that achieves a good reduction rate and accuracy with respect to classical
PS schemes.

Another approach to perform instance reduction is IG, also called prototype
generation (PG) in the case of instance-based classifiers. In contradistinction to PS,
these methods aim to overcome an additional limitation of the KNN algorithm: it
makes predictions over existing training data assuming they perfectly delimit the
decision boundaries between classes (in classification problems). To overcome that
limitation, these methods are not restricted to selecting examples of the training data,
but they can also modify the values of the instances based on nearest neighbors. The
most popular strategy is to use merging of nearest examples to set the new artificial
samples [8]. We can also find clustering-based approaches [4] or evolutionary-based
schemes [39], but the vast majority of them are based on the idea of computing
nearest neighbors to reduce the training set. A complete survey on this topic can be
found in [38].

In terms of FS, a variety of strategies such as wrappers, filters, and embedded
methods have been proposed in the literature [25]. Nevertheless, we can still find
that the KNN algorithm has also played an important role in many existing FS
proposals [31]. One of the classic and most relevant methods is ReliefF [26] that
ranks features according to how well an attribute allows us to distinguish the nearest
neighbors within the same class label from the nearest neighbors from each of
the different class labels. Similarly to the instance reduction scenario, evolutionary
algorithms have also been employed to perform FS with good results. In [45] we
can find a complete survey on FS using evolutionary computation.

Hybrid approaches for data reduction have also been proposed in the literature.
Instead of using IS and FS methods separately, some research has been devoted
to the combination of both IS and FS. In [12], for instance, a hybrid of IS and
FS algorithm is presented, using an evolutionary model to perform FS and IS for
KNN classification. Hybrid approaches of PS and PG have also been studied in the
literature. In these methods, PS is used for selecting the most representative subset
of the training data, and PG is tasked to improve this subset by modifying the values
of the instances. In [40] a hybrid combination of SSMA with a scale factor local
search in differential evolution (SSMA-SFLSDE) is introduced.



5.2 Parallel and Rapid Prototype Reduction 83

As such, PR techniques should ease the later DM processes or actually making
them possible in the case of Big Data problems. However, these methods are also
affected by the increase of the size and complexity of data, being unable to provide
a preprocessed dataset in a reasonable time. Several solutions have been developed
to enable data reduction techniques to deal with this problem.

We can find a data level approach (called stratification) that is based on a
parallel partitioning model with equal distribution of classes in partitions. This splits
the original training data into several subsets that are independently addressed.
Afterwards, all partial reduced subsets are concatenated to form a final solution.
This approach has been used for IS [6, 13] and IG [43] with outstanding results.

However, when stratification faces large-scale problems, several major com-
plexity matters arise. For instance, the partitioning and reduction steps become
prohibitive since either they require too much memory or computing time. Further-
more, stratification does not consider redundancy/noise relationships arising after
the aggregation phase.

On the other hand, in many cases we do not only deal with static data collections,
but rather with dynamic ones. They arrive in a form of continuous batches of data,
called data streams [16]. In this dynamic scenario, we need not only to manage the
volume, but also the velocity of data, constantly updating the model to the current
state of the stream. To add a further difficulty, many modern data sources generate
their outputs with very short intervals, thus leading to high-speed data streams [23].
To enable the application of lazy learning to streaming environments, we need PR
methods that prevent the accumulation of instances and that outdated concepts are
utilized to make erroneous decisions.

In the remaining parts, we shall begin with the first developments on scalability
for sequential PR (Sect. 5.2). We shall continue with the analysis of one of the few
proposals in the literature that address the problem of large-scale PR (Sect. 5.3).
Afterwards, we analyze the proposal of a library with several methods for PR for
Big Data scenarios (Sect. 5.4). Then, we shall study how PR can be utilized to ease
the ingestion of data in high-speed streaming systems (Sect. 5.5). Finally, Sect. 5.6
summarizes the chapter and gives some conclusions.

5.2 Parallel and Rapid Prototype Reduction

As mentioned before, PR arises as a great tool to tackle large set of instances.
However, in practice most of methods are unable to be applied, or even if they could
be executed they would only generate wrong results [21].

To solve this scalability problem, several parallel models have been proposed
to improve the scalability of PR methods. The first contribution to this end has
been a data stratification technique which splits the original data into a range of
partition with equal distribution of classes [34]. This strategy was then implemented
for evolutionary PR [6, 7] and memetic PR [13], among others.
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Another alternative proposed in the literature has been the divide-and-conquer
model, which perfectly adjusts to distributed processing models like MapReduce.
García-Osorio et al. [20] were pioneer in this field. In their model, the initial training
set is divided into a set of disjoint subsets distinct in each iteration. An individual
PS process is applied on each subset, and each removable instance receives a vote.
After the upper limit of iterations is exceeded, instances with the largest number of
votes are eliminated. A similar approach was proposed in [22], in which each subset
is reduced using a PS technique and the partial results are combined (by voting)
into a final set. A more complex divide-and-conquer policy is introduced in [11].
This recursive algorithm divides the training set, applies a PR algorithm, and then,
aggregates the partial results into a subset which will serve as a starting point for the
next iteration. It also introduces a cross validation process that allows the learning
model to be improved until the validation error grows.

As introduced in [20], the split procedure is highly dependent on the problem
addressed. Splitting initial set into small subsets for its posterior processing implies
a subsequent decrease in accuracy due to a more restricted vision of the original
problem. While it could be addressed by forcing equality in class distributions in
every subset, this becomes unfeasible in large-scale scenarios where overall data
distribution is theoretically unknown.

Besides the aforementioned problem, there exist some extra issues that appear
when we increase the number of instances, which are mainly three-folded:

• Stratification does not consider that joining each partial solution into a global
one could generate a reduced set with redundant or noisy instances, which is the
normal scenario. This nuance may damage the classification performance of the
subsequent learning process.

• A stratified partitioning process could not be carried out when the dataset does
not completely fit in main memory.

• The complexity associated with PR is mainly quadratic or greater, which is
excessive for real-world big applications.

A sequential approach has been proposed in [2] that solve most of problems men-
tioned before. This PS technique (called LSH-IS) utilizes locality-sensitive hashing
to assign similar prototype to the same bucket in linear time. Additionally, LSH-IS
does not require the entire set to be in memory, but this can be run incrementally.
While LSH-IS represents a quantum leap on performance for standard PR, this
strategy cannot be directly embraced by distributed environments.

In [33], authors propose an approach for FS based on KNN for Big Data, where
FS is performed on huge datasets using the KNN algorithm within an evolutionary
approach. More recently, a distributed Spark-based version of the ReliefF algorithm
has been presented [32].

In [3], Arnaiz-González et al. present a parallelized MapReduce version of the
democratic instance selection algorithm, called MR-DIS. This method partitions the
original data into several disjoint subsets and applies an independent PS process on
each subset. This process is repeated several rounds in which each removed instance
receives a single vote. The subsequent counters are utilized to decide which voting
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threshold is the most appropriate for the target problem according to a predefined
fitness function. While [43] can be deemed as a fully operating solution, able to
scale properly in distributed environments, it does not provide further improvement
with respect to the original algorithm.

5.3 MRPR: A MapReduce Solution for Prototype Reduction
in Big Data Classification

In this section, we will describe the MRPR framework (MapReduce for proto-
type reduction), a new distributed framework for PR based on the stratification
procedure [43]. This framework was designed to tackle the drawbacks associated
with stratification: high memory consumption and high complexity, and a poor
joining process. MRPR relies on MapReduce to parallelize the PR process and
the subsequent fusion process. Concretely, the map phase contains the splitting
procedure and the local application of PR. The reduce stage performs a filtering
or fusion of prototypes in order to prevent the inclusion of negative prototypes in
the final set. Figure 5.1 depicts a simplified scheme of the MRPR framework.

Fig. 5.1 MRPR processing
scheme. The rectangles
represent the reduction and
joining processes, and the
circles the partial and final
reduced sets
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Although MRPR utilizes several maps to achieve a full parallelization of
reduction, it only uses a long-live reduce process that is updated every time a mapper
is completed. With the adopted strategy, a single reduce in this scheme has shown
to be less time-consuming than multiple simultaneous reducers. This improvement
has shown a decrease in the overall MapReduce overhead, especially in network
usage [9].

Note that the main improvement introduced by MRPR with respect to strati-
fication resides in the more sophisticated aggregation procedure implemented in
the reduce stage. This procedure aims at reducing the inconsistencies derived from
partial views. In counterpart to MRPR, partial outcomes are simply concatenated in
stratification.

In the following, we describe the single MapReduce phase implemented in
MRPR. We start describing the map function where the PR process occurs, and
then the joining process performed in the reduce phase is studied.

5.3.1 Map Stage: Distributed Prototype Reduction

The first step of MRPR is devoted to read the training set (T R) from a distributed
file system, like Hadoop. This set is formed by several disjoint subsets of instances
(T Ri) which correspond with the HDFS blocks read (following the Hadoop
example). Data partitions are then evenly distributed across the m map tasks so
that each map will process approximately the same number of instances.

Under this scheme, if the partitioning procedure is directly applied over T R, the
class distribution of each partition could be biased to the original distribution of
instances. Additionally, a proper stratified partitioning could not be performed as
stated previously. In order to guarantee that partitions share the same proportion of
classes, we randomly shuffle the instances in T R across the cluster. This operation
is quite lightweight in comparison with the application of the PR technique, and
it will be applied once. Although non-deterministic, randomization guarantees the
proportion of classes is approximately maintained in all partitions.

Once each map has formed its corresponding training set, a PR step is performed
on this set as a whole. This function basically defines the application of the PR
technique on each training partition. As a result, each map generates a partial subset
(RSi) as output.

Note that PR techniques may perform differently depending on the main
characteristics of the dataset, and the stopping criteria held by each PR algorithm.
In general, map tasks will end closely because differences between partitions
are marginal due to randomization. In any case, MapReduce starts the reduce
phase when the first mapper ends. As each map finishes its processing the results
are forwarded to the single reduce task.
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5.3.2 Reduce Stage: Aggregation of Partial Results

The reduce phase aims at aggregating all the reduce subsets generated into a single
set. This process is iterative and can be implemented following different fusion
models:

• Join: This baseline option concatenates all the reduced sets into a final set.
Although simple, this joining process does not guarantee that the resulting set
does not contain irrelevant or even noisy instances. In this case, the intervention
performed by the reduce stage is minimum. However, this model will serve as a
starting point for further developments.

• Filtering: This alternative exploits the idea of filtering noisy instances during
the aggregation. This filtering technique is based on the edition family of
methods [19], which use simple heuristics to discard points that are noisy or do
not agree with their neighbors. They provide smoother decision boundaries for
KNN. In general, edition schemes improve generalization by performing a slight
reduction on T R. This behavior fits perfectly the objective of the reduce phase in
MRPR, since in this stage we do not pursue to reduce more, but only removing
noisy instances.

The reduce function iteratively applies a filtering on the current set. It means
that as the mappers end their execution, the reduce function starts to gradually
aggregate subsets by applying filtering until all the partial results are collected.
Finally, a single filtered set is obtained.

• Fusion: This variant gears towards eliminating redundant prototypes. In this
case, fusion is based on the centroid-based family of methods for PR. These
techniques merge similar examples to obtain a less populated set of instances.
Given that in this step we want to generate a single subset without redundancies,
these methods can be very useful. As in the previous scheme, the fusion stage
will be progressively applied during the creation of RS.

5.3.3 On the Election of Prototype Reduction Methods
for Distributed Systems

In this part, we analyze some directives to select the most suitable PR technique for
each target problem. We also discuss which PR techniques are more convenient for
the map and reduce stages, and what are the relationships between them.

As we mentioned before, PR is applied locally in the map phase to select a subset
of relevant instances. Then, depending on the PR model used in mappers we should
select a filtering or a fusion PR technique to combine the resulting reduced sets.
Although all PR methods in the literature could fit in the map phase, we must
consider some aspects (reduction, accuracy, and runtime) before proceeding with
selection. Firstly, a very accurate PR technique is desirable. However, this kind of
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techniques usually implies a low reduction rate, and therefore, a negative impact in
the performance of the reduce phase (join). Secondly, depending on the complexity
of the PR method, we should vary the number of mappers to divide the original
set. The more complex the method, the more mappers are required. Note that the
latter fact implies a considerable reduction on the representativeness of subsets, and
a subsequent drop in accuracy.

According to [19], there exist six main families of PR methods: edition, con-
densation, hybrid approaches, positioning adjustment, centroids-based, and space
splitting. Each one has associated a list of recommendations to be considered before
designing a MRPR job:

• Edition-based methods are focused on cleaning input data by removing noisy
instances. Thus, these methods are normally fast and accurate but they obtain
a quite low reduction rate. To implement these methods in MRPR, it is recom-
mended a rapid joining phase in reducers.

• Condensation, hybrid, and space splitting algorithms typically offer a fair trade-
off between reduction, accuracy, and runtime. Their reduction rate in these
methods is quite fluctuating, so depending on the problem faced, the reducer
chosen should be more or less efficient.

• Positioning adjustment are highly customizable techniques that may be used to
apply a deep reduction on input data. These techniques can provide very accurate
results in a relatively moderate runtime. The high reduction rate held by them will
allow us to apply an accurate reduction in the reduce phase without a meaningful
loss in performance.

• Centroid-based algorithms are accurate but in general quite time-consuming.
Although its integration is feasible and could be useful in some scenarios, their
utilization is only recommended for the reduce phase.

Although MRPR framework can perform a wide variety of PR methods in Big
Data environments, we will focus on the hybrid SSMA-SFLSDE algorithm [40]
to test the MRPR model. Furthermore, the ENN algorithm [44] is used as edition
method for the filtering-based reducer. For the fusion-based reducer, a very accurate
centroid-based technique called ICLP2 [27] is applied. It is motivated by the
high reduction ratio of these positioning adjustment methods. In addition, the NN
classifier has been included as baseline limit of performance.

The dataset employed in the test is SUSY dataset [14]. This dataset is composed
of 5,000,000 instances, 18 attributes, and 2 classes. It has been partitioned using a
fivefold cross validation scheme. It means that the dataset is split into five folds,
each one containing 20% of the examples of the dataset. For each fold, a PR
algorithm is run over the examples presented in the remaining folds (that is, in
the training partition, T R). Then, the resulting RS is tested with the current fold
using the NN rule. Test partitions are kept aside during the PR phase in order to
analyze the generalization capabilities provided by the generated RS. Because of
the randomness of some operations that these algorithms perform, they have been
run three times per partition.
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Table 5.1 Results obtained for the SUSY problem

Reduce type # Maps Training Test Runtime Reduction rate Classification time

Join 256 69.53 72.34 69,153 97.00 30,347

Filtering 256 69.41 72.82 66,371 97.77 24,686

Fusion 256 68.70 72.40 69,797 98.91 11,422

Join 512 68.96 72.17 26,011 97.21 35,068

Filtering 512 68.98 72.41 28,508 97.56 24,868

Fusion 512 68.10 72.30 30,344 98.83 12,169

Join 1024 69.39 71.88 13,525 97.15 45,388

Filtering 1024 68.26 72.26 14,511 97.32 32,568

Fusion 1024 67.57 72.08 15,562 98.70 12,136

NN – 68.99 71.57 – – 1,167,200

Table 5.1 summarizes all the results obtained on SUSY dataset. It shows
training/test accuracy, runtime, and reduction rate obtained by the SSMA-SFLSDE
algorithm, in the MRPR framework, depending on the number of mappers (# Maps)
and reduce type. For each one of these measures, average results are presented
(from the 5-fcv experiment). Moreover, the average classification time in the T S

is computed as the time needed to classify all the instances of T S with the
corresponding RS generated by MRPR. Furthermore, we compare these results with
the accuracy and test classification time achieved by the NN classifier. It uses the
whole T R set to classify all the instances of T S. Average accuracies higher or equal
than the obtained with the NN algorithm have been highlighted in bold.

The experimental study carried out has shown that the MRPR framework obtains
very competitive results. It allows to apply PR techniques in large-scale problems.
It is able to improve the accuracy with a reduction of 98% less instances. The
application of the MRPR framework has resulted in a very big reduction of storage
requirements and classification time for the NN rule when dealing with big datasets.

5.4 Transforming Big Data into Smart Data Through Data
Reduction

In this section, we will describe the PR methods proposed in [41]. In this
paper, authors discuss the role of one of the simplest DM techniques—the KNN
algorithm—as a powerful tool to obtain “Smart Data,” which is data with a high
quality to be mined.

Authors analyze the behavior of some of the most representative instance
reduction approaches based on KNN when tackling Big Data datasets. MR-DIS and
SSMA-SFLSDE were already proposed for Big Data as local models (apply IS and
IG algorithms in different chunks of data). For the experiments, the FCNN has been
adapted to Big Data using the MRPR framework [43] (same framework used for
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SSMA-SFLSDE). MRPR and MR-DIS follow a local approach, which means that
these methods will operate on separated chunks of data. Due to its simplicity, the
RMHC algorithm has been implemented in a global manner based on the KNN-IS
[30], so that, it looks at the training data as a whole (although it looks at the data
taking iteratively subsets of the whole dataset).

• FCNN_MR [1]: This method applies FCNN locally in separate chunks of the
data, using the MRPR framework [43]. FCNN begins with the centroids of the
different classes as initial subset. Then, each iteration, for every instance in
the subset, it adds the nearest enemy inside its Voronoi region. This process is
repeated until no more instances are added to the subset. The resulting reduced
sets from each chunk are joined together.

• MR-DIS [3]: It applies a condensed nearest neighbor algorithm [24] repeatedly
to each partition of the data (locally). After each round, selected instances receive
a vote. The instances with the most votes are removed.

• SSMA-SFLSDE [40]: Following a local MRPR approach, this performs an IS
phase to select the most representative instances per class. Then the particular
of positioning of prototypes is optimized with a differential evolution algorithm.
The resulting partial reduced sets are joined together.

• RMHC_MR [37]: This is implemented as a global model. It starts from a random
subset, and at each iteration, a random instance from the sample is replaced by
another from the rest of the data. If the classification accuracy is improved (using
the global KNN), the new sample is maintained for the next iteration.

In Fig. 5.2 we can find all the implementations of the techniques analyzed in this
section, available as a Spark Package for public use.

Although these PR algorithms have been tested using seven Big Data classifica-
tion problems, we are focusing on the most notorious results from three of them.
These datasets are extracted from the UCI machine learning and KEEL datasets
repositories [14, 42]. Table 5.2 presents the number of examples, number of features,

SmartReduction

This framework implements four distance based Big Data preprocessing
algorithms for prototype selection and generation: FCNN MR, SSMAS-
FLSDE MR, RMHC MR, MR DIS, with special emphasis in their scalability
and performance traits.

spark-shell --packages djgarcia:SmartReduction:1.0

https://spark-packages.org/package/djgarcia/SmartReduction

Fig. 5.2 Spark package: SmartReduction
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Table 5.2 Summary
description of the datasets

Dataset # Examples # Features #ω

Ht-sensor 928,991 11 3

Skin 245,057 3 2

SUSY 5,000,000 18 2

Table 5.3 Impact of instance reduction on KNN (Test accuracy)

Dataset
Method
Baseline FCNN_MR SSMA-SFLSDE MR-DIS RMHC_MR

Ht_sensor 99.99 68.97 99.71 95.85 99.97

Skin 99.95 99.87 99.76 99.86 99.90

SUSY 69.35 66.70 70.80 67.24 67.59

and the number of classes (#ω) for each dataset. All datasets have been partitioned
using a fivefold cross validation scheme. This means that each partition includes
80% of samples for training and 20% of them are left out for test.

To assess the performance of the experimental study, the accuracy and reduction
rate are used. For classification, the KNN algorithm is employed. As recommended
by different authors, we have focused on a k = 1 for the PR methods and the
classification algorithm.

The cluster used for all the experiments performed in this work is composed
of 14 nodes managed by a master node. All nodes have the same hardware and
software configuration. Regarding the hardware, each node has 2 Intel Xeon CPU
E5-2620 processors, 6 cores (12 threads) per processor, 2 GHz and 64 GB of RAM.
The network used is InfiniBand 40 Gb/s. The operating system is Cent OS 6.5, with
Apache Spark 2.2.0. and the maximum number of concurrent operations is equal to
256 and 2 GB for each task.

In Table 5.3, we can find the test accuracy results and reduction rate using the
KNN algorithm as a classifier. Baseline represents the results of the KNN algorithm
without any preprocessing. As we can see, none of the data reduction algorithms
methods is losing that much accuracy with respect to the baseline accuracy. In
fact, in some cases they are able to improve the baseline performance, as they
remove redundant and also noisy examples. There is not a clear outperforming
method overall. The choice of the right technique crucially depends on the particular
problem, and the needs to reduce data storage requirements and precision. In SUSY
dataset, SSMA-SFLSDE is improving the baseline accuracy by 1.5% with close
to 96% of reduction. This exemplifies the importance of using data reduction
techniques, not only for reducing the size of the data, but also for removing
noisy and redundant instances. For datasets with high accuracy such as Skin and
Ht_sensor, we can achieve up to 98.6% of reduction without losing accuracy. This
allows techniques that could not be applied due to the size of the data, to be used in
subsequent processes.

As a way of quantifying the reduction rate impact, Fig. 5.3 plots the data
reduction rate for all tested PR methods on the SUSY dataset.
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Fig. 5.3 Reduction rate (%) for SUSY dataset

The main goal of this type of techniques is to widely reduce the amount of data
samples that we keep as training data. However, the analyzed algorithms work quite
differently and they lead to very different accuracy and reduction rates. As we can
see, for the same dataset, depending on the technique used, the reduction rate may
vary from 22 to 96% of reduction. This shows the importance of choosing the right
technique depending on whether the objective is to reduce data size or the focus is
on obtaining a high accuracy.

5.5 Nearest Neighbor Classification for High-Speed Big Data
Streams Using Spark

In this section, we will describe the algorithm DS-RNGE (data stream—relative
neighborhood graph edition), a lazy learning solution for massive data streams [35].
This consists of a distributed case-base, and a PS method inspired by the relative
neighborhood graph edition (RNGE) algorithm [36]. In RNGE, instances are
removed if they disagree with their neighbors in a special proximity graph called
relative neighborhood graph.

Since an ever-growing and noisy case-base is unacceptable in streaming environ-
ments, an improved local version of RNGE was introduced to control the insertion
and removal of noisy instances. In DS-RNGE, the original RNGE was redesigned
for incremental learning. In this new version, a relative graph is built around
each incoming instance, and its neighbors. All the local graphs generated for new
instances are then used to edit the case-base by deciding what instances should be
inserted, removed, or conserved. As every step in this process is performed locally,
the communication overhead is negligible.

Improving the linear search implemented in KNN, DS-RNGE utilizes a dis-
tributed metric tree to organize its case-base. Metric trees smartly index data through
a metric-space explicit ordering [29]. They exploit properties such as the triangle
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inequality to make searches much more efficient in average, skipping a great amount
of comparisons. Notice that the entire tree is maintained in memory to expedite
further neighbor queries in Spark.

The distributed structure of the tree is described as follows. A single top-level
tree is maintained in the master node to route the elements in the first levels where
the partitioning is still coarse-grained. Once the elements have been mapped to the
leaves, local subtrees perform the searches in parallel. The main idea behind here is
that all trees act like a single metric tree but in a fully distributed way.

In order to remove the need for backtracking in M-tree or the use of redundancy,
DS-RNGE implements an approximate approach that allows errors near borders in
exchange for an improvement on efficiency. Authors argue that when the number
of elements is much greater than the number of partitions, the number of conflicts
becomes negligible.

DS-RNGE proceeds in two phases for each newly arrived batch of data: an
edition/update phase which maintains and enhances the case-base, and a prediction
phase that classifies new unlabeled data. Both phases require fast neighbor queries
to accomplish their mission. To deal with this problem, authors propose a smart
partitioning process in which each subtree queries only a single space partition.

In the following sections, we present the different procedures involved in DS-
RNGE. Firstly, we describe the first steps to initialize the distributed case-base.
Afterwards, the editing/updating process is presented. Here, we present details of
insertion and deletion of examples in the tree. Finally, we describe the prediction
phase in the last section.

5.5.1 Partitioning

The first step in DS-RNGE consists of building a distributed metric tree formed
by a top-tree in the master machine and a set of local trees in the slave machines.
This distributed tree will be queried and updated during next iterations with new
batches. From the first batch, a sample of nt instances is taken in order to construct
the main tree. The sampled data should be small enough to fit in a single machine
and should maximize the separability between examples to avoid overlapping in
the future subtrees. The routing tree is created following the standard procedure
presented in [29], where upper and lower bounds are defined to control the size of
nodes.

Once the top-tree is initialized, it is replicated to each machine and one subtree
per leaf is created in the slave nodes. Then, every element in the first batch is inserted
in the subtrees following these steps:

• For each element, the algorithm searches the nearest leaf node in the top-
tree. According to the correspondence between leaf nodes and subtrees we can
determine which subtree each element will be sent to. This process is performed
in a map phase.
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Algorithm 1 Initial partitioning process
Input: data, nt
1: // data is the input dataset
2: // nt Number of leaf trees to be distributed across the nodes
3: sample = smartSampling(data)
4: topT ree = In the master machine, build the top M-tree using sample and the standard

partitioning procedure showed in [29]. It will be replicated to every slave machine.
5: For each leaf node in the topT ree, one subtree is created in a single slave machine. The

resulting set of trees (stored as an RDD) is partitioned and cached for further processing.
6: mapReduce e ∈ data

7: Find the nearest leaf node to e in topT ree, and outputs a tuple with the tree’s ID (key) and
e (value). (MAP)

8: The tuple is sent to the correspondent partition and attached to the subtree according to its
key. (SHUFFLE)

9: Combine all the elements with the same key (tree ID) by inserting them into the local tree.
(REDUCE)

10: Return the updated tree.
11: end mapReduce

• The elements are shuffled to the subtrees according to their keys. Each subtree
gets a list of elements to be inserted.

• For each subtree, all received elements are locally inserted in this tree. This
process is performed in a reduce phase.

Note that the partitions/subtrees derived from this phase will be maintained
during the complete process for re-usability purposes, so that only the arriving
instances will be moved across the network in each iteration. Algorithm 1 shows
this procedure in detail using a MapReduce syntax.

5.5.2 Updating the Distributed Tree with Edition

Whenever a new batch of data arrives to the system, the updating process is
launched. This process inserts new correct examples, as well as removes those
redundant examples already inserted. At first, the algorithm decides which subtree
each element falls into following the same process described in the previous section.
Once all instances are shuffled to the subtrees, a local nearest neighbor search for
each element is started in the corresponding subtrees.

After all neighbors are collected, the IS algorithm creates groups where each
group is formed by a new element and its neighbors. Then, local RNGE is applied
on each group. The idea behind that is to build a local graph around each group and
through this graph to decide what kind of action to perform on each element. New
examples can be inserted or not, whereas old examples (neighbors) can be removed
or conserved. Since each graph only has a narrow view of the case-base, the set of
neighbors that can be removed is limited to those that share an edge with the new
element.
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Algorithm 2 Updating process with edition
Input: query, ks, ro
1: // query is the data to be queried
2: // ks represents the number of neighbors to use in the IS phase.
3: // ro indicates whether to remove old noisy examples or not.
4: mapReduce e ∈ data

5: Find the nearest leaf node to e in topT ree and outputs a tuple with the tree’s ID (key) and e

(value). (MAP)
6: The tuple is sent to the correspondent subtree according to its key. (SHUFFLE)
7: neighbors = the standard M-tree search process is launched for each element in its local

subtree in order to retrieve the ks-neighbors of e. The output will consist of a tuple with e (key)
and a list of its ks-neighbors (value). (REDUCE)

8: edited = compute the local RNGE graph using e and ne, remove those elements that disagree
with their neighbors.

9: if ro == true then
10: Removed old noisy instances in edited from the tree.
11: end if
12: Add new correct instances in edited to the tree.
13: Return the updated tree.
14: end mapReduce

Once decisions for each element are taken we perform insertions and removals
locally in the subtrees in the own reduce phase. Notice that by doing so the
neighbor query and the editing process are both performed in the same MapReduce
process, thus reducing the communication overhead. The complete editing process
is described in Algorithm 2.

Within the edition process, local construction of graphs and subsequent filtering
is illustrated in Fig. 5.4. Here a new example Enew from class A (dashed circle)
arrives to a given partition (Algorithm 2). From that partition, the ks = 7-NN
are retrieved to build the graph shown in step 2. The left part in this figure
represents how the graph looked before the arrival of Enew. Then, the graph is
reconstructed following the rules defined by the relative neighborhood graph. As
only two examples share edges with Enew, its neighborhood is formed by these
points. Finally, removal decisions are made according to the connections between
neighbors. In this case, Enew is prepared to be inserted in the case-base since all
its edge-neighbors agree with its class. Red crosses can be also removed as they
disagree with their neighbors.

5.5.3 Prediction

The labeling process is an approximate function started whenever new unlabeled
data arrive at the system (see Algorithm 3). For each element the algorithm searches
for the nearest leaf node in the master node and shuffles the elements to the
correspondent subtrees. Next, the local search process is used to retrieve the kp-
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Fig. 5.4 Local graph edition for incoming instances. Class A instances are depicted as red crosses,
and class B instances as blue circles. Enew is the new example to be processed. The result is the
insertion of Enew and the removal of the class B examples

Algorithm 3 Prediction process
Input: query, kp
1: // query is the data to be queried
2: // kp represents the number of neighbors for predictions.
3: mapReduce e ∈ data

4: Find the nearest leaf node to e in topT ree and outputs a tuple with the tree’s ID (key) and e

(value). (MAP)
5: The tuple is sent to the correspondent subtree according to its key. (SHUFFLE)
6: neighbors = the standard M-tree search process is launched for each element in its local

subtree in order to retrieve the ks-neighbors of e. The output will consist of a tuple with e (key)
and a list of its ks-neighbors (value). (REDUCE)

7: For each tuple in neighbors return the most-voted class from the list of neighbors. This
value will be the class predicted for the given element.

8: end mapReduce

neighbors of each new element. For each group, formed by a new element and its
neighbors, the algorithm predicts the class for each new element by applying the
majority voting scheme. Notice that the query and the prediction phases are both
performed in the same MapReduce phase just like in the edition algorithm.

5.6 Summary and Conclusions

Data reduction can be seen as the set of techniques devoted to reduce the number of
instances in the data while retaining as much information as possible. This alleviates
both computing times and storage requirements. However, in Big Data scenarios,
classic data reduction techniques cannot be applied.
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This chapter introduces a novel framework for performing classic data reduction
methods in Big Data domains. This framework is employed for the implementation
of some classic data reduction algorithms, showing good results in both reduc-
tion rates and accuracy. Finally, a data reduction method for data streaming based
on RNGE is presented.

Data redundancy seems to be a key issue in most of the analyzed datasets in
the literature. Transforming these big amounts of information into smaller datasets
heavily reduces the data storage requirements and the time needed to perform high-
quality DM. There are many open challenges for the instance reduction problem in
Big Data scenarios. The proposal of ensemble learning techniques based on diverse
subsets of the data may improve the performance of current proposals. On the
other hand, ad hoc instance reduction algorithms will be needed for specific DM
algorithms to do a more tailored Smart Data reduction.
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Chapter 6
Imperfect Big Data

6.1 Introduction

Albeit most techniques and algorithms assume that the data is accurate, measure-
ments in our analogical world are far from being perfect [8]. The alterations of
the measured values can be caused by noise, an external process that generates
corruption in the stored data, either by faults in data acquisition, transmission,
storage, integration, and categorization [31]. The impact of noise in data has drawn
the attention of researchers in the specialized literature [9]. The presence of noise
has a severe impact in learning problems: to cope with the noise bias, the generated
models are more complex, showing less generalization abilities, lower precision,
and higher computational cost [36, 37].

Alleviating or removing the effects of noise implies that we need to identify
the components in the data that are prone to be affected. The specialized literature
often distinguishes between noise in the input variables (namely attribute noise)
and the noise that affects the supervised features. Attribute noise may be caused by
erroneous attribute values, MV and “do not care” values. Note that only in the case
of supervised problems the noise in the output variables can exist. In classification,
this kind of noise is often known either as class or label noise. The latter refers
to instances belonging to the incorrect class either by contradictory examples [14]
or misclassifications [37], due to labeling process subjectivity, data entry errors, or
inadequacy of the information used to label each instance. In regression problems,
noise in the output will appear as a bias added to the actual output value, resulting
in a superposition of two different functions that it is difficult to separate.

MV, among all the corruptions in input attribute values, deserve special attention.
In spite of being easily identifiable, MV pose a more severe impact in learning
models, as most of the techniques assume that the training data provided is
complete [13]. Until recently, practitioners opted to discard the examples containing
MV, but this praxis often leads to severe bias in the inference process [19]. In fact,
inappropriate MV handling will lead to model bias due to the distribution difference
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among complete and incomplete data unless the MV are appropriately treated.
Statistical procedures have been developed to impute (fill in) the MV to generate
a complete dataset, obeying the underlying distributions in the data. The usage of
machine learning approaches to perform imputation, as regressors or classifiers,
quickly followed in the specialized literature, resulting in a large set of techniques
that can be applied to cope with MV in the data [20].

The applicability of noise filters or MV imputations cannot be blindly carried out.
The statistical dependencies among the corrupted and clean data will dictate how the
imperfect data can be handled. Originally, Little and Rubin [19] described the three
main mechanisms of MV introduction. When the MV distribution is independent
of any other variable, we face missing completely at random (MCAR) mechanism.
A more general case is when the MV appearance is influenced by other observed
variables, constituting the missing at random (MAR) case. These two scenarios
enable the practitioner to utilize imputators to deal with MV. Inspired by this
classification, Frénay and Verleysen [8] extended this classification to noise data,
analogously defining Noisy Completely at Random and Noisy at Random. Thus,
methods that correct noise, as noise filters, can only be safely applied with these
two scenarios as well.

Alternatively, the value of the attribute itself can influence the probability of
having a MV or a noisy value. These cases were named as missing not at random
(MNAR) and noisy not at random for MV and noisy data, respectively. Blindly
applying imputators or noise correctors in this case will result in a data bias. In these
scenarios, we need to model the probability distribution of the noisy or missingness
mechanism by using expert knowledge and introduce it in statistical techniques as
multiple imputation [23]. To avoid improperly application of correcting techniques,
some test have been developed to evaluate the underlying mechanisms [18] but still
careful data exploration must be carried out first.

In the rest of this chapter, we will analyze in depth the problem of noise
(Sect. 6.2). Afterwards we shall outline the proposals developed until now to deal
with it (Sects. 6.3 and 6.4). Section 6.5 is devoted to present the proposals for dealing
with MV in Big Data. Finally, Sect. 6.6 summarizes the chapter and gives some
conclusions.

6.2 Noise Filtering

In a classification problem, several effects of this noise can be observed by analyzing
its spatial characteristics: noise may create small clusters of instances of a particular
class in the instance space corresponding to another class, displace or remove
instances located in key areas within a concrete class, or disrupt the boundaries
of the classes resulting in an increased boundaries overlap. All these imperfections
may harm data interpretation, the design, size, building time, interpretability, and
accuracy of models, as well as decision-making [37].
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As described by Wang et al. [35], from the large number of components that
comprise a dataset, class labels and attribute values are two essential elements in
classification datasets. Thus, two types of noise are commonly differentiated in the
literature [35, 37]:

• Class noise, also known as label noise, takes place when an example is wrongly
labeled. Class noise includes contradictory examples [24] (examples with identi-
cal input attribute values having different class labels) and misclassifications [37]
(examples which are incorrectly labeled).

• Attribute noise refers to corruptions in the values of the input attributes. It
includes erroneous attribute values, MV and incomplete attributes or “do not
care” values. MV are usually considered independently in the literature, so
attribute noise is mainly used for erroneous values [37].

Class noise is generally considered more harmful to the learning process, and
methods for dealing with class noise are more frequent in the literature [37]. Class
noise may have many reasons, such as errors or subjectivity in the data labeling
process, as well as the use of inadequate information for labeling. Data labeling by
domain experts is generally costly, and automatic taggers are used, increasing the
probability of class noise.

Due to the increasing attention from researchers and practitioners, numerous
techniques have been developed to tackle it [8, 11, 37]. These techniques include
learning algorithms robust to noise as well as data preprocessing techniques that
remove or “repair” noisy instances. In [8] the mechanisms that generate label noise
are examined, relating them to the appropriate treatment procedures that can be
safely applied:

• On the one hand, algorithm level approaches attempt to create robust classifica-
tion algorithms that are little influenced by the presence of noise. This includes
approaches where existing algorithms are modified to cope with label noise by
either being modeled in the classifier construction [17], by applying pruning
strategies to avoid overfitting or by diminishing the importance of noisy instances
with respect to clean ones [22]. Recent proposals exist which that combine these
two approaches, which model the noise and give less relevance to potentially
noisy instances in the classifier building process [3].

• On the other hand, data level approaches (also called filters) try to develop
strategies to cleanse the dataset as a previous step to the fit of the classifier, by
either creating ensembles of classifiers [4], partitioning the data [33], iteratively
filtering noisy instances [15], computing metrics on the data or even hybrid
approaches that combine several of these strategies.

In the Big Data environment there is a special need for noise filter methods. It
is well known that the high dimensionality and example size generate accumulated
noise in Big Data problems [7]. Noise filters reduce the size of the datasets and
improve the quality of the data by removing noisy instances, but most of the classic
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algorithms for noisy data, noise filters in particular, are not prepared for working
with huge volumes of data as they have an iterative approach. In the following two
sections (Sects. 6.3 and 6.4) are devoted to outline the most relevant proposals until
now to deal with noise in Big Data classification.

6.3 Enabling Smart Data: Noise Filtering in Big Data
Classification

In this section, we will describe a framework composed of three algorithms, focused
on noise filtering in Big Data classification [12]. This paper presents the first suitable
noise filters in Big Data domains, where the high redundancy of the instances
and high dimensional problems pose new challenges to classic noise preprocessing
algorithms. Authors propose a framework for Big Data under Apache Spark for
removing noisy examples composed of two algorithms based on ensembles of clas-
sifiers. The first one is a homogeneous ensemble, named Homogeneous Ensemble
for Big Data (HME-BD), which uses a single base classifier (Random Forest)
over a partitioning of the training set. The second ensemble is a heterogeneous
ensemble, namely Heterogeneous Ensemble for Big Data (HTE-BD), that uses
different classifiers to identify noisy instances: Random Forest, logistic regression,
and K-nearest neighbors (KNN) as base classifiers. Authors also considered a simple
filtering approach based on similarities between instances, named Edited Nearest
Neighbor for Big Data (ENN-BD). ENN-BD examines the nearest neighbors of
every example in the training set and eliminates those whose majority of neighbors
belong to a different class. In Fig. 6.1 we can find a Spark package associated with
this research.

NoiseFramework

In this framework, two Big Data preprocessing approaches to remove noisy
examples are proposed: an homogeneous ensemble (HME BD) and an het-
erogeneous ensemble (HTE BD) filter. A simple filtering approach based on
similarities between instances (ENN BD) is also implemented.

spark-shell --packages djgarcia:NoiseFramework:1.2

https://spark-packages.org/package/djgarcia/NoiseFramework

Fig. 6.1 Spark package: NoiseFramework
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6.3.1 HME-BD: Homogeneous Ensemble

The homogeneous ensemble is inspired by Cross-Validated Committees Filter
(CVCF) [33]. This filter removes noisy examples by partitioning the data in P

subsets of equal size. Then, a decision tree, such as C4.5, is learned P times, each
time leaving out one of the subsets of the training data. This results in P classifiers
which are used to predict all the training data P times. Then, using a voting strategy,
misclassified instances are removed.

HME-BD is also based on a partitioning scheme of the training data. There is
an important difference with respect to CVCF: the use of Spark’s implementation of
Random Forest instead a of a decision tree as a classifier. CVCF creates an ensemble
from partitioning of the training data. HME-BD also partitions the training data, but
the use of Random Forest allows us to improve the voting step:

• CVCF predicts the whole dataset P times. HME-BD only predicts the instances
of the partition that Random Forest has not seen while learning the model. This
step is repeated P times. With this change it not only improves the performance,
but also the computing time of the algorithm since it only has to predict a small
part of the training data each iteration.

• HME-BD does not need to implement a voting strategy, the decision of whether
an instance is noisy is associated with the Random Forest prediction.

Algorithm 1 describes the noise filtering process in HME-BD:

Algorithm 1 HME-BD algorithm
Input: data a RDD of tuples (label, features)
Input: P the number of partitions
Input: nTrees the number of trees for Random Forest
Output: the filtered RDD without noise
1: partitions ← kFold(data, P )

2: f ilteredData ← ∅
3: for all train, test ∈ partitions do
4: rf Model ← randomForest (train, nT rees)

5: rf P red ← predict (rf Model, test)

6: joinedData ← join(zipWithIndex(test), zipWithIndex(rf P red))

7: markedData ←
8: map original, prediction ∈ joinedData

9: if label(original) = label(prediction) then
10: original

11: else
12: (label = ∅, f eatures(original))

13: end if
14: end map
15: f ilteredData ← union(f ilteredData,markedData)

16: end for
17: return (f ilter(f ilteredData, label �= ∅))
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• The algorithm filters the noise in a dataset by performing a kFold on the training
data. Spark’s kFold function returns a list of (train, test) for a given P , where
test is a unique 1/kth of the data, and train is a complement of the test data.

• It iterates through each partition, learning a Random Forest model using the
train as input data and predicting the test using the learned model.

• In order to join the test data and the predicted data for comparing the classes, it
uses the zipWithIndex operation in both RDD. With this operation, an index
is added to each element of both RDD. This index is used as key for the join
operation.

• The next step is to apply a map function to the previous RDD in order to check
for each instance the original class and the predicted one. If the predicted class
and the original are different, the instance is marked as noise.

• The result of the previous map function is a RDD where noisy instances are
marked. These instances are finally removed using a f ilter function and the
resulting dataset is returned.

In Fig. 6.2 we can see a flowchart of the HME-BD noise filtering process. In this
figure we can see how data is partitioned and learned using the train partition, then
the test partition is predicted using the model learned. Finally, wrongly predicted
instances are removed and the partitions are joined together.

6.3.2 HTE-BD: Heterogeneous Ensemble

Heterogeneous ensemble is inspired by ensemble filter (EF) [4]. This noise filter
uses a set of three learning algorithms for identifying mislabeled instances in a
dataset: a univariate decision tree (C4.5), KNN, and a linear machine. It performs
a k-fold cross validation over the training data. For each one of the k parts, three
algorithms are trained on the other k − 1 parts. Each of the classifiers is used to tag
each of the test examples as noisy or clean. At the end of the k-fold, each example
of the input data has been tagged. Finally, using a voting strategy, a decision is made
and noisy examples are removed.

HTE-BD follows the same working scheme as EF. The main difference is the
choice of the three learning algorithms:

• Instead of a decision tree, HTE-BD uses Spark’s implementation of Random
Forest.

• It uses an exact implementation of KNN with the Euclidean distance present in
Spark’s community repository, KNN-IS [21].

• The linear machine has been replaced by Spark’s implementation of logistic
regression, which is another linear classifier.

The noise filtering process in HTE-BD is shown in Algorithm 2:
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Fig. 6.2 HME-BD noise filtering process flowchart

• For each train and test partition of the k-fold performed to the input data, it
learns three classification algorithms: Random Forest, logistic regression, and
1NN using the train as input data.

• Then it predicts the test data using the three learned models. This creates a RDD
of triplets (rf, lr, knn) with the prediction of each algorithm for each instance.

• The predictions and the test data are joined by index in order to compare the
predictions and the original label.

• It compares the three predictions of each instance in the test data with the
original label using a map function and, depending upon the voting strategy, the
instance is marked as noise or clean.

• Once the map function has been applied to each instance, noisy data is removed
using a f ilter function and the dataset is returned.
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Algorithm 2 HTE-BD Algorithm
Input: data a RDD of tuples (label, features)
Input: P the number of partitions
Input: nTrees the number of trees for Random Forest
Input: vote the voting strategy (majority or consensus)
Output: the filtered RDD without noise
1: partitions ← kFold(data, P )

2: f ilteredData ← ∅
3: for all train, test in partitions do
4: classif iersModel ← learnClassif iers(train, nT rees)

5: predictions ← predict (classif iersModel, test)

6: joinedData ← join(zipWithIndex(predictions), zipWithIndex(test))

7: markedData ←
8: map rf, lr, knn, orig ∈ joinedData

9: count ← 0
10: if rf �= label(orig) then count ← count + 1 end if
11: if lr �= label(orig) then count ← count + 1 end if
12: if knn �= label(orig) then count ← count + 1 end if
13: if vote = majority then
14: if count ≥ 2 then (label = ∅, f eatures(orig)) end if
15: if count < 2 then orig end if
16: else
17: if count = 3 then (label = ∅, f eatures(orig)) end if
18: if count �= 3 then orig end if
19: end if
20: end map
21: f ilteredData ← union(f ilteredData,markedData)

22: end for
23: return (f ilter(f ilteredData, label �= ∅))

In Fig. 6.3 we show a flowchart of the HTE-BD noise filtering process. In this
figure, the partitioning process is depicted. We can also observe the learning and
prediction phase using the three classifiers, and the use of the voting strategy.

6.3.3 ENN-BD: Similarity Based Method

ENN-BD is a simple filtering algorithm based on KNN. It has been designed
based on the edited nearest neighbor algorithm (ENN) [34] and follows a similarity
between instances approach. ENN removes noisy instances in a dataset by compar-
ing the label of each example with its closest neighbor. If the labels are different,
the instance is considered as noisy and removed.

ENN-BD performs a 1-NN using Spark’s community repository KNN-IS with
the Euclidean distance. It checks for each instance if its closest neighbor belongs
to the same class. In case the classes are different, the instance is marked as
noise. Finally, marked instances are removed from the training data. This process
is described in Algorithm 3.
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Fig. 6.3 HTE-BD noise filtering process flowchart

6.3.4 Noise Filtering: An Experimental Study

This section is devoted to show the performance of the above three noise filtering
methods over four large-scale problems. Additionally, this section aims at showing
that noise filtering is useful in Big Data classification, providing an improvement in
classification accuracy in the presence of noise.

For such purpose, the three noise filtering methods are analyzed using four
Big Data problems. These datasets have very different properties among them.
SUSY dataset consists of 5,000,000 instances and 18 attributes [6]. The first eight
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Algorithm 3 ENN-BD algorithm
Input: data a RDD of tuples (label, features)
Output: the filtered RDD without noise
1: knnModel ← KNN(1, “euclidean′′, data)

2: knnP red ← zipWithIndex(predict (knnModel, data))

3: joinedData ← join(zipWithIndex(data), knnP red)

4: f ilteredData ←
5: map original, prediction ∈ joinedData

6: if label(original) = label(prediction) then
7: original

8: else
9: (noise, f eatures(original))

10: end if
11: end map
12: return (f ilter(f ilteredData, label �= noise))

features are kinematic properties measured by the particle detectors at the Large
Hadron Collider. The last ten are functions of the first eight features. The task is
to distinguish between a signal process which produces supersymmetric (SUSY)
particles and a background process which does not [1]. HIGGS dataset, which
has 11,000,000 instances and 28 attributes [6]. This dataset is a classification
problem to distinguish between a signal process which produces Higgs bosons and
a background process which does not. Epsilon dataset, which consists of 500,000
instances with 2000 numerical features. This dataset was artificially created for
the Pascal Large Scale Learning Challenge in 2008. It was further preprocessed
and included in the LIBSVM dataset repository [5]. Finally, ECBDL14 dataset,
which has 32 million instances and 631 attributes (including both numerical and
categorical) [29]. This dataset was used as a reference at the machine learning (ML)
competition of the Evolutionary Computation for Big Data and Big Learning held
on July 14, 2014, under the international conference GECCO-2014. It is a binary
classification problem where the class distribution is highly imbalanced: 98% of
negative instances. For this problem, we use a reduced version with 1,000,000
instances and 30% of positive instances.

The experiments five levels of uniform class noise have been chosen: for each
level of noise, a percentage of the training instances are altered by replacing their
actual label by another label from the available classes. The selected noise levels are
0%, 5%, 10%, 15%, and 20%. In this case, a 0% noise level indicates that the dataset
was unaltered. Noise has been introduced randomly to the class labels using a Spark
Package called RandomNoise. It is a simple but useful package that adds class
noise randomly into an RDD. In Fig. 6.4 we can find a Spark Package associated
with this research.

For HME-BD and HTE-BD, 4 training partitions are selected. For HTE-BD, two
voting strategies are used: consensus (same result for all classifiers) and majority
(same result for at least half the classifiers). For ENN-BD, k = 1 is chosen.
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RandomNoise

This package adds class noise randomly into an RDD.

spark-shell --packages djgarcia:RandomNoise:1.0

https://spark-packages.org/package/djgarcia/RandomNoise

Fig. 6.4 Spark package: RandomNoise

In order to evaluate the effectiveness of the filtering proposals, one MLlib
classifier, a decision tree, is used. Prediction accuracy is used to evaluate the model’s
performance produced by the classifiers (number of examples correctly labeled as
belonging to a given class divided by the total number of elements).

Finally, the cluster used is composed of 20 computing nodes and one master
node. The computing nodes hold the following characteristics: 2 processors x
Intel(R) Xeon(R) CPU E5-2620, 6 cores per processor, 2.00 GHz, 2 TB HDD,
64 GB RAM. Regarding software, we have used the following configuration:
Hadoop 2.6.0-cdh5.4.3 from Cloudera’s open-source Apache Hadoop distribu-
tion, Apache Spark and MLlib 1.6.0, 460 cores (23 cores/node), 960 RAM GB
(48 GB/node).

Table 6.1 gathers the test accuracy values for the three noise filter methods using
a deep decision tree (depth = 20). The results presented have shown the importance
of applying a noise treatment strategy, no matter how much noise is present in
the dataset. The best performing filter overall is HME-BD, maintaining almost the
same accuracy for every level of noise. For HTE-BD, the consensus strategy is
performing better than the majority strategy due to higher instance removal. ENN-
BD performance is behind the other two filters.

In Table 6.2 we present the reduction rate after the application of the three noise
filtering methods for the four datasets. As we can expect, the higher the percentage
of noise, the lower the number of instances that remain in the dataset after applying
the filtering technique. In general, HME-BD is the most balanced technique in
terms of instances removed and kept. Although the reduction rate by HTE-BD with
majority voting is very similar to HME-BD, the instances selected to be eliminated
are different, severely affecting the classifier used afterwards. ENN-BD is the filter
that removes more instances. This aggressive filtering hinders the performance of
noise tolerant classifiers, such as the decision tree.

In Table 6.3 we can see the average runtimes of the three methods for the four
datasets in seconds. As the level of noise is not a factor that affects the runtime, we
show the average of the five executions performed for each dataset. Measured times
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Table 6.1 Decision tree test accuracy

Dataset HTE-BD

Vote Noise (%) Original HME-BD Majority Consensus ENN-BD

SUSY 0 80.24 79.78 79.69 80.27 78.56

5 79.94 79.99 80.07 80.36 77.49

10 79.15 79.85 79.81 80.04 77.00

15 78.21 79.81 79.32 79.47 75.81

20 77.09 79.71 79.35 78.95 74.21

HIGGS 0 70.17 71.16 69.61 70.41 68.85

5 69.61 71.14 69.34 69.98 68.29

10 69.22 71.06 68.95 69.56 67.52

15 68.65 71.03 68.52 69.04 66.93

20 67.82 71.05 68.18 68.38 66.05

Epsilon 0 62.39 66.86 65.13 66.07 61.54

5 61.10 66.64 65.32 66.09 60.41

10 60.09 66.87 65.46 66.11 59.20

15 59.02 66.62 65.33 65.99 58.09

20 57.73 66.46 65.08 65.69 56.71

ECBDL14 0 73.98 74.59 74.21 74.51 73.66

5 72.87 74.64 74.16 74.54 73.48

10 71.67 74.59 73.84 74.51 72.75

15 70.28 74.61 73.82 73.91 71.68

20 68.66 74.83 73.78 73.82 70.16

The highest accuracy value per dataset and noise level is stressed in bold

show that HME-BD is not only the best performing option in terms of accuracy,
but also the most efficient one in terms of computing time. HME-BD is about ten
times faster than the heterogeneous filter HTE-BD and the similarity filter ENN-
BD. This is caused by the usage of the KNN classifier by HTE-BD and ENN-BD,
which is very demanding in computing terms. As a result, HME-BD does not need
to compute any distance measures, saving computing time and being the most
recommended option to deal with noise in Big Data problems.

The extensive experimental study carried out in this section has shown that the
usage of any of the noise treatment techniques in the framework always improves the
Original accuracy value at the same noise level. HME-BD has shown to be the best
performing method overall for the decision tree. It is also the most efficient method
in terms of computing time. The voting strategy has a huge impact in the number
of removed instances. As we could expect, KNN is a very demanding method in
computing terms. This is reflected in the longer computing time of HTE-BD and
ENN-BD.
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Table 6.2 Reduction rate (%) for HME-BD, HTE-BD, and ENN-BD

Dataset HTE-BD

Vote Noise (%) HME-BD Majority Consensus ENN-BD

SUSY 0 20.62 21.04 8.74 49.51

5 23.57 25.09 10.33 49.57

10 26.50 27.94 11.68 49.66

15 29.44 30.85 13.04 49.74

20 32.35 33.71 14.22 49.82

HIGGS 0 29.08 35.13 8.20 49.71

5 31.15 36.65 8.83 49.75

10 33.23 38.11 9.59 49.81

15 35.38 39.55 10.35 49.92

20 37.34 41.05 11.11 49.88

Epsilon 0 34.31 22.30 2.90 49.97

5 25.32 25.24 4.32 50.01

10 27.80 27.88 5.83 49.97

15 30.79 30.71 7.22 50.01

20 33.52 33.44 8.74 50.17

ECBDL14 0 22.44 21.35 5.85 26.58

5 25.80 24.51 8.25 31.06

10 28.49 27.68 10.31 35.07

15 31.13 30.71 12.07 38.63

20 33.86 33.69 13.91 41.60

Table 6.3 Average runtimes
for HME-BD, HTE-BD, and
ENN-BD in seconds

Dataset HTE-BD

Vote HME-BD Majority Consensus ENN-BD

SUSY 513.46 5511.15 5855.66 8956.71

HIGGS 587.72 15,300.62 15,232.99 25,441.09

Epsilon 1868.75 4120.79 7201.05 2718.97

ECBDL14 1228.24 9710.70 11,217.02 14,080.03

6.4 Noisy Big Data Treatment with the KNN Algorithm

In this section, we will describe a series of algorithms based on KNN for performing
noise filtering [31]. As we have mentioned previously, the presence of noise involves
a negative impact in the model obtained. This effect is aggravated if the learning
technique is noise sensitive. In particular, the KNN algorithm is very sensitive to
noise, especially when the value of k is low. KNN has been the seminal method
to remove redundant and noisy instances in learning problems. The key idea of
KNN, distance-based similarity, has been recurrently used to detect and remove
class noise.

The literature in the usage of KNN to clean datasets is very prolific and span over
several categories or topics. For instance, in [10] and [30], the authors categorized
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noise filtering techniques based on KNN as sub-families of prototype selection
(PS) and prototype generation methods: edition-based methods and class-relabeling
methods, respectively. The objective of edition-based methods is to only eliminate
noisy instances (in contradistinction to more general PS methods that also remove
redundant samples), and class-relabeling methods do not always remove the noisy
instances, but they may amend those labels that the method found mistakenly
assigned [25].

Among all the previous categories, one of the most popular methods is the edited
nearest neighbor (ENN) [34], which removes all incorrectly labeled instances that
do not agree with their k-nearest neighbors. If the labels are different, the instance
is considered as noisy and removed. Other relevant examples of this family of
methods are: All-KNN [28], NCN-Edit [25], or RNG [26]. A distributed version
of the ENN algorithm based on Apache Spark can be found in Sect. 6.3.3 for very
large datasets. This distributed version of ENN performs a global filtering of the
instances, considering the whole dataset at once. The time complexity of this method
is reduced to the same time complexity of the KNN.

In this work, authors have made the All-KNN algorithm global as ENN, as this
algorithm basically consists of applying multiple times ENN. However, NCN-Edit
and RNG methods have been considered within the MRPR framework proposed
in [32] to make them scalable to Big Data. In Fig. 6.5 we can find this software
available as a Spark Package.

6.5 Missing Values Imputation

In this section, we will describe the KNN-LI algorithm (k-Nearest Neighbors Local
Imputation), focused on the missing values imputation in Big Data problem [31].

SmartFiltering

This framework implements four distance based Big Data preprocessing algo-
rithms to remove noisy examples: ENN BD, AllKNN BD, NCNEdit BD and
RNG BD filters, with special emphasis in their scalability and performance
traits.

spark-shell --packages djgarcia:SmartFiltering:1.0

https://spark-packages.org/package/djgarcia/SmartFiltering

Fig. 6.5 Spark package: SmartFiltering
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There are different ways to approach the problem of MV. For the sake of
simplicity, we will focus on the MCAR and MAR cases by using imputation
techniques, as MNAR will imply a particular solution and modeling for each
problem. When facing MAR or MCAR scenarios, the simplest strategy is to discard
those instances that contain MV. However, these instances may contain relevant
information or the number of affected instances may also be extremely high, and
therefore, the elimination of these samples may not be practical or even bias the
data.

Instead of eliminating the corrupted instances, the imputation of MV is a popular
option. The simplest and most popular estimate used to impute is the average value
of the whole dataset, or the mode in case of categorical variables. Mean imputation
would constitute a perfect candidate to be applied in Big Data environments as the
mean of each variable remains unaltered and can be performed in O(n). However,
this procedure presents drawbacks that discourage its usage: the relationship among
the variables is not preserved and that is the property that learning algorithms want
to exploit. Additionally, the standard error of any procedure applied to the data is
severely underestimated [19] leading to incorrect conclusions.

Further developments in imputation are to solve the limitations of the two
previous strategies. Statistical techniques such as expectation–maximization [27] or
local least squares imputation [16] were applied in bioinformatics or climatic fields.
Note that imputing MV can be described as a regression or classification problem,
depending on the nature of the missing attribute. Shortly after, computer scientists
propose the usage of ML algorithms to impute MV [20].

One of the most popular imputation approaches is based on KNN (denoted as
KNN-I) [2]. In this algorithm, for each instance that contains one or more MV, it
calculates the k-nearest neighbors and the gaps are imputed based on the existing
values of the selected neighbors. If the value is nominal or categorical, it is imputed
by the statistical mode. If the value is numeric, it will be imputed with the average of
the nearest neighbors. A similarity function is used to obtain the k-nearest neighbors.
The most commonly used similarity function for MV imputation is a variation of the
Euclidean distance that accounts for those samples that contain MV. The advantage
of KNN-I is that is both simple and flexible, requiring few parameters to operate and
being able to use incomplete instances as neighbors. Most imputation algorithms
only utilize complete instances to generate the imputation model, resulting in an
approximate or biased estimation when the number of instances affected by MVs is
high.

The proposal of imputation techniques in Big Data is still an open challenge, due
to the difficulties associated to adapt complex algorithms to deal with partial folds
of the data without losing predictive power. At this point, MV pose an important
pitfall in the transition from Big to Smart Data. To the best of our knowledge, there
has not been proposed a way of applying KNN-I on Big Data datasets. Although
further investigation is required, authors propose a simple yet powerful approach to
handle MV with the KNN-I algorithm on Big Data problems, which will be called
k-Nearest Neighbors Local Imputation (KNN-LI). Figure 6.6 shows the workflow of
the algorithm. Due to the scalability problems to tackle the Euclidean distance with
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Fig. 6.6 Flowchart of the KNN-LI algorithm. The dataset is split into M chunks (map function)
that are processed locally by a standard KNN-I algorithm. The resulting amended partitions are
then gathered together

MV, the proposed KNN-LI algorithm follows a divide-and-conquer scheme under
the MapReduce paradigm and it is implemented under the Apache Spark platform.
It begins by splitting and distributing the dataset between the worker nodes. For each
chunk of data, we compute the KNN-I method locally with the existing instances.
Once all MV have been imputed for each chunk of the data, the results are simply
grouped together to obtain a whole dataset free of MV. This local design is similar
to the one followed in [32], for instance, reduction approaches, and allows us to
impute MV in very large datasets. Nevertheless, as a local model we are aware
that the quality of the imputation may vary depending on the number of partitions
considered.

In Fig. 6.7 we can find this algorithm available publicly as a Spark Package in
the Spark Packages repository.
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Smart Imputation

This contribution implements two approaches of the k Nearest Neighbor Im-
putation focused on the scalability in order to handle big dataset. k Nearest
Neighbor - Local Imputation and k Nearest Neighbor Imputation - Global Im-
putation. The global proposal takes into account all the instances to calculate
the k nearest neighbors. The local proposal considers those that are into the
same partition, achieving higher times, but losing the information because it
does not consider all the samples.

spark-shell --packages JMailloH:Smart Imputation:1.0

https://spark-packages.org/package/JMailloH/Smart_Imputation

Fig. 6.7 Spark package: Smart_Imputation

6.6 Summary and Conclusions

In this chapter, a number of techniques for noise filtering and MV imputation
are introduced. These techniques are used for amending what is called imperfect
data. Noise affects the class labels, disrupting the boundaries of the problem and
decreasing the performance of the classifiers. On the other hand, MV affects the
learning process, as learners expect that the data is complete.

We have presented a number of algorithms for noise filtering. These algorithms
are separated into two different proposals. The first one is based on ensembles of
classifiers while the second uses the KNN algorithm underneath. Both have shown
to obtain better results in noisy data than a no filtering strategy. Finally, a MV
proposal is also presented. This method imputes the MV using the KNN algorithm
with a divide-and-conquer scheme.

Nevertheless, the treatment of imperfect data in Big Data is far from being
complete. The massive amount of data may result in data redundancy, leaving
useless traditional approaches to imperfect data, as some regions can be densely
populated and the elimination of corrupted examples can be safely done. However,
the redundancy can be presented in an imbalanced way, thus requiring a careful
study on which regions need to be carefully treated. Such an imbalance can pose a
problem when the overlapping is high, as the boundaries can be difficult to estimate,
hindering the algorithm’s ability to detect noisy instances. Contradictory examples
can also appear in numbers, without an easy approach. Imperfect data approaches
that need to estimate the data density distribution are still a challenge, due to the
computational demanding computations needed and the necessity of clean patches
of examples in the instance space. In summary, while non-parametric techniques
have been presented in this chapter to deal with imperfect data, its treatment is still
an open but interesting challenge to be yet explored.
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Chapter 7
Big Data Discretization

7.1 Introduction

Data is present in diverse formats, for example, in categorical, numerical, or
continuous values. Categorical or nominal values are unsorted, whereas numerical
or continuous values are assumed to be sorted or represent ordinal data. It is well
known that data mining (DM) algorithms depend very much on the domain and type
of data. In this way, the techniques belonging to the field of statistical learning prefer
numerical data (i.e., support vector machines and instance-based learning), whereas
symbolic learning methods require inherent finite values and also prefer to perform
a branch of values that are not ordered (such as in the case of decision trees or rule
induction learning). These techniques are either expected to work on discretized
data or to be integrated with internal mechanisms to perform discretization.

The process of discretization has aroused general interest in recent years [12, 14]
and has become one of the most effective data preprocessing techniques in DM
[11]. Roughly speaking, discretization translates quantitative data into qualitative
data, procuring a non-overlapping division of a continuous domain. It also ensures
an association between each numerical value and a certain interval. Actually,
discretization is considered a data reduction mechanism since it diminishes data
from a large domain of numeric values to a subset of categorical values.

As mentioned before, there is an obvious need for discrete values in DM as many
algorithms explicitly require them to operate. For instance, three of the ten methods
pointed out as the top ten in DM [27] demand data discretization in one form or
another: C4.5 [18], Apriori [1], and Naïve Bayes [30]. Among its main benefits,
discretization causes in learning methods remarkable improvements in learning
speed and accuracy. Besides, some decision tree-based algorithms produce shorter,
more compact, and accurate results when using discrete values [13, 14].

The ever-growing generation of data on the Internet is leading us to managing
huge collections using data analytics solutions. A large proportion of these datasets
are formed by continuous features that may require some discretization processing
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before the learning phase is accomplished. For instance, real values are present in all
the top-5 largest classification datasets from the popular UCI repository [7]. Most
of these collections are generated by some sensor-based generation processes, such
as those integrated in recent physics experiments (HIGGS, HEPMASS, SUSY) or
even in common smartphones (Heterogeneity Activity Recognition dataset). Addi-
tionally, current implementations of tree-based and Bayesian learning in MLlib [15]
do not natively include discretization, or it is performed in an unsupervised manner
(less accurate).

Classical methods have shown not to scale well when dealing with huge
data [28]. As the exponential growth of databases started to entail a problem for
experts, several parallel discretization methods were appearing in the literature in
the last decades, from multi-processor algorithms [6, 16, 29, 32] to GPU-based
solutions [5]. However, all of them are doomed to failure whenever the resources
from a single machine are surpassed by the magnitude of today’s problems. Novel
distributed solutions capable of scaling by attaching extra nodes are expected in this
new era of Big Data.

Despite this clear need for discretization solutions in Big Data, few distributed
approaches have been proposed so far [22]. Researchers and practitioners are then
devoted to devise new distributed methods that allow rapid and scalable discretiza-
tion procedures, that at the same time provide precise discrete representations.

In this chapter, we shall begin by analyzing the early proposals on parallel
discretization (Sect. 7.2). We shall continue with a novel distributed design for the
Fayyad and Irani discretizer which provides equal discretization schemes as those in
the original version (Sect. 7.3). Then, we shall present a parallel implementation of
the Chi2 discretizer (Sect. 7.4). Afterwards, we shall analyze an approximate version
of Fayyad algorithm contained in a MapReduce associative classifier (Sect. 7.5).
Next, an evolutionary multivariate discretizer is presented (Sect. 7.6). Then, we
provide an insight into discretization in Big Data streams (Sect. 7.7). Finally, we
summarize the chapter and draw some conclusions (Sect. 7.8).

7.2 Parallel and Distributed Discretization

As mentioned before, just a couple of proposals can be found in the literature
that address the Big Data discretization problem. This scarcity also extends to the
parallel environment where few methods have been thought in decades. This fact
cannot be argued to be motivated by the low complexity of discretizers since most
of them require as a preliminary requirement to sort all continuous values (loglinear
complexity). In fact, sorting is just a preparation step in discretization, to which has
to be added iterative merging or splitting, evaluation of points, etc. This implies that
current complexity of discretization algorithms ranges from loglinear to beyond.

Cerquides et al. [6] designed a discretization method that relies on Mantaras
distance to evaluate the suitability of candidate partitions. This method performs
several steps in parallel: sorting (logarithmic), evaluation of points (linear), and
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partitioning, among others. Parthasarathy et al. [16] designed a 2-dimensional par-
allel discretizer for streaming systems. To deal with data updates, this incremental
method proposes to dynamically maintain some statistics that avoid the complete
re-execution of the algorithm.

Zhao et al. [32] presented a parallel discretizer based on z-score idea. This algo-
rithm utilizes dynamic range that reflects the significance of probability distributions
instead of standard unsupervised discretization methods. In [29], Yulong et al.
presented an efficient two-step parallel discretization algorithm based on dynamic
clustering. The algorithm first utilizes dynamic clustering to create a discrete
decision table, and then it generates the final set of points using cut importance
discretization algorithms.

Cano et al. [5] introduced GPUs in the discretization field by proposing a GPU-
based parallel algorithm inspired by the CAIM discretizer. This CAIM version is
able to parallelize a large number of operations, such as sorting, the own CAIM
criterion, or the final discretization process. For instance, the ordering stage relies
on a radix sort implementation on GPUs to achieve linear complexity in sorting.
Additionally, the proposed method can work in a coordinate manner on multiple
GPU devices.

Additionally, in Apache Spark’s Packages, we can find a distributed imple-
mentation of the popular Equal Width Discretizer [22]. This package applies the
equal width discretization to a Resilient Distributed Dataset (RDD) with a specified
number of bins. In Fig. 7.1 we can find a Spark Package associated with this
algorithm.

7.3 DMDLP: Distributed Minimum Description Length
Principle Discretizer

In this section, we will describe the DMDLP algorithm (Distributed Minimum
Description Length Principle), focused on discretization in distributed environ-
ments [22]. It is based on the famous Minimum Description Length Principle

Equal-Width-Discretizer

Equal Width Discretizer for Apache Spark.

spark-shell --packages djgarcia:Equal-Width-Discretizer:1.0

https://spark-packages.org/package/djgarcia/
Equal-Width-Discretizer

Fig. 7.1 Spark package: equal width discretizer
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spark-MDLP-discretization

This method implements Fayyad’s discretizer based on Minimum Description
Length Principle (MDLP) in order to treat non discrete datasets from a dis-
tributed perspective. It supports sparse data, parallel-processing of attributes,
etc.

spark-shell --packages sramirez:spark-MDLP- discretization:1.4.1

https://spark-packages.org/package/sramirez/
spark-MDLP-discretization

Fig. 7.2 Spark package: DMDLP discretizer

(MDLP) information entropy minimization, presented in [10]. In this work, the
authors proved that multi-interval extraction of points and the utilization of bound-
ary points can improve subsequent discretization, both in terms of efficiency and
error rate.

In this section we present a new exact design for this well-known algorithm
for distributed environments, proving its discretization capabilities on today’s large
problems. This entropy minimization discretizer, called DMDLP, is implemented
under the Apache Spark framework. According to the authors, DMDLP is able
to perform 270 times faster than the sequential version, and to provide substantial
accuracy improvement on raw continuous schemes. In Fig. 7.2 we can find a Spark
Package associated with this research in the third-party Apache Spark Repository.

One important point in this adaption is how the original complexity has been
distributed. The overall complexity of DMDLP is mainly determined by two
time-consuming operations, namely the sorting operation (logarithmic) and the
evaluation process (quadratic). For the latter phase, the worst case implies the
complete evaluation of entropy for all points.

The sorting operation relies on a complex primitive of Spark, called sortByKey.
This samples the dataset and estimates a set of roughly equal ranges for new
partitions. Then, a shuffling operation is started to re-distribute the points according
to the previous bounds. Once data are re-distributed, a local sorting operation is
launched in each partition. The overall complexity for this operation is loglinear.

The evaluation process is mainly formed by two sub-phases: one that groups
the tuples by feature, and a map operation that sequentially evaluates the candidate
points. Notice that shuffling in the grouping operation is much more lightweight
thanks to the previous sorted partitioning. In the map operation, each feature starts
an independent process that, that as in the sequential version, is quadratic but divided
between all the threads.
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Algorithm 1 Main discretization procedure
Input: S Data set
Input: M Feature indexes to discretize
Input: mb Maximum number of cut points to

select
Input: mc Maximum number of candidates

per partition
Output: Cut points by feature
1: comb ←
2: map s ∈ S

3: v ← zeros(|c|)
4: ci ← class_index(v)

5: v(ci) ← 1
6: for all A ∈ M do
7: EMIT < (A,A(s)), v >

8: end for
9: end map

10: distinct ← reduce(comb, sum_vectors)

11: sorted ← sort_by_key(distinct)

12: f irst ← f irst_by_part (sorted)

13: bds ← get_boundary(sorted, f irst)

14: bds ←
15: map b ∈ bds

16: < (att, point), q >← b

17: EMIT < (att, (point, q)) >

18: end map
19: (SM,BI) ← divide_atts(bds,mc)

20: sth ←
21: map sa ∈ SM

22: th ← select_ths(SM(sa),mb,mc)

23: EMIT < (sa, th) >

24: end map
25: bth ← ()

26: for all ba ∈ BI do
27: bth ← bth + select_ths(ba,mb,mc)

28: end for
29: return (union(bth, sth))

Also note that the previous complexity is bounded to a single attribute. To avoid
repeating the previous process on all attributes, the current design sorts and evaluates
the entire set in a single MapReduce pipeline. Only when the number of boundary
points in an attribute is higher than the maximum per partition (extremely rare case),
iterative evaluation by feature is necessary.

7.3.1 Main Discretization Procedure

Algorithm 1 shows the main procedure in DMDLP. The algorithm below computes
the minimum-entropy cut points by feature according to the MDLP criterion. It uses
a parameter to limit the maximum number of points to generate for each feature.

The first step creates combinations for each distinct feature value in the original
dataset. This MapReduce phase generates tuples with each feature value as key
and a histogram counter as value (< (A,A(s)), v >). Afterwards, the tuples are
aggregated through a function that sums up all partial vectors with the same key,
obtaining class contributions for each distinct point. The resulting tuples are sorted
by key so that the complete list of distinct values ordered by feature index and
feature value is obtained. This structure will be used later to evaluate the complete
set of points in a single step. The first point by partition is also saved (line 11) for
further processing. Once such information is stored, the boundary points selection
process can be launched.
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Algorithm 2 Function to generate the boundary points (get_boundary)
Input: points An RDD of tuples (<

(att, point), q >), where att represents
the feature index, point the point to
consider and q the class counter.

Input: f irst A vector with all first elements
by partition

Output: An RDD of points.
1: boundaries ←
2: map partitions part ∈ points

3: < (la, lp), lq >← next (part)

4: accq ← lq

5: for all < (a, p), q >∈ part do
6: if a <> la then
7: EMIT < (la, lp), accq >

8: accq ← ()

9: else if is_boundary(q, lq) then
10: EMIT < (la, (p+lp)/2), accq >

11: accq ← ()

12: end if
13: < (la, lp), lq >←< (a, p), q >

14: accq ← accq + q

15: end for
16: index ← get_index(part)

17: if index < npartitions(points) then
18: < (a, p), q >← f irst (index + 1)

19: if a <> la then
20: EMIT < (la, lp), accq >

21: else
22: EMIT < (la, (p+lp)/2), accq >

23: end if
24: else
25: EMIT < (la, lp), accq >

26: end if
27: end map
28: return (boundaries)

7.3.2 Boundary Points Selection

Algorithm 2 (get_boundary) describes the function that selects those points in the
borders. This MapReduce function launches an independent sequential process on
each partition. This process is described as follows: for each instance, it evaluates
whether the feature index is distinct from the index in the previous point; if yes, this
emits a tuple with the last point as key and the accumulated class counter as value.
This means that a new feature has appeared, and that this point defines the upper
limit for the current feature (last threshold). If the previous condition is not met, the
algorithm checks whether the current point is boundary with respect to the previous
point. If so, this emits a tuple with the midpoint between these points as key and the
vector as value.

Finally, some evaluations are performed on the last point in the partitions. These
points are compared with the first point in the next partition (previously broadcasted)
in order to check whether there exists a transition to a new feature—generate a prev-
point tuple—or not—generate a midpoint tuple. Notice that the last case may not
generate a boundary point but this step is needed to allow correct evaluations in
further partitions. All tuples generated are then joined into a new RDD of boundary
points, which is returned to the main algorithm as bds.

In Algorithm 1 (line 14), the bds variable is transformed by using a Map
function, transforming the previous key to a new key with the feature index (<
(att, (point, q)) >). This allows us to group the tuples by feature so that each
can be processed independently. The divide_atts function aims at dividing the
tuples into two groups (big and small) according to the amount of candidate points
by feature (count operation). Features in each group will be filtered and treated
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Fig. 7.3 Boundary points generation process. P represents data partitions, k represents keys in
pairs, and v values in these pairs

differently according to whether the total number of points for a given feature
exceeds a given threshold mc or not. “Small” features will be grouped by key so
that these can be processed in a parallel way. The subsequent tuples are now re-
formatted as follows: (< point, q >). The remaining features are processed in an
iterative manner.

The entire boundary points selection process is depicted in Fig. 7.3. In this figure,
six distinct points are distributed into three data partitions. The points are sorted by
key (feature index and point value) to perform the evaluation. The first points in
each partition are sent to the next one to perform the evaluation of limit points. As
a result, four boundary points are generated, some are midpoints, and the remaining
ones are the upper limits for two features.

7.3.3 DMDLP Evaluation

As mentioned before, each group of features is evaluated in a different manner.
Small features are evaluated in a single MapReduce stage where each feature
corresponds with a single partition, whereas big features are evaluated iteratively
as each feature corresponds with a complete RDD with several partitions. The first
option is obviously more efficient, however, the second one is less frequent due
to the number of candidate points is typically small according to the experiments
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Algorithm 3 Recursively evaluation of partitions (select_ths)
Input: cands A RDD/array of tuples (<

point, q >), where point represents a
candidate point to evaluate and q the class
counter.

Input: mb Maximum number of intervals or
bins to select

Input: mc Maximum number of candidates to
eval in a partition

Output: An array of thresholds for a given
feature

1: st ← enqueue(st, (candidates, ()))

2: result ← ()

3: while |st | > 0 & |result | < mb do
4: (set, lth) ← dequeue(st)

5: if |set | > 0 then

6: if type(set) = ′array′ then
7: bd ← arr_select_ths(set, lth)

8: else
9: bd ← rdd_select_ths(set, lth,mc)

10: end if
11: if bd <> () then
12: result ← result + bd

13: (lef t, right) ← divide(set, bd)

14: st ← enqueue(st, (lef t, bd))

15: st ← enqueue(st, (right, bd))

16: end if
17: end if
18: end while
19: return (sort (result))

Algorithm 4 Function that computes statistics for all candidate partition and select
the best cut point (sequential version) (arr_select_ths)
Input: cands An array of tuples (<

point, q >), where point represents a
candidate point to evaluate and q the class
counter.

Output: The minimum-entropy cut point
1: total ← sum_f reqs(cands)

2: lacc ← ()

3: for < point, q >∈ cands do
4: lacc ← lacc + q

5: f reqs ← f reqs+(point, q, lacc, total−
lacc)

6: end for
7: return (select_best (cands, f reqs))

in [22]. In both cases, the select_ths function serves to evaluate and select the
most relevant cut points from the candidate set. For small features, a Map function
is applied on each partition (arr_select_ths). For big features, the process is
more complex, and each feature needs a complete iteration over a different RDD
(rdd_select_ths).

Algorithm 3 (select_ths) recursively selects the most promising candidates
according to the MDLP criterion (single-step version). This algorithm starts by
selecting the best cut point in the entire set. If the criterion accepts the addition,
the point is removed from the candidate set and included into the final scheme. The
candidate set is then divided into two new blocks using this cut point. Both partitions
are then evaluated recursively starting from the left block and repeating the previous
process. This process finishes when there is no partition to evaluate or the maximum
number of selections is met.

Algorithm 4 (arr_select_ths) shows the sequential process (small features) in
charge of generating sufficient statistics for the selection process. This version is
much simpler than the RDD version as it works in a sequential manner. Firstly, it
computes the class contributions on the entire set. Afterwards, a new iteration is
performed to obtain the left and right histograms for each possible partition. This
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Algorithm 5 Function that computes statistics for all candidate partition and select
the best cut point (RDD version) (rdd_select_ths)
Input: cands An RDD of tuples (<

point, q >), where point represents a
candidate point to evaluate and q the class
counter.

Input: mc Maximum number of candidates to
eval in a partition

Output: The minimum-entropy cut point
1: npart ← round(|cands|/mc)

2: cands ← coalesce(cands, npart)

3: totalpart ←
4: map partitions partition ∈ cands

5: return(sum(partition))

6: end map
7: total ← sum(totalpart)

8: f reqs ←

9: map partitions partition ∈ cands

10: index ← get_index(partition)

11: ltotal ← ()

12: f reqs ← ()

13: for i = 0 until index do
14: ltotal ← ltotal + totalpart (i)

15: end for
16: for all < point, q >∈ partition do
17: f reqs ← f reqs+(point, q, ltotal+

q, total − ltotal)

18: end for
19: return(f reqs)

20: end map
21: return (select_best (cands, f reqs))

is done by aggregating the vectors from the leftmost point to the current point,
and from this to the right-most point. Once the accumulated histogram for each
candidate point are calculated (in form of < point, q, lq, rq >), the algorithm
evaluates the candidates using the select_best function.

Algorithm 5 (rdd_select_ths) shows the selection process for “big” features
(points in RDD). This process is performed in a distributed manner since the number
of candidate points exceeds the maximum size allowed. For each feature, the set of
points is re-distributed to a better partition scheme that homogenizes the amount of
elements by partition and node (coalesce function, line 1–2). Afterwards, a parallel
process is launched to compute the accumulated histogram by partition. The results
are then aggregated to obtain the total accumulated frequency for the entire set. In
line 9, a distributed process computes the class histogram for each candidate point
(Algorithm 4). In this procedure, the program sums up all the contributions from
the previous (left) partitions to the current one in order to obtain the starting left
accumulator (ltotal). The statistics for each inner point are computed using the local
contributions and the partial accumulator initialized above (line 7). Once statistics
are computed (< point, q, lq, rq >), the algorithm evaluates all candidate points
in the same manner as in the sequential version.

Algorithm 6 determines if a given point is accepted or not according to the MDL
principle. Thus, for each point,1 the entropy is computed for the two partitions
associated with each point (line 8) as well as the total entropy for the entire set
(lines 1–2). Using these values, the entropy gain for each point and its MDLP score
is obtained. If the point is accepted by MDLP, the algorithm emits a tuple with

1If the points are in array format, a loop is used to evaluate points, else a distributed map function
is used instead.
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Algorithm 6 Function that determines the acceptance or not of points according to
the MDL principle (select_best)
Input: f reqs An array/RDD of tuples (<

point, q, lq, rq >), where point repre-
sents a candidate point to evaluate, leftq
the left accumulated frequency, rightq the
right accumulated frequency and q the class
frequency counter.

Input: total Class frequency counter for all
the elements

Output: The minimum-entropy cut point
1: n ← sum(total)

2: totalent ← ent (total, n)

3: k ← |total|
4: accp ← ()

5: for all < point, q, lq, rq >∈ f reqs do
6: k1 ← |lq|; k2 ← |rq|

7: s1 ← sum(lq); s2 ← sum(rq);
8: ent1 ← ent (s1, k1); ent2 ←

ent (s2, k2)

9: partent ← (s1 ∗ ent1 + s2 ∗ ent2)/s

10: gain ← totalent − partent

11: delta ← log2(3k − 2) − (k ∗ hs − k1 ∗
ent1 − k2 ∗ ent2)

12: accepted ← gain > ((log2(s − 1)) +
delta)/n

13: if accepted = true then
14: accp ← accp + (partent, point)

15: end if
16: end for
17: return (min(accp))

the weighted entropy average for the resulting partitions and the point itself. From
the set of accepted points, the algorithm selects the one with the minimum class
information entropy.

The results produced by both groups (small and big) are finally joined into the
discretization scheme.

7.4 DChi2: Distributed Chi2 Discretizer

In this section, we will describe the DChi2 algorithm (Distributed Chi2 Discretizer),
focused on a MapReduce implementation of Chi2 algorithm [31]. Chi2 algorithm
is a global supervised bottom-up discretizer based on χ2 statistical test. This can
be seen as an automatic version of ChiMerge where the statistical significance level
is adjusted to merge more and more adjacent intervals as long as the inconsistency
criterion is satisfied. Here, the stopping criterion is achieved when there are enough
inconsistencies present in data considering a limit of zero or δ level as default.

Chi2 consists of two main phases, in which computations are performed on each
input attribute, and therefore can be easily parallelized. The first phase can be seen
as a generalization of ChiMerge, whereas the second phase performs small tunes on
the intervals. Namely, the first phase works on a global significance level, whereas
the second phase works on separated significance levels for each attribute.

The idea proposed by Zhang was to organize Chi2 into two MapReduce phases:
one stage that reads raw data, and computes distinct points and class contributions;
and another stage that applies the Chi2 algorithm on the entire set of distinct points.
Figure 7.4 depicts the scheme proposed by Zhang in a MapReduce logical format.
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Fig. 7.4 Distributed Chi2 discretizer. It consists of two MapReduce phases: one that computes
distinct points in a parallel manner, and another that applies Chi2 on the entire set of points

As can be noticed from the previous scheme, only the complexity burden
associate to the generation of distinct points is distributed across the cluster. No
single part of Chi2 is accelerated using a distributed scheme. This implementation
can thus be deemed as a preliminary approach in which further improvements
should be concentrated in the parallelization of Chi2.

7.5 Distributed Discretization on MapReduce Associative
Classification

In this section, we will describe the MRAC algorithm (MapReduce Associate Clas-
sifier), an association rule-based classifier built upon MapReduce [4]. The proposed
method infers classification associative rules using a distributed implementation
of the well-known FP-Growth algorithm. Once the corresponding rules have been
generated, a distributed pruning process is performed. The resulting set of elected
rules is finally utilized to predict unlabeled elements.

As part of MRAC, the authors designed an approximation of the MDLP
algorithm to transform continuous values into discrete ranges, which is required
by the rule-based inference process. This discretization process is composed of two
MapReduce phases, as shown in Fig. 7.5.

In the first MapReduce stage, each Mapper reads different groups of examples
from HDFS according to a percentage defined as input parameter, and applies
equifrequency discretization on each group. The subsequent output is the sorted
list of cut points for each Mapper. The Reducers fused all the lists into a final sorted
list of equifrequency bin boundaries.
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Fig. 7.5 Distributed discretization in MRAC, composed of two MapReduce phases: one that
generates equifrequency boundaries, and another that computes class histograms based upon these
bins and selects the best points according to the MDLP principle

In the second stage, the Mappers compute class histograms for all the bins
generated by fetching again the entire dataset. Then each Mapper calculates the
percentage of instances belonging to each class. Finally, the Reducers aggregate the
histograms and select the most relevant cut points following to the MDLP principle.

The approximate version presented above reduces the number of cut points to
consider thanks to the former unsupervised discretization step. This makes dis-
cretization in MRAC more rapid than in DMDLP (Sect. 7.3), but much less accurate
as it utilizes a decimated subset of candidate points. Furthermore, the boundary
optimization as described in [10] is not guaranteed by MRAC since initial points are
generated in an unsupervised manner without considering class borders. In MRAC,
the higher the frequency used in the bins, the more accurate the approximation
will be.

Finally, MRAC requires to replicate the entire set of points in order to count class
contributions before MDLP is applied. In case of complex borders with a massive
amount of boundaries, MRAC would perform poorly due to high network cost of
replication.

7.6 A Distributed Evolutionary Multivariate Discretizer
for Big Data

In this section, we will describe the DEMD algorithm (Distributed Evolutionary
Multivariate Discretizer), a discretizer based on an evolutionary points selection
scheme [20]. It is based on the classical EMD discretizer [19]. EMD is an
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spark-DEMD-discretizer

Here, a Distributed Evolutionary Multivariate Discretizer (DEMD) for data
reduction on Spark is presented. This evolutionary-based discretizer uses bi-
nary chromosome representation and a wrapper fitness function. The algo-
rithm is aimed at optimizing the cut points selection problem by trading-off
two factors: simplicity of solutions and its classification accuracy. In order to
alleviate the complexity derived from the evolutionary process, the complete
evaluation phase has been fully parallelized. For this purpose, both the set
of chromosomes and instances are split into different partitions and a random
cross-evaluation process between them is performed.

spark-shell --packages sramirez:spark-DEMD-discretizer:1.0

https://spark-packages.org/package/sramirez/
spark-DEMD-discretizer

Fig. 7.6 Spark package: DEMD discretizer

evolutionary-based discretizer with binary representation and a wrapper fitness
function. Although both algorithms share some common aspects (like representation
and fitness function), DEMD goes beyond a simple parallelization, and offers an
approximative, scalable, and resilient solution to deal with the Big Data discretiza-
tion problem. Alike EMD, in DEMD, partial solutions are generated locally, and
eventually fused to produce the final discretization scheme. This proposal is the
first evolutionary approach in dealing with the large-scale discretization problem. In
Fig. 7.6 we can find a Spark Package associated with this research in the third-party
Apache Spark Repository.

This section analyzes the design of the distributed discretization solution for Big
Data. This algorithm splits both the set of cut points and instances into partitions,
and evaluates them through a cross-evaluation system. With this distributed scheme
we maximize the resource usage throughout the entire process. If a point is selected
by one of the evaluation processes, it counts as a single vote. All these votes are
aggregated to obtain the final score per point. Finally, the final discretization scheme
is obtained through a voting scheme.

In Sect. 7.6.1, the main procedure in charge of partitioning the instances are fea-
ture, and aggregating the partial solutions is presented. Section 7.6.2 illustrates the
process of computing boundary points. Section 7.6.3 exposes how the chromosomes
are evaluated in a distributed manner by using EMD.
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7.6.1 Main Discretization Procedure

Procedure 7 shows the main procedure of the discretization algorithm. Hereafter
we will use the term partition to describe the data partitions, and the term chunk to
describe the feature partitions. This procedure is in charge of distributing the initial
cut points (computed in Sect. 7.6.2) among the set of chunks. The partitions already
created are associated with these chunks so that each chunk is evaluated on the
instances contained in one or more partitions. After the parallel selection process
is performed (in Sect. 7.6.3), this procedure creates the final matrix of selected cut
points.

The first step computes the boundary points (BF ) in a distributed way using
the function getBoundary (line 1, Sect. 7.6.2). Each tuple in BF consists of a
feature ID (f id) and a list of points. Based on this variable, DEMD creates FI

(feature information), and BP (boundary points per feature). All this information
will serve us to create the chromosome chunks.

The procedure divides the evaluation of cut points using subsets of features
(called chunks) (lines 2–13). To do that, DEMD first sorts all features by the number
of boundary points contained in each one (ascending order). Then, DEMD computes
the number of chunks (ncp) in which the entire list of boundary points will be
divided. ncp is computed using several variables which are related according to
Eq. (7.1).

Algorithm 7 Main discretization procedure
Input: D dataset
Input: M Feature indexes to discretize
Input: uf Multivariate user factor
Input: alp Alpha parameter
Input: ne Number of evaluations
Input: sr Sampling rate
Input: vp Percentage of selected points
Output: Cut points by feature
1: BF ← getBoundary(D,M)

2: BP ← (); FI ← ();
3: for all < f id, l >∈ BF do
4: BP(f id) = l

5: FI.add(Feature(f id, l.size))

6: end for
7: FI ← broadcast (sortBySize(F I))

8: BP ← broadcast (BP )

9: nbp ← totalSize(BP )

10: ds ← nbp/D.npartitions

11: ms ← max(FI (0).size, ds)

12: df ← max(uf,ms/ds)

13: ncp ← nbpoints/(df ∗ ds)

14: windows ← makeGroups(FI, ncp)

15: CH ← ()

16: for all w ∈ windows do
17: p ← shuff le(w)

18: for i = 0 → i < p.size do
19: CH(i).add(p(i))

20: end for
21: end for
22: CH ← broadcast (CH)

23: SD ← stratif iedSampling(D, sr)

24: SP ← select (SD,CH, uf, alp, sr, vp)

25: T H ← ()

26: for < chid, lf >∈ SP do
27: ind ← 0; chunk ← CH(chid)

28: for f eat ∈ chunk do
29: for i = 0 → i < f eat.size do
30: if lf (i + ind) == true then
31: point ← BP(f eat.id)(i+ind)

32: T H(f eat.id).add(point)

33: end if
34: end for
35: ind ← ind + f eat.size

36: end for
37: end for
38: return (T H)
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ncp = np/(max(uf,ms/ds) · ds), (7.1)

where np is the total number of boundary points, ds the current proportion of points
by data partition, uf the split factor specified by the user, and ms the maximum
between the largest feature size and ds.

Usually each feature is contained in a single chunk, but it may change in case
the user specifies a greater value, or the largest feature surpasses the default size
since points belonging to the same feature cannot be separated. In the latter case, a
finer-grained division will be performed, which means more chunks. This scenario
normally entails a quicker evaluation, but a loss in effectiveness.

The evaluation procedure starts to distribute points between the chunks (CH )
(lines 14–21). In each iteration, a group of nc features is collected and randomly
distributed among the chunks. The loop ends when there is no feature to collect.
This mechanism will enable a fairly distribution of boundary points, without points
from the same feature in different chunks, and with a similar number of features per
chunk.

Once the distribution of points is completed, a stratified sampling process (by
class) is performed on D (line 23). The resulting sample SD is used to evaluate
the boundary points in a distributed manner. According to the multivariate factor
(max(uf,ms/ds)), each partition randomly selects as many chunks as indicated by
these factor (usually only one). Then, each partition is responsible of evaluating
the points contained in their associated chunks (line 24). The selection phase is
described in detail in Sect. 7.6.3.

Each selection process returns its aggregated partial solution (the best chromo-
some per chunk), and saves the tuples (chunk ID, best solution) in SP . All these
partial results are then summarized using a voting scheme, considering the threshold
(vp). Finally, the main procedure processes the binary vectors to obtain the final
matrix of cut points (T H ) (line 26–38). This procedure fetches the features in each
chunk, and its correspondent points. If a given point has been selected, it is added
to the final matrix. If not, this is omitted.

An illustrative scheme of the entire process is detailed in Fig. 7.7. In this example,
there are four features with different amounts of boundary points (8, 5, 4, 10).
Boundary points are then uniformly distributed into three chunks where features
may be mixed, like in chunk C1. Afterwards chromosome chunks are grouped
with seven data partitions following a correspondence table that relates chunks and
partitions according to the multivariate factor. Once local evaluation threads have
ended, partial discretization results (binary vectors) for the same chromosome part
are aggregated by summing votes. Most-voted points in each chunk according to
vp (proportion of points to select) are selected, and adapted to create the global
selection matrix.
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Fig. 7.7 A simplified representation of the DEMD process. F represent the features, C the
chromosome chunks, P the dataset partitions to evaluate, and Pt the boundary points. The selected
points have been highlighted in bold

7.6.2 Computing the Boundary Points

Procedure 8 (getBoundary) describes the function that computes border points
in data. This procedure consists of three steps. Firstly, the distinct points (D) in
the dataset are calculated by removing duplicated elements. Secondly, the resulting
points are sorted (S) and distributed by feature index so that all the points from the
same feature will not be separated. Finally, the boundary points (BP ) in each feature
are evaluated sequentially.
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Algorithm 8 Function to generate the boundary points (getBoundary)
Input: D dataset
Input: M Feature indexes to discretize
Output: The set of boundary points (feature

index, point value).
1: CB ←
2: map s ∈ D

3: v ← zeros(|c|)
4: ci ← classIndex(v)

5: v(ci) ← 1
6: for all A ∈ M do
7: EMIT < (A,A(s)), v >

8: end for
9: end map

10: D ← reduce(CB, sumV ectors)

11: S ← sortByKey(D)

12: FP ← f irstByPart (S)

13: BP ←
14: map partitions PT ∈ S

15: < (la, lp), lq > ← next (PT )

16: for all < (a, p), q >∈ PT do

17: if a <> la then
18: EMIT < la, lp >

19: else if isBoundary(q, lq) then
20: EMIT < la, (p + lp)/2 >

21: end if
22: < la, lp >←< a, p >

23: end for
24: index ← getIndex(PT )

25: if index < npartitions(S) then
26: < (a, p), q >← FP(index + 1)

27: if a <> la then
28: EMIT < la, lp >

29: else
30: EMIT < la, (p + lp)/2 >

31: end if
32: else
33: EMIT < la, lp >

34: end if
35: end map
36: return (BP.groupByKey())

The procedure starts by launching a parallel process on each partition (taking
advantage of data locality) with the aim of computing the distinct points (CB) (lines
1–9). Once the points are sorted (D) and the first point by partition is distributed
(FP ), DEMD evaluates whether each points belong to any border as follows (lines
13–36): for each point, it checks whether the feature index is distinct from the index
of the previous point; if it is so, DEMD generates a tuple with the feature index of
the last point as key, and its correspondent value as value. By doing so, the last point
from the current feature is always kept as the last threshold. If there are more points
in this feature, the procedure evaluates whether the current point accomplishes the
boundary condition with respect to the previous point. If it is so, this generates a
tuple with the feature index as key, and the midpoint between these two points as
value.

The last point in each partition is considered as a special case (lines 25–
34). These points are compared with the first point in the following partition
(broadcasted). If the feature indexes are different, the procedure emits a tuple with
the last point. If not and the point is boundary, DEMD emits a tuple with the
midpoint between these two points. Finally, all the tuples generated in each partition
are joined into a RDD of boundary points, which is returned to the main procedure.

The previous process is depicted in Fig. 7.8. In this figure we can see three
partitions with six different points. The points are sorted by key (feature index and
point value) to perform the evaluation. The first point for each partition is sent to
the following partition to perform the evaluation of the last points. As a result, three
boundary points are generated, some are midpoints and some are the last points in
features.



138 7 Big Data Discretization

k: (1, 2)
v: [2, 1]

k: (1, 3.5)
v: [2, 2]

k: (1, 3)
v: [2, 1]

k: (1, 4)
v: [2, 2]

k: (1, 2)
v: [2, 1]

k: (2, 3)
v: [0, 1]

k: (1, 5)
v: [1, 0]

k: (1, 4)
v: [2, 2]

k: (1, 5)
v: [1, 0]

k: (2, 1)
v: [0, 1]

k: (1, 5)
v: [1, 0]

k: (2, 6)
v: [0, 1]

k: (2, 3)
v: [0, 1]

k: (1, 5)
v: [1, 0]

k: (2, 6)
v: [0, 1]

k: (2, 6)
v: [0, 1]

k: (2, 3)
v: [0, 1]

k: (2, 1)
v: [0, 1]

Sort by key
Distinct  points (key:
feature index + point

value

Compute
boundary points

Midpoint

Midpoint

Last point
of F1

Last point
of F2

No boundary
point

No boundary
point

P1

P3

P2

Fig. 7.8 Distributed computation of boundary points. P represents the partitions. The points
broadcasted have been highlighted in bold

7.6.3 Distributed Cut Points Selection

Procedure 9 shows the distributed operations used to aggregate the solutions
generated by each local evaluation process, and to decide the final discretization
scheme. Note that local evaluation of points is performed by launching a single
instance of EMD on each data partition. This process consists of two steps: the first
one starts a selection process (map) on each pair chunk-partition and aggregates the
subsequent solutions to produce the final number of votes. The second step is aimed
at selecting the most-voted points by chunk according to the threshold (vp) defined
by the user.

Firstly, each chunk is associated with one or more data partitions using PO,
which is a table formed by tuples (chunk ID, data partition). For each tuple, a map
operation is started (lines 3–22). This map operation starts by creating a data matrix
with the instances contained on each partition and those features present in the
chunk. Afterwards, the procedure executes an evaluation thread on each submatrix
(FD) in order to evaluate the corresponding boundary points (CP ). As a result, the
best chromosome (a binary vector) in the population is returned (BI ).

The binary vector will be transformed into a numeric vector to annotate number
of selections (CO) (lines 13–22). The final result emitted by the partition is a tuple
with the identifier of the chunk as key, and the vector count—number of times each
point has been selected—and a chunk count—maximum number of partitions in



7.7 Discretization in Big Data Streaming 139

Algorithm 9 Function to perform the evolutionary selection process (select)
Input: SM Sampled boundary points
Input: CH Feature chunks
Input: uf Multivariate user factor
Input: alpha Alpha parameter (evolutionary

process)
Input: ne Number of evaluations (evolution-

ary process)
Input: sr Sampling rate
Input: vp Percentage of selected points
Output: Cut points by feature
1: PO ← shuff le(seq(0, CH.size))

2: R ←
3: map partitions < index,DT >∈ SM

4: chid ← PO(index % CH.size)

5: C ← CH(chid)

6: npoints ← totalSize(chunk)

7: CP ← (); FD ← ()

8: for i = 0 → i < chunk.size do
9: FD(i) ← DT (i)

10: CP(i) ← C(i)

11: end for

12: BI ← EMD(FD,CP, alpha, ne)

13: CO ← ()

14: for i = 0 → i < BI.size do
15: if BI (i) == 1 then
16: CO(i) = 1
17: else
18: CO(i) = 0
19: end if
20: end for
21: EMIT < chid, (CO, 1) >

22: end map
23: CO ← R.reduceByKey(sum())

24: SL ←
25: map < chid, (AC, c) >∈ CO

26: S ← sort (AC)

27: ps ← AC.size ∗ vp

28: BA ← take(S, ps)

29: EMIT < chid, BA >

30: end map
31: return (SL)

which has been evaluated—as value. This procedure will indicate the selection ratio
for each point. The partial values generated above are aggregated by reducing the
tuples by key.

Secondly, the procedure starts a map operation (lines 25–30) to select the most-
voted points by chunk (SL). The procedure orders all the points by number of votes,
and selects in order as much points as specified by vp. The result is a tuple with
chunk ID as key, and the selection vector as value. Finally, previous results will
eventually be transformed to a matrix of points in the main procedure.

7.7 Discretization in Big Data Streaming

Discretization is one of the most extended data preprocessing techniques. Although
we can find many proposals for static Big Data preprocessing, there is little research
devoted to the continuous Big Data problem. Apache Flink is a recent and novel
Big Data framework, following the MapReduce paradigm, focused on distributed
stream and batch data processing [3].

In this section, we will describe a data stream library named DPASF (Data
Preprocessing Algorithms for Streaming in Flink), focused on Big Data stream
preprocessing [2]. The library is composed of six of the most popular and widely
used data preprocessing algorithms for Apache Flink. It contains three algorithms
for performing feature selection, and three algorithms for discretization. In this
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FlinkML DPASF

Big Data library oriented to online data preprocessing for Apache Flink. This
library contains six of the most popular and widely used algorithms for data
preprocessing in data streaming. It is composed of three feature selection
algorithms and three discretization algorithms.

https://sci2s.ugr.es/BigDaPFlink

Fig. 7.9 FlinkML: DPASF library

section, we focus on the three online discretization algorithms implemented in the
library. In Fig. 7.9 we can find the algorithm implementations associated with this
research.

7.7.1 IDA: Incremental Discretization Algorithm

IDA [25] uses a random sample of the data stream for performing an approximate
quantile-based discretization. This random sample is used to calculate the cut points.

IDA uses a random sample of the data because it is not feasible nor possible
for high-throughput data streams to maintain a complete record of all the values
processed. The sample method used is called reservoir sampling [24]. It maintains a
random sample of s values Vi for each attribute Xi . The first s values that arrive for
each Xi are added to its corresponding Vi . Thereafter, every time a new instance
〈xn, yn〉 arrives, each of its values xi

n replace a randomly selected value of the
corresponding Vi with probability s/n.

Each value of each attribute is stored in a vector of interval heaps [23]. V
j
i stores

the values for the jth bin of Xi . The reason to use an Interval Heap is that it provides
efficient access to minimum and maximum values in the heap and direct access to
random elements within the heap.

Algorithm 10 shows the pseudocode for IDA. This algorithm first computes the
cut points for the dataset with the desired number of bins. In order to compute
them, each instance is mapped to the result of IDA, which returns the computed
cut points. To do so, each feature is zipped with its index, and then folded with its
corresponding class label and a zero feature vector that will be filled in each iteration
of the fold operation, with the returned value of the IDA algorithm. Once cut points
are stored, line 6 in Algorithm 10 discretizes the data according to those cut points.
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Algorithm 10 IDA Algorithm
Input: data a DataSet LabeledVector (label, features)
Input: bins number of bins
Output: Discretized dataset with desired number of bins
1: cuts ←
2: map ((y, x) ∈ data)

3: zipped ← zipWithIndex(x)

4: FoldLef t ((y, emptyf eature), IDA())

5: end map
6: return discretize(data, cuts)

7.7.2 PiD: Partition Incremental Discretization Algorithm

PiD [17] is a discretization algorithm that performs an incremental discretization.
This discretization is performed in two tasks or layers. The first layer receives the
sequence of input data and the range of the variable and keeps some statistics on
the data using many more intervals than required. The range of the variable is used
to initialize the cut points with the same width. Each time a new value arrives, this
layer is updated in order to compute the corresponding interval for the value. Each
interval has an internal count of the values it has seen so far. When a counter for an
interval reach a threshold, a split process is triggered to generate two new intervals.
If the interval triggering the split process is the last or the first, a new interval with
the same step is created. Otherwise the interval is split in two. In summary, the first
layer simplifies and summarizes the data.

The second layer creates the final discretization based on the statistics calculated
by the first layer of the architecture. This architecture processes streaming examples
in a single scan, in constant time and space even for infinite sequences of examples.
To do so, the second layer merges the set of intervals computed in the previous layer.

PiD stores the information about the number of examples per class in each
interval in a matrix. In this matrix, columns correspond with the number of
intervals and rows with the number of classes. With this information, the conditional
probability of an attribute belonging to an interval given that the corresponding
example belongs to a class can be computed as P(bi < x ≤ bi+1|Classj ).

To perform the actual discretization, PiD uses Recursive entropy discretiza-
tion [9]. This algorithm was developed by Fayyad and Irani [8]. It uses the
class information entropy of two candidate partitions to select the boundaries for
discretization. It starts searching for a unique threshold that minimizes the entropy
over all possible thresholds, then, it is applied recursively to both partitions. It uses
the minimum description length [26] principle as stop criteria. The algorithm works
as follows:

First, the entropy before and after the split is computed as well as its information
gain. Then, the entropy for both left and right splits is computed. Finally the
algorithm checks if the split is accepted using the following formula:
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Algorithm 11 PiD Algorithm
Input: data a DataSet LabeledVector (label, features)
Input: α parameter
Input: step parameter
Output: Discretized dataset
1: cuts ←
2: map instance ∈ data

3: (instance,Histogram, 1)

4: end map
5: reduce (m1,m2) ∈ cuts

6: UpdateLayer1(m1,m2)

7: UpdateLayer2(m1,m2)

8: end reduce
9: return discretize(data, cuts)

Gain(A, T ; S) <
log2(N − 1)

N
+ Δ(A, T ; S)

N
, (7.2)

where N is the number of instances in the set S,

Gain(A, T ; S) = H(S) − H(A, T ; S) (7.3)

and

Δ(A, T ; S) = log2(3
k − 2) − [k · H(S) − k1 · H(S1) − k2 · H(S2)] , (7.4)

where ki is the number of class labels represented in the set Si.
Algorithm 11 shows the pseudocode for PiD, this algorithm first initializes the

required data structures using a map function. This map function expands the dataset
and adds to it a histogram and a count of the total number of instances seen so far.
Then this data is reduced, computing in each reduce step the layers one and two as
described in the original algorithm. Once this reduce stage has been completed, it
returns the discretized data using the previously computed cut points.

7.7.3 LOFD: Local Online Fusion Discretizer

LOFD [21] is a novel, online, and self-adaptive discretization solution for stream-
ing classification which aims at reducing the negative impact of fluctuations in
evolving intervals. LOFD mainly relies on highly-informative class statistics to
generate accurate intervals at every step. Furthermore, local nature of operations
implemented in LOFD offers low response times, thereby making it suitable for
high-speed streaming systems.
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The algorithm is composed of two phases, the main process, at instance level,
and the merge/split process, at interval level. The main process works as follows.
First, discrete interval is initialized following the static process defined in [33]. The
discretization is then performed on the first initTh instances. From that moment on,
LOFD updates the scheme of intervals in each iteration and for each attribute. For
each new instance, it retrieves its ceiling interval (implemented as a red-black tree).
If the point is above the upper limit a new interval is generated at that point, making
that point the new maximum for the current attribute. A merge between the old and
the new last interval is evaluated by computing the quadratic entropy, if the result is
lower than the sum of both parts, the merge is accepted.

Finally, each point is added to a queue with a timestamp to control future
removals in case the histogram overflows. If necessary, LOFD recovers points from
the queue in ascending order and removes them until there is space left in the
histogram.

The split/merge phase is triggered each time a boundary point is processed. The
new boundary point splits an interval in two, one interval contains the points in the
histogram with values less than or equal to the new point and keeps the same label.
Each time a new interval is generated, the merge process is triggered for the intervals
being divided and their neighbors.

Algorithm 12 shows pseudocode for LOFD. This algorithm first instantiates a
LOFD helper, and maps the data according to the computed cut points this helper
returns. Once all cut points have been collected, the reduce function extracts only
the most recently computed cut points. Finally, it performs the discretization based
on those same cut points.

Algorithm 12 LOFD Algorithm
Input: data a DataSet LabeledVector (label, features)
Output: Discretized dataset
1: lof d ← LOFDInstance

2: cuts ←
3: map x ∈ data

4: discretized ← lof d.applyDiscretization(x)

5: for s = 0 until discretized.size do
6: lof d.getCutpoints(s)

7: end for
8: end map
9: reduce (_, b) ∈ cuts

10: b

11: end reduce
12: return discretize(data, cuts)
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7.8 Summary and Conclusions

Discretization is one of the most studied techniques in data preprocessing. It is
focused on transforming the values of the instances from continuous values to
discrete ones. This reduces the complexity of the data and also removes outliers.

This chapter presents the proposals devoted to perform discretization in Big Data
scenarios. A distributed version of one of the most popular discretizers (MDLP)
is presented. A distributed implementation of Chi2 algorithm and an approach
for performing discretization with association rules are also introduced. Next, we
describe one of the most recent proposals for distributed discretization, DEMD.
Finally, we analyze the proposals for dealing with discretization in Big Data
streaming. These techniques have the challenge of having to adapt to the evolving
data and concept drift.

Discretization is one of the most complex tasks regarding data preprocessing. The
wrong cut points selection will lead to the inability to learn or to acquire valuable
knowledge from the data. For this reason, data discretization taxonomies have been
created in order to select the best method for a given problem [22]. However, the
lack of Big Data discretizers is still an open issue, due to the complexity of finding
suitable cut points. While normal-sized data shows a rich ecosystem of discretized,
based on many different criteria, more algorithms are needed for tackling the Big
Data discretization problem from such a diverse taxonomy.
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Chapter 8
Imbalanced Data Preprocessing
for Big Data

8.1 Introduction

Among the wide set of problems worsened or even directly provoked by Big Data,
we can highlight the treatment of imbalanced data in classification. Many today’s
problems possess classes represented by a negligible number of examples compared
to the other classes. Moreover, the classes which are underrepresented are typically
those that arouse most interest; therefore, its correct identification becomes primary.
This scenario, known as imbalanced classification, has gained lots of attention in the
last years [13, 19].

Classifying imbalanced datasets is not usually a trivial task. Standard learning
techniques are often guided by global search measures that constantly overlook this
contingency. Related studies asserted the power of classifiers suffer a dramatic drop
in the event of both imbalance and lack of data [10]. In this manner, it is necessary to
stress the main description features of problem and solve the drawbacks associated
with them prior to the learning phase.

A large number of approaches have been conceived to address imbalanced classi-
fication. These approaches fall largely in two groups: data sampling solutions [2, 4],
which modify the original training set, and algorithmic modifications [18] which
alter standard algorithms in order to improve the prediction power on minority
examples. Cost-sensitive solutions [7] combine the two previous options in order
to minimize the error cost, usually higher in the minority side. In this chapter, we
will focus on the former category where input data are preprocessed to equalize
classes.

The techniques used to deal with Big Data are focused on obtaining fast,
scalable, and parallel implementations. To achieve this goal, one of the more popular
solutions nowadays is to follow a MapReduce procedure, dividing the original set
into subsets which are easier to address, and then combining the partial solutions
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obtained typically using an ensemble mechanism. However, data partition may
have a special negative impact on imbalanced datasets. Among the drawbacks that
degrade the performance in standard imbalanced classification, we can encounter
the problem of small sample size and data lack [10] which are amplified by the data
partitioning process performed in distributed systems. In these cases, oversampling
tends to perform better than undersampling as this family of techniques mainly focus
on increasing number of representative examples in maps.

Related to data lack, the small disjuncts [19] problem stands as one of the major
problems in large-scale imbalanced learning. Small disjuncts are defined as those
concepts that take form of small clusters of examples in the input space, also called
“rare cases.” The small disjuncts problem is also worsened by the division process
in MapReduce jobs.

Other state-of-the-art oversampling methods such as SMOTE tend to fail when
they are applied in distributed environments [8]. This poor performance may be
caused by the random partitioning scheme introduced in each map. This division
will provoke that some artificial samples are erroneously introduced on behalf of
real objects with no spatial relationship. Novel SMOTE-based designs that introduce
either a novel exact models (no voting), or a new partitioning scheme that allows
relations between examples, are thus required.

In this chapter, we shall begin by analyzing a MapReduce framework for
imbalanced data preprocessing with several state-of-the-art sampling techniques
such as random undersampling and oversampling (Sect. 8.2). Section 8.3 presents
a Big Data implementation of the popular SMOTE algorithm on Apache Spark.
Section 8.4 describes a real imbalanced Big Data challenge and the winner
algorithm. Section 8.5 enumerates the latest proposals on imbalanced Big Data
preprocessing which rely on different techniques and strategies: ensemble voting,
rough sets, or evolutionary learning, among others. Section 8.6 concludes this
chapter with a summary of the section and some conclusions.

8.2 Data Sampling in Big Data

In many real-world supervised learning application, there is a difference between
the amount of examples of the different classes. This difference leads to the learning
algorithms to bias towards the most represented class. This situation is known as the
class imbalance problem. One of the most extended techniques for dealing with
imbalanced datasets is resampling.

In this section, we will describe the ROS-BD (Random OverSampling for Big
Data) and RUS-BD (Random UnderSampling for Big Data) algorithms (Sects. 8.2.1
and 8.2.2, respectively) [6]. All of them are implemented under the MapReduce
paradigm and designed to create a balanced version of the initial input dataset.
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8.2.1 ROS-BD: Random Oversampling for Big Data

ROS algorithm balances the dataset by randomly replicating minority class
instances from the original dataset until the number of instances from the minority
and majority classes is the same. The ROS algorithm has been adapted to deal
with Big Data environments by following a MapReduce design where each map
process is responsible for adjusting the class distribution in each mapper through
the random replication of minority class instances. On the other hand, the reduce
process is responsible for collecting the outputs generated by each mapper to form
the balanced dataset.

This process (along with RUS) is illustrated in Fig. 8.1. This consists of four
steps: initial, map, reduce, and final. During the initial step, the algorithm performs
a segmentation of the training set into independent data blocks and replicates and
transfers them to other machines. Next, in the map step, each map task balances the
class distribution through the random replication of minority class examples. Then,
the reduce step collects the output generated by each mapper and randomizes the
instances in the balanced dataset. In the final step, the balanced dataset that is
generated in the reduce process forms the final dataset that will be the input data
for the subsequent classifier.

Algorithms 1 and 2 give the pseudocode of the map and reduce functions of the
MapReduce job, respectively. In Algorithm 1, Step (3) calculates the total number
of replicas of each instance and is referred as the replication factor. For example, a
replication factor of 1 means that there is only one copy of each instance in each
mapper, a replication factor of 2 means two copies of each instance and so on. This
replication factor is calculated with the total majority class instances and the total

Fig. 8.1 A flowchart of the MapReduce design for all the sampling techniques (ROS, RUS). The
output of each mapper will contain the local instances ordered by class label
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Algorithm 1 Map phase for ROS-BD (key, value)
Input: (key, value) pair, where key is the offset in bytes and value is a given instance.
Output: (key’, value’) pair, where key’ is the offset in bytes and value’ is a given instance.
1: instance ← instanceRepresentation(value)

2: class ← instance.getClass()

3: f actor ← computeReplication(class)

4: for i = 0 to f actor − 1 do
5: EMIT (key, instance)

6: end for

Algorithm 2 Reduce phase for ROS-BD (key, value)
Input: values, where values is a list of pairs.
Output: (key’, value’) pair, where key’ is a null value and value’ is a given instance.
1: while values.hasNext () do
2: instance ← instanceRepresentation(value.getV alue())

3: instances ← instances.add(instance)

4: end while
5: f inal ← randomize(instance)

6: for i = 0 to f inal.length − 1 do
7: EMIT (null, f inal.get (i))

8: end for

instances of the class of the instance that we want to replicate. Step (5) outputs
the intermediate (key’, value’) pair (key, instance). When each mapper has finished,
Algorithm 2 is called to randomize (Step 5) the final instances obtained previously
and write them as final output (Step 7).

8.2.2 RUS-BD: Random Undersampling for Big Data

Contrary to ROS, RUS randomly deletes majority class examples from the original
dataset until the balance with the minority class is achieved. In the RUS version
adapted to Big Data, each map process is responsible for grouping by classes all
the instances in its data partition and the reduce process is responsible for collecting
the output by each mapper and equalizing the class distribution through the random
elimination of majority class instances to form the balanced dataset.

This 4-steps process is illustrated in Fig. 8.1. Firstly, the algorithm splits the input
dataset into independent data blocks; these blocks are then automatically replicated
and transferred between the distinct cluster nodes. Then, each mapper processes
and groups by classes all the local instances. Afterwards, the reduce step collects
the output generated by each mapper and balances the class distribution randomly
eliminating majority class examples. Finally, the balanced dataset that is generated
in the reduce process is the final dataset that will be the input data for the subsequent
classifier.
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Algorithm 3 Map phase for RUS-BD (key, value)
Input: (key, value) pair, where key is the offset in bytes and value is a given instance.
Output: (key’, value’) pair, where key’ is the class label associated to value and value’ is a given

instance.
1: instance ← instanceRepresentation(value)

2: class ← instance.getClass()

3: EMIT (class, value)

Algorithm 4 Reduce phase for RUS-BD (key, value)
Input: (key, value) pair, where key represents a class name and values is a list of instances.
Output: (key’, value’) pair, where key’ is a null value and value’ is a given instance.
1: if key == majorityClass then
2: while values.hasNext () do
3: instance ← instanceRepresentation(value.getV alue())

4: instances ← instances.add(instance)

5: end while
6: instances ← shuff le(instances)

7: instances ← instances.sublist (0, #minorityclass − 1)

8: f inal.add(instances)

9: else
10: while values.hasNext do
11: instance ← instanceRepresentation(values.getV alue())

12: f inal.add(instance)

13: end while
14: end if
15: f inal ← randomize(f inal)

16: for i = 0 to f inal.length − 1 do
17: EMIT (null, f inal.get (i))

18: end for

Algorithm 3 shows all the operations included in the map function, which
generates a new (key, value) pair for each input pair. The new key is the class name
of the input instance and the new value is the instance as such. Finally, the reduce
function will receive all the instances grouped by class.

Algorithm 4 shows the pseudocode of the reduce function. In this algorithm, the
Steps (2–8) are executed when the input key is equal to the majority class. In this
case, the input values are shuffled (Step 6) to select (Step 7) a number of majority
class instances equal to the number of minority class instances. In case of minority
class, Steps (10–13), the algorithm maintains the input values as final instances.
Once it is finished, a final process is called to randomize the instances obtained that
later will fed the classifier.

In Fig. 8.2 we can find a Spark Package associated with ROS and RUS algo-
rithms.
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Imb-sampling-ROS and RUS

Spark implementations of two data sampling methods (random oversampling
and random undersampling) for imbalanced classification datasets.

https://github.com/saradelrio/Imb-sampling-ROS and RUS

https://spark-packages.org/package/saradelrio/Imb-sampling-ROS_
and_RUS

Fig. 8.2 Spark package: ROS-BD and RUS-BD

8.3 SMOTE-BD: SMOTE for Big Data

In this section, we will describe the SMOTE-BD algorithm (Synthetic Minority
Oversampling TEchnique for Big Data), an exact and fully scalable SMOTE [4]
in Spark for Big Data [1]. It is a Big Data implementation of the classic SMOTE
algorithm. SMOTE forms new minority class examples by interpolating between
several neighbor minority class examples.

First, the algorithm performs a filtering over the training set to get the minority
and majority subsets of instances. Then, the minority data, which is partitioned
according to an algorithm parameter, is normalized taking into account the statistics
of the full training set and is cached to be reused in the following steps.

Later, nearest neighbors for each positive instance is obtained using an exact
implementation of KNN in Spark (KNN_IS) [20] which splits the training dataset
in a user-defined number of partitions, calculates for each instances in a chunk its
neighbors and finally, in a reduction phase, makes a final list of k-nearest neighbors.

After that, the generation of artificial minority class instances is begun. All the
nearest neighbors obtained in the previous step are broadcasted to the main memory
of the all nodes in the cluster. The broadcast operation allows to keep a read-
only variable cached on each node rather than shipping a copy to each task, and
it performs this action in an efficient manner.

Then, for each positive instance in a data partition and using the broadcasted
variable, the algorithm generates the corresponding number of synthetic examples
by interpolating between each minority instance and its k-nearest neighbors.
Figure 8.3 depict how to create synthetic data points in the SMOTE algorithm.

Finally, the algorithm performs a denormalization process over the artificial
dataset and joins the original positive and negative instances with the artificial ones
in order to conform the balanced dataset.
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smote-bd

It is a fully scalable preprocessing approach for imbalanced classification in
Big Data. It is based on one of the most widespread preprocessing solutions
for imbalanced classification, namely the SMOTE algorithm, which creates
new synthetic instances according to the neighborhood of each example of the
minority class.

spark-shell --packages majobasgall:smote-bd:0.1

https://spark-packages.org/package/majobasgall/smote-bd

Fig. 8.3 Spark package: SMOTE-BD

Algorithm 5 SMOTE-BD algorithm
Input: Tr, Ts, ratio, k, nP, nR, nIt, minClassLabel
1: origData ← textF ile(T r)

2: minData ← origData.f ilter(labels == minClassLabel)

3: minData ← minData.map(normalize).repartition(nP )

4: neighbors ← KNN_IS.setup(T r, T r, k, nR, nI).calculatekNeighbours()

5: crFactor ← (nMajnMin)/nMin

6: neighbors ← broadcast (neighbors)

7: balancedData ← null

8: synData ← null

9: for i < nI t do
10: synT mp ← minData.mapPartitionsWithIndex(

11: createSynthData(index, partData, neighbors, crFactor, k))

12: if synData == null then
13: synData ← synT mp

14: elsesynData ← synData.union(synT mp)

15: end if
16: end for
17: synData ← synData.map(denormalize)

18: balancedData ← synData.union(origData)

19: return (balancedData)

Algorithms 5 and 6 show a pseudocode of the sequence of actions described
above. The former covers the main program and the latter the function to create each
artificial instance. This function invokes another function called interpolation which
is in charge of doing the interpolation between two points. There is no pseudocode
of this due to its simplicity.

In Fig. 8.3 we can find a Spark Package associated with the SMOTE algorithm.
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Algorithm 6 Function to create synthetic instances between the minority class
examples and their neighbors
1: articialData ← null

2: for i < nI t do
3: f irstInstance ← partitionData; nc = 0tocrFactor

4: selNeighbor ← newRandom().nextInt (k)

5: secondInstance ← neighbors(selNeighbor)

6: newIntance ← interpolation(f irstInstance, secondInstance)

7: artif icialData.add(newInstance)

8: end for
9: return (articialData)

8.4 Imbalanced Big Data Competition

In this section, we will describe the ROSEFW-RF algorithm (Random OverSam-
pling and Evolutionary Feature Weighting for Random Forest), the winner algorithm
for the ECBDL’14 big data competition [24]. This algorithm utilized random
oversampling in a real Big Data contest, called ECBDL’14 Big Data challenge,
to score first. The problem analyzed in this contest consists of 631 features and
32 millions of instances with an imbalance rate of 2%. The winner algorithm was
formed by several MapReduce stages combined to provide a final solution. These
stages have different purposes that range from: (1) equalizing class distribution,
(2) selecting the most relevant features using a feature weighting process [21], (3)
learning from a Random Forest model built on preprocessed data, (4) and finally
predicting unlabeled data.

The two main outcomes derived from this study are: the remarkable effectiveness
of oversampling (and specifically, ROS-BD) when applied to extremely imbalanced
large-scale problems like that addressed in ECBDL’14 [5]; and the goodness of the
preprocessing scheme presented where feature selection and imbalanced prepro-
cessing join forces to tackle the huge imbalance ratio. The main drawback showed
in [24] is related to the high oversampling ratio needed to equalize distributions,
which makes the final solution highly time-consuming. In this method, each map
task performed a whole evolutionary feature weighting cycle in its data partition
and emitted a vector of weights. Then, the reduce process was responsible of the
iterative aggregation of all the weights provided by the maps. Finally, the resulting
weights were used with a threshold to select the most important characteristics.

In the ECBDL’14 big data challenge three metrics were used to assess the
prediction results: true positive rate (TPR: TP/P), true negative rate (TNR: TN/N),
accuracy, and the final score of TPR · TNR. The final score was chosen because of
the huge class imbalance of the dataset in order to reward methods that try to predict
well the minority class of the problem.

Table 8.1 collects the results obtained with the five different approximations.
The initial experiment uses a 100% of oversampling ratio and RF as classifier.
The second experiment consisted on increasing the oversampling ratio to further
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Table 8.1 Results obtained with the different approximations

Method #Maps TPR TNR TPR · TNR

ROS 100% + RF 192 0.580217 0.821987 0.476931

ROS 130% + RF 64 0.670189 0.758622 0.508420

ROS 130% + RF + FW 90 64 0.674754 0.777440 0.524580

ROS 130% + RF 25 + FW 90 64 0.669531 0.784856 0.525486

ROS 170% + RF 25 + FW 90 64 0.730432 0.730183 0.533349

balance TPR and TNR. The third approximation was to detect relevant features via
evolutionary featuring weighting (90 features selected). The fourth approach was
focused on the RF parameters. Instead of using the log(#Features)+1, that resulted
in 8 features, authors incremented to 25. The final, and winner, solution consisted
on increasing the oversampling rate to perfectly balance the TPR and TNR.

In this particular problem, the necessity of balancing the TPR and TNR ratios
emerged as a difficult challenge for most of the participants of the competition. In
this sense, the results of the competition have shown the goodness of the proposed
MapReduce methodology. Particularly, the modular ROSEFW-RF methodology
composed of several, highly scalable, preprocessing and mining methods has shown
to be very successful in this challenge and outperform the other participants.

8.5 Other Studies on Imbalance Data Preprocessing
for Big Data

As happened in other preprocessing fields, just few proposals have been pre-
sented in the literature able to process large-scale datasets. Most of them are
distributed implementation of golden standard algorithms, such as random over-
sampling/undersampling or SMOTE-based methods. Although the ensemble model
is the prevailing trend in these techniques, there also exist some ad hoc models that
range from evolutionary undersampling to rough sets based SMOTE.

8.5.1 Evolutionary Undersampling

In order to solve the problems presented by large-scale undersampling in [6],
Triguero et al. presented a work [23] that offer a parallel solution based on
evolutionary learning. This undersampling MapReduce algorithm is formed by two
complete stages. This former one undersamples data and then learns a decision tree
on resulting data, whereas the latter one aims at labeling test data.

As a second level parallelization, a windowing scheme can be introduced in the
mappers. Windowing serves here to reduce the runtime associated with the fitness
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evaluation. The subset in each map thread is then divided into several disjoint stratas.
In each iteration, only one stratum is used to evaluate the population, which changes
in the subsequent iterations following a round-robin policy.

In order to test the performance of the previous method, authors designed an
experimental framework that includes C4.5 applied on different versions of the
KDDCup’99 datasets. Results confirmed the appropriateness of the global model
both in terms of precision and runtime. An extension to this model implemented
under the Spark framework was recently presented in [22].

8.5.2 KNN Based Data Cleaning

In [16], authors propose an alike scheme to equilibrate class proportions in DNA
large-scale problems. Concretely, Kamar et al. created a distributed clustering
methodology using data reduction with K-nearest neighbors (KNN).

This model, specially designed for large-scale bioinformatics problems, was able
to process up to 90 million pairs in the experiments. Furthermore, authors compare
the performance of KNN on the reduced version versus the original dataset, as well
as provide a complete scalability analysis.

8.5.3 NRSBoundary-SMOTE

A MapReduce implementation of Neighborhood RoughSet Theory [14]
(NRSBoundary-SMOTE) is presented in [15]. This ad hoc version is based on
two MapReduce procedures: one that partitions the original data, and another one
that oversamples the minority class. At a more detailed level, the first phase split the
training set into three different subsets (positive, minority, and boundary) following
a neighborhood relation. Positive consists of the majority class examples whose
neighborhood has the sample class label. The minority set is the simplest one, and
contains the minority examples. Finally, boundary filters those minority examples
with any majority class examples present in its neighborhood. In the second stage,
mappers fetch blocks from the boundary set and locally compute the neighborhood
for each instance. Afterwards, reducers randomly select for each sample one of
its neighbors. These selected examples will be used for interpolation purposes. If
the new generated example belongs to the any neighborhood in positive, another
neighbor will be selected from list. Else the synthetic example will be maintained.

The positive and minority sets are both allocated in the Hadoop Distributed
Cache in order to speed up read/write accesses. However, this feature undermines
the scalability of NRSBoundary-SMOTE as it requires the entire set to be cached.
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8.5.4 Ensemble ELM with Resampling

Based on MapReduce and ensemble learning mechanism, Zhai et al. propose a
binary classification algorithm for imbalanced Big Data datasets [25]. It consists of
four stages: (1) alternately oversample between positive and negative instances; (2)
construct several balanced data subsets based on the novel positive class instances;
(3) train several component classifiers using the extreme learning machine (ELM)
algorithm on the previous subsets; (4) integrate the ELM classifiers via simple
voting.

Concretely, the first stage starts by computing the center of positive instances.
Then, it samples instances along the line that connects the center and each positive
instance. Next, for each instance generated, its k-nearest neighbors with negative
class are retrieved using MapReduce. Afterwards, the algorithm samples instances
along the line between the given instance and its k-nearest negative neighbors. This
oversampling process is repeated p times.

In the second stage, the same amount of instances are sampled from the negative
class as generated for the positive class. This process is repeated l times. Each round,
the resulting instance from both classes is coalesced to obtain a balanced subset.

Authors expose that their solution has two advantages with respect to the state-of-
the-art: (1) it can extend the learning region belonging to the positive class instances,
(2) it is able to classify imbalanced large datasets thanks to the MapReduce scheme
followed. Furthermore, the experimental outcomes presented in this work show that
the proposal outperforms the other alternatives (SMOTE-Vote, SMOTE-Boost, and
SMOTE-Bagging) in terms of test accuracy and time performance.

8.5.5 Imbalance Treatment for Multiclass Problems

In [3], authors offer a preliminary study on multiclass imbalanced classification for
Big Data. The solution proposed is a scalable one-vs-all binarization algorithm for
Spark and Hadoop platforms.

This algorithm is formed by two stages. Firstly, a One-vs-All process is used to
split the original datasets into several subsets with two classes (sequential process).
Then, an instance of SMOTE-BD [6] is launched on each binary subset in order to
equalize class distribution, following the scheme proposed in [9]. Lastly, Mahout’s
Random Forest is elected to train the final model and perform predictions.

This work is interesting as a first approach on the field, but it lacks from a
real distributed binarization technique and a large enough experimental framework
where datasets exceed millions of examples.
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8.5.6 SMOTE for GPU

A GPU-based extension to SMOTE-BD was proposed in [12], which relies on a
smart utilization of main memory to adapt the previous idea to parallel computation.
The two main improvements introduced in this version are: a novel GPU implemen-
tation of supporting KNN algorithm [11], and the only inclusion of minority class
in memory.

A further extension for high-speed data streams was thought in [17]. Here
an extreme machine learning algorithm for GPU among with undersampling and
oversampling was used to predict labels in dynamic environments. Krawczyk et al.
show that the utilization of sampling techniques reduces the negative impact of
skewed distributions on the learner’s performance and it adapts better to non-
stationary streams.

8.6 Summary and Conclusions

Imbalance learning is one of today most common scenarios. This makes the
classifier focus on the most represented classes, forgetting those that are less
represented in the data.

In this chapter we have provided several solutions for these problem. The most
popular and widely used algorithms are ROS and RUS. These methods balance
the data by repeating the minority class (ROS) or by removing instances from
the majority class (RUS). Most advanced methods like SMOTE are also presented,
which generates artificial instances for balancing the data. We have also presented
a real-world imbalanced Big Data competition, and the winner algorithm based on
data balancing.

Although we have analyzed several proposals for imbalanced data preprocessing,
there is still little research devoted to tackle this problem in Big Data environments,
in comparison with normal-sized data. Many open challenges arise from the study
of the imbalanced learning state in Big Data scenarios. The main challenge is the
thorough design at the implementation level for current algorithms to address Big
Data problems. Also, there is a need for novel algorithms for the generation of
artificial instances. One final open challenge will be to analyze the ratio between
classes.
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Chapter 9
Big Data Software

9.1 Introduction

Big Data Analytics is nowadays sitting at the forefront of many disciplines that
are not directly related to computer science, statistics, or maths. The advent of
the Internet of Things, the Web 2.0, and the great advances in technology are
transforming many areas such as medicine, business, transportation, or energy by
collecting massive amounts of information [1, 12, 16, 30]. The impact of exploiting
this data may reflect on competitive advantages for companies or unprecedented
discoveries in multiple science fields [27]. Nevertheless, both companies and
researchers are facing major challenges to cope with the Volume, Velocity, Veracity,
and Variety (among others V’s) that characterize this flood of data. These V’s define
the main issues of the Big Data problem [15].

With the leverage of distributed technologies such as the MapReduce program-
ming paradigm and the Apache Spark platform [13, 50], some classical data mining
(DM) algorithms are being adapted to this new data-intensive scenario [22, 29].
However, Big Data mining techniques are not only confronted with scalability or
speed issues (volume/velocity) and they will also have to handle inaccurate data
(noisy or incomplete) and massive amounts of redundancy [43].

As stated before, Big Data is typically characterized by a Volume, Velocity,
Variety, and Veracity (among other V’s) that poses a challenge for current tech-
nologies and algorithms. The problem of Big Data has many different faces such
as data privacy/security, storage infrastructure, visualization, or analytics/mining.
Tackling big datasets with DM and machine learning (ML) algorithms means
moving from sequential to distributed systems that can make use of a network of
computers to operate faster. However, parallel computation has been around for
many years, what is then new with Big Data? “The principle of data locality.”
Traditional HPC systems have provided a way to accelerate computation by means
of parallel programming models such as MPI [39]. Classical HPC systems fail
to scale out when data-intensive applications are involved, as data will be moved
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across the network causing significant delays. In a Big Data scenario, minimizing
the movement of data across the network by keeping data locally in each computer
node is key to provide an efficient response. Thus, ideally, each computer node will
operate only on data that is locally available.

The MapReduce functional programming paradigm [13] and its open-source
implementation in Hadoop [47] were the precursor parallel processing tools to
tackle data intensive applications, by implementing the data locality principle.
Hadoop implements this MapReduce programming model together with a dis-
tributed file systems that provides data locality across a network of computing
nodes. As a result, the end-user is able to design scalable/parallel algorithms in a
transparent way, so that data partitioning, job communication, and fault-tolerance
are automatically handled. Despite the great success of Hadoop, researchers in
the field of DM found serious limitations when consecutive operations needed to
be applied on the same (big) data, reporting a significant slow-down. Many other
frameworks have been made available to address these limitations of Hadoop,
and one of the most popular platform nowadays is Apache Spark [50]. As a data
processing engine, Spark operates with MapReduce-like functions on a distributed
dataset, known as Resilient Distributed Dataset (RDD), which can be cached in main
memory to allow for multiple iterations. Spark is evolving very quickly and more
efficient APIs such as DataFrames and Datasets are being developed. On the other
hand, Apache Flink [4] appeared as a data processing engine focused on Big Data
streaming applications.

In order to extract all valuable knowledge from the data, several techniques need
to be applied, like statistical tests, correlations, or normalization, among others.
Big Data Analytics requires an even deeper analysis of the data because of its
size. Classical ML methods cannot tackle this amount of data, as they were not
conceived for the scalability problem. For these reasons, Big Data frameworks
include a thorough list of algorithms ready to be applied to the data in form of
ML libraries. This enables the practitioners to quickly obtain a first idea of the data
distribution.

Here we describe and classify the two most popular ML libraries for both batch,
and stream data processing. Firstly, we introduce Apache Spark MLlib and depict
all of its included algorithms (Sect. 9.2). Next, we describe in depth BigDaPSpark,
a Big Data library for data preprocessing under Apache Spark (Sect. 9.3). Then,
FlinkML is described and studied in depth (Sect. 9.4). BigDaPFlink is introduced
in Sect. 9.5, a Big Data streaming library focused on data preprocessing for Apache
Flink. Finally, Sect. 9.6 summarizes the chapter and gives some conclusions.

9.2 MLlib: A Spark Machine Learning Library

Spark MLlib [28] is a powerful library of ML algorithms and utilities designed to
run in parallel on a Spark cluster. MLlib enables the use of Spark in the data analytics
field. The development of MLlib started in the UC Berkeley AMPLab in 2012, and
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was open-sourced in 2013. The first version of MLlib was package with Spark 0.8
release.

MLlib mission is to make practical ML easy and scalable. It should be easy to
build ML applications and it should be capable of learning from large-scale real-
world datasets. MLlib is not just a collection of algorithms, it contains the most
popular methods and utilities in the ML ecosystem, along with an extensive
documentation, making it a very complete toolbox for developers.

MLlib is capable of working with hundreds of data sources, including those
belonging to the Hadoop Ecosystem, like HDFS. It is also able to work with data
from relational databases, local data, or images. MLlib introduces a few new data
types:

• Local vector: composed of 0-based indices and double-typed values. They are
stored on a single machine. There are two types of local vectors: dense and
sparse. A dense vector is formed by an array of double values, while the sparse
vector is composed of two parallel arrays with its indices and values.

• Labeled point: it is the main data type of MLlib. It is composed of a local vector
(dense or sparse) with a label. The label must be a double value, starting in 0 in
the case of classification problems.

• Local matrix: like local vectors, local matrices are composed of double-typed
values stored on a single machine. They can be both dense or sparse.

• Distributed matrix: they are stored distributively in one or more RDD. There are
four types of distributed matrices implemented so far.

The main type is the RowMatrix. It is a distributed matrix backed by an RDD
of its rows, being each row a local vector. The IndexedRowMatrix is similar to
a RowMatrix but with row indices. These indices are useful for identifying rows
and joins operations. A BlockMatrix is another distributed matrix backed by an
RDD of MatrixBlock which is a tuple of (Integer, Integer, Matrix). Finally, the
CoordinateMatrix is stored in coordinate list (COO) format, and its backed by an
RDD of its entries.

MLlib is currently formed by two packages, mllib and the most recent ml:

• mllib: this is the first version of MLlib, which was built on top of RDD. It
contained the majority of the methods proposed in Spark up to 2.0 version.

• ml: it comes with the newest features of MLlib for constructing ML pipelines.
This higher-level API is built on enhanced DataFrames structures [5]. It has
become the primary ML API for Spark as of version 2.0.

Since Spark’s mllib library does not include new algorithms as of version 2.0, we
will focus on the ml library. Here, we describe and classify all DM techniques for
Spark’s ml ML library.1

1MLlib and ml documentation: http://spark.apache.org/docs/latest/ml-guide.html.

http://spark.apache.org/docs/latest/ml-guide.html
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9.2.1 Pipelines

MLlib moves beyond a list of algorithms and help users develop their own ML
workflows. Pipelines allow to chain multiple algorithms into a single workflow.
They consist on a sequence of stages that need to be run in a specific order. This
simplifies the execution of several transformations on a DataFrame. Pipelines were
inspired by the scikit-learn project [10].

Pipelines are composed of two different main components:

• Transformers: converts a DataFrame into another DataFrame, typically adding
one or more columns. An example of Transformer is a learning model that
predicts each vector from the DataFrame, and appends the predicted label as
a new column.

• Estimators: abstract the concept of learning algorithm or any algorithm that
trains on data. They learn from a DataFrame and produce a model, which is a
Transformer.

9.2.2 Feature Extractors

Feature extraction techniques aim for obtaining a set of features from raw data.
These techniques are mainly used in text mining.

• TF_IDF: provides a numeric measure of how relevant is a word for a document.
It is frequently used in text mining. The TF_IDF value increases proportionally
to the number of times a word appears in the document, but is compensated by
the frequency of the word in the document collection, which allows for handling
the fact that some words are generally more common than others.

• Word2Vec: computes distributed vector representation of words. Similar words
will be close in the vector space.

• CountVectorizer: converts a collection of text documents to vector of token
counts.

• FeatureHasher: it projects features into indices in a vector. This is done by
mapping features to indices in the feature vector.

9.2.3 Feature Transformers

Feature transformation techniques combine the original set of features to obtain a
new set of less-redundant variables [23]. For example, by using projections to low-
dimensional spaces.
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• Binarizer: discretizes a set of features to binary (0/1) features using a given
threshold.

• Single Value Decomposition (SVD): is a matrix factorization method that
transform a real/complex matrix M (m × n) into a factorized matrix A. The
creators expose that for large matrices it is not needed the complete factorization
but only to maintain the top-k singular values and vectors. In such way, the
dimensions of the implied matrices will be reduced. They also assume that n

is much smaller than m (tall-and-skinny matrices) in order to avoid a severe
degradation of the algorithm’s performance.

• PCA: tries to find a rotation such that the set of possibly correlated features
transforms into a set of linearly uncorrelated features. The columns used in this
orthogonal transformation are called principal components. This method is also
designed for matrices with a low number of features.

• Polynomial Expansion: expands the set of features into a polynomial space. This
new space is formed by an n-degree combination of the original dimensions.

• StringIndexer: encodes the labels of a string column into a new column of indices.
• IndexToString: transforms a column of label indices back to the original column,

containing the labels as strings.
• VectorIndexer: indexes categorical features in datasets according to the number

of categories of a feature.
• Interaction: takes two columns of vectors and generates a new column containing

the product of all combinations of the values from each column.
• Normalizer: transforms a dataset by normalizing each example to have unit norm.
• StandardScaler: centers the data to have zero mean and/or scales the data to unit

standard deviation.
• MinMaxScaler: scales each column to a given range (usually [0, 1]).
• MaxAbsScaler: scales the data to [−1, 1] range by dividing through the maxi-

mum absolute value in each feature.
• Bucketizer: converts a column of continuous values into a column of feature bins.

The thresholds are given by the user.
• ElementwiseProduct: scales each vector by a specified weight values using

element-wise multiplication.
• VectorAssembler: combines a set of features into a single vector column.
• QuantileDiscretizer: discretizes each continuous feature into a categorical col-

umn. The number of thresholds is specified by the user.
• Imputer: fills the missing values (MV) in the dataset. It can use either the mean

of the columns or the median.
• Locality-Sensitive Hashing (LSH): is aimed at hashing data points into bins, so

as the data points close in the input domain will be placed in the same bins with
high likelihood. LSH can be used for feature transformation by putting hashed
values in new columns.
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9.2.4 Feature Selectors

As explained before, feature selection (FS) tries to select relevant subsets of relevant
features without incurring much loss of information [9].

• VectorSlicer: the user selects manually a subset of features.
• RFormula: selects features specified by an R model formula.
• Chi-Squared selector: it orders categorical features using a Chi-Squared test of

independence from the class. Then, it selects the most-dependent features. This
method can be categorized as univariate and filter, which needs to specify the
number of selected features as input parameter.

9.3 BigDaPSpark

BigDaPSpark is a Big Data library focused on static data preprocessing [19], built
on top of Apache Spark. This library is born with the objective of improving the Big
Data ecosystem with new algorithms for Big Data preprocessing, in order to achieve
Smart Data.

This library is composed of a series of algorithms for Big Data preprocessing
under the Apache Spark framework. It contains algorithms for FS, data reduction,
noise filtering, MV imputation, discretization, and imbalanced learning, among
others. In Fig. 9.1 we can find the algorithm implementations associated with this
library.

9.3.1 Feature Selection

The library contains a FS framework, implemented in a distributed fashion. It
contains multiple information-theory based FS algorithms, like mRMR, InfoGain,

SCI2S BigDaPSpark

Big Data library focused on static data preprocessing, built on top of Apache
Spark. It contains algorithms for FS, discretization, noise filtering, data re-
duction, MV imputation and imbalanced learning, among others.

https://sci2s.ugr.es/BigDaPSpark

Fig. 9.1 BigDaPSpark library
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spark-infotheoretic-feature-selection

This package contains a generic implementation of greedy Information The-
oretic Feature Selection (FS) methods. The implementation is based on the
common theoretic framework presented by Gavin Brown. Implementations of
mRMR, InfoGain, JMI and other commonly used FS filters are provided.

spark-shell --packages sramirez:spark-infotheoretic-
feature-selection:1.4.4

http://spark-packages.org/package/sramirez/
spark-infotheoretic-feature-selection

Fig. 9.2 Spark package: information theoretical FS framework

JMI and other commonly used FS filters [34]. This framework is described in
Sect. 4.4. In Fig. 9.2 we can find a Spark Package associated with this research.

9.3.2 Data Reduction

The library contains four algorithms for performing data reduction based on the
KNN algorithm: FCNN_MR, SSMASFLSDE_MR, RMHC_MR, and MR_DIS.
As stated previously, the purpose of these algorithms is to obtain a reduced set
of the original data that represents it as perfectly as possible. Some of these
algorithms are implemented using a distributed framework, named MRPR [44].
This framework enables the use of iterative algorithms in Big Data environments
by partitioning the input data in several chunks, and applying the corresponding
algorithm independently to each one of them. After that process is finished, all
the partitions are joined together using different strategies. These algorithms are
described in depth in Sect. 5.4. In Fig. 9.3 we can find all the implementations of the
techniques described in this section, available as a Spark Package.

• FCNN_MR: this algorithm is one of the most extended and widely used in data
reduction [3]. It is an order-independent algorithm, based on the NN rule, to find
a consistent subset of the training dataset. It has a quadratic time complexity in
the worst-case. It also have showed to scale well on large and multidimensional
datasets.

• SSMASFLSDE_MR: this algorithm is a hybrid and evolutionary algorithm
composed of two methods. The first one is a steady-state memetic algorithm
(SSMA) [18] that selects the most representative instances of the training set,
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SmartReduction

This framework implements four distance based Big Data preprocessing
algorithms for prototype selection and generation: FCNN MR, SSMAS-
FLSDE MR, RMHC MR, MR DIS, with special emphasis in their scalability
and performance traits.

spark-shell --packages djgarcia:SmartReduction:1.0

https://spark-packages.org/package/djgarcia/SmartReduction

Fig. 9.3 Spark package: SmartReduction

while the second one improves this subset by modifying the values of the selected
instances with a scale factor local search in differential evolution (SFLSDE)[42].

• RMHC_MR: random mutation hill climbing (RMHC) is a powerful yet simple
algorithm for data reduction [38]. It starts by selecting a random sample of the
data S. Then it randomly replaces an instance of the sample with one of the
original data S∗. Next it uses both samples to calculate the classification accuracy
in the complete dataset, using the KNN algorithm. The sample with the best
accuracy is kept for the next iteration, were another instance will be substituted.
After a determined number of iteration, the best sample is chosen.

• MR_DIS: is a parallel implementation of the democratic instance selection (IS)
algorithm [6]. This algorithm applies a classic IS algorithm over an equally
partitioned training dataset. The selected instances receive a vote. After a
determined number of rounds, instances with most votes are removed from
the data.

9.3.3 Noise Filtering

This section of the library is composed of two sub-libraries. The first one contains
three algorithms for removing noise in Big Data datasets: Homogeneous Ensemble
(HME-BD), Heterogeneous Ensemble (HTE-BD), and ENN-BD. These algorithms
are based on ensembles of classifiers, they were originally proposed in [20]. In
Fig. 9.4 we can find a Spark package associated with this research.

• HME-BD is based on a partitioning scheme of the dataset. It performs a k-fold of
the input data, splitting the data into k partitions. The test partition is an unique
1kth of the fold, and the train is the rest of the partition. Then it learns a deep
Random Forest (a Random Forest with deep trees) in each fold, using the train
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NoiseFramework

In this framework, two Big Data preprocessing approaches to remove noisy
examples are proposed: an homogeneous ensemble (HME BD) and an het-
erogeneous ensemble (HTE BD) filter. A simple filtering approach based on
similarities between instances (ENN BD) is also implemented.

spark-shell --packages djgarcia:NoiseFramework:1.2

https://spark-packages.org/package/djgarcia/NoiseFramework

Fig. 9.4 Spark package: NoiseFramework

partition as input. Once the learning process is finished, each of the k models
learned predict the corresponding test partition of each fold. That way, the models
will predict the data that they did not see while they were learned. The final step
is to remove the noisy instances. This is done by a comparison of the original test
labels with the predicted by the learners. If the labels are different, the instance
is considered as noisy and removed. Finally, all the filtered partitions are joined
together to compose a dataset clean of noise.

• HTE-BD shares the same workflow as HME-BD, but instead of using a unique
classifier, it uses three of them. HTE-BD partitions the data performing a k-fold
of the input data the same way as was described in HME-BD. Then it learns a
deep Random Forest, a logistic regression, and a 1NN. With the predictions of
the three models, a voting strategy is used to determine if an instance is noisy.
There are two strategies available, majority and consensus. With the former, only
two classifiers have to agree to take a decision. With the second, all classifiers
must agree to consider an instance as noisy. The filtered partitions are joined to
recompose the dataset without noise.

• ENN-BD is much simpler that the previous two. It is based on the similarity
between instances [48]. It performs a KNN (typically k = 1 or k = 3) to the
input data, and uses that same input data for prediction. That way, the closest
neighbors for each instance are found. In order to remove the noisy instances,
those neighbors are compared with the instance. If the label of the neighbors
differs from the original, the instance is removed.

The second part of the noise library consists of three algorithms for noise filtering
based on KNN [43]: AllKNN_BD, NCNEdit_BD and RNG_BD. In Fig. 9.5 we can
find this software available as a Spark Package.

• AllKNN_BD: this method shares the same working scheme as ENN-BD with
some exceptions. Instead of learning a 1NN, it learns several times KNN with
different values of k (typically 1, 3 and 5) [41]. Each iteration it removes the
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SmartFiltering

This framework implements four distance based Big Data preprocessing algo-
rithms to remove noisy examples: ENN BD, AllKNN BD, NCNEdit BD and
RNG BD filters, with special emphasis in their scalability and performance
traits.

spark-shell --packages djgarcia:SmartFiltering:1.0

https://spark-packages.org/package/djgarcia/SmartFiltering

Fig. 9.5 Spark package: SmartFiltering

instances that does not agree with its closest neighbors. As can be expected, it is
a much aggressive noise filter than ENN-BD, as it applies KNN repeatedly.

• NCNEdit_BD: this algorithm uses the k nearest centroid neighborhood classifi-
cation rule with the leave-one-out error estimate [35]. It discard instances if it is
misclassified using the kNCN classification rule. In the NCN classification rule,
the neighborhood is not only defined by the proximity of prototypes to a given
instance, but also for their symmetrical distribution around it.

• RNG_BD: this noise filter computes the proximity graph of the data [36]. Then,
all the graph neighbors of each instance give a vote for its class. If the label differs
from the original label, the instance is considered as noise and removed.

These noise filtering algorithms are depicted in depth in Sects. 6.3 and 6.4,
respectively.

9.3.4 Missing Values Imputation

The library also contains two approaches, a global and a local implementation,
for MVs imputation using the k-nearest neighbor imputation, k-nearest neighbor—
local imputation, and k-nearest neighbor imputation—global imputation [43]. The
difference among them is that the local version takes into account only the instances
that are in the same partition, and the global version considers all the instances in
the datasets. These two versions of the k-nearest neighbors imputation method are
analyzed in Sect. 6.5. In Fig. 9.6 we can find this algorithm available publicly as a
Spark Package.
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Smart Imputation

This contribution implements two approaches of the k Nearest Neighbor Im-
putation focused on the scalability in order to handle big dataset. k Nearest
Neighbor - Local Imputation and k Nearest Neighbor Imputation - Global Im-
putation. The global proposal takes into account all the instances to calculate
the k nearest neighbors. The local proposal considers those that are into the
same partition, achieving higher times, but losing the information because it
does not consider all the samples.

spark-shell --packages JMailloH:Smart Imputation:1.0

https://spark-packages.org/package/JMailloH/Smart_Imputation

Fig. 9.6 Spark package: Smart_Imputation

9.3.5 Discretization

The library also contains two distributed and parallel discretizers for dealing with
huge amounts of data: A Distributed Minimum Description Length Discretizer
(DMDLP) [33], and a Distributed Evolutionary Multivariate Discretizer (DEMD)
[31]. These two discretizers are described in Sects. 7.3 and 7.6, respectively. Both
of these algorithms are also available as Apache Spark packages.

• DMDLP is a distributed discretizer that implements Fayyad’s discretizer [14].
It is based on Minimum Description Length Principle for treating non discrete
datasets from a distributed perspective. It supports sparse data, multi-attribute
processing, and also is capable of dealing with attributes with a huge number of
boundary points (<100K boundary points per attribute). In Fig. 9.7 we can find
a Spark Package associated with this research.

• DEMD is an evolutionary discretizer. It uses binary chromosomes with a wrapper
fitness function that optimizes the interval selection problem by compensating
two factors: the simpleness of the solutions and the classification accuracy. In
order to make DEMD able to cope with huge amounts of data, the evaluation
phase has been distributed, splitting the set of chromosomes and the dataset
into different partitions. Then a random cross-evaluation process is performed.
In Fig. 9.8 we can find this algorithm available publicly in the third-party Apache
Spark Repository.
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spark-MDLP-discretization

This method implements Fayyad’s discretizer based on Minimum Description
Length Principle (MDLP) in order to treat non discrete datasets from a dis-
tributed perspective. It supports sparse data, parallel-processing of attributes,
etc.

spark-shell --packages sramirez:spark-MDLP- discretization:1.4.1

https://spark-packages.org/package/sramirez/
spark-MDLP-discretization

Fig. 9.7 Spark package: DMDLP discretizer

spark-DEMD-discretizer

Here, a Distributed Evolutionary Multivariate Discretizer (DEMD) for data
reduction on Spark is presented. This evolutionary-based discretizer uses bi-
nary chromosome representation and a wrapper fitness function. The algo-
rithm is aimed at optimizing the cut points selection problem by trading-off
two factors: simplicity of solutions and its classification accuracy. In order to
alleviate the complexity derived from the evolutionary process, the complete
evaluation phase has been fully parallelized. For this purpose, both the set
of chromosomes and instances are split into different partitions and a random
cross-evaluation process between them is performed.

spark-shell --packages sramirez:spark-DEMD-discretizer:1.0

https://spark-packages.org/package/sramirez/
spark-DEMD-discretizer

Fig. 9.8 Spark package: DEMD discretizer

9.3.6 Imbalanced Learning

Three popular methods for balancing a dataset are available in the library: Random
OverSampling (ROS), Random UnderSampling (RUS) [8], and SMOTE [11].

ROS reaches a balance in the data by replicating randomly instances from the
minority class from the original data, until the number of instances from both classes
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is the same (or until a replication factor is reached). Depending on the posterior
learning algorithm, the replication of instances may lead to overfitting.

On the other hand, RUS balances the dataset randomly removing instances from
the majority class until the number of instances for both classes are identical. This
approach works best when there is a high redundancy in the dataset, and achieves a
lighter representation of the data storage-wide.

These two popular algorithms are analyzed in Sect. 8.2. In Fig. 9.9 we can find a
Spark Package associated with ROS and RUS algorithms.

The library also includes an exact and fully scalable SMOTE in Spark for Big
Data [7]. It is a Big Data implementation of the classic SMOTE algorithm. SMOTE
forms new minority class examples by interpolating between several neighbor
minority class examples. The SMOTE algorithm is analyzed in depth Sect. 8.3. In
Fig. 9.10 we can find a Spark Package associated with the SMOTE algorithm.

Imb-sampling-ROS and RUS

Spark implementations of two data sampling methods (random oversampling
and random undersampling) for imbalanced classification datasets.

https://github.com/saradelrio/Imb-sampling-ROS and RUS

https://spark-packages.org/package/saradelrio/Imb-sampling-ROS_
and_RUS

Fig. 9.9 Spark package: ROS-BD and RUS-BD

smote-bd

It is a fully scalable preprocessing approach for imbalanced classification in
Big Data. It is based on one of the most widespread preprocessing solutions
for imbalanced classification, namely the SMOTE algorithm, which creates
new synthetic instances according to the neighborhood of each example of the
minority class.

spark-shell --packages majobasgall:smote-bd:0.1

https://spark-packages.org/package/majobasgall/smote-bd

Fig. 9.10 Spark package: SMOTE-BD
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PCARD

This method implements the PCARD ensemble algorithm. PCARD ensem-
ble method is a distributed upgrade of the method presented by A. Ahmad.
The algorithm performs Random Discretization and Principal Components
Analysis to the input data, then joins the results and trains a decision tree on
it.

spark-shell --packages djgg:PCARD:1.3

https://spark-packages.org/package/djgg/PCARD

Fig. 9.11 Spark package: PCARD ensemble

9.3.7 Random Discretization and PCA Classifier

The library also contains a classifier based on preprocessing, named PCARD [21].
This classifier is a distributed ensemble method that performs Random Discretiza-
tion and Principal Components Analysis, both to the input data, and then joins the
two resulting datasets. In Fig. 9.11 we can find a Spark Package associated with this
research.

9.4 FlinkML

FlinkML is the name of Apache Flink’s [4] distributed ML library. Flink is a
large-scale data processing framework, and it has at its core a dataflow engine.
Like Apache Spark, it provides expressive, powerful, and easy to use APIs. Flink
provides APIs for batch and stream data processing using a functional style syntax.
This allows the developer to be familiar with the developing, and also to build
prototypes fast.

Flink works in the Apache Hadoop Ecosystem [24]. At the core it has the
streaming dataflow engine and, below that, it can have any kind of storage system. It
also provides high availability. Similarly to Spark, Flink has a pipelining mechanism
that allows to quickly build complex data analysis pipelines.

The core of Flink is the streaming dataflow engine that allows to deploy operators
at the beginning of the program, and then pipe data through it. Using this kind
of configuration enables Flink to do real-time streaming. This also allows to have
iterations in Flink. In a batch processing system like Apache Spark, in order
to run any iterative program, a new job must be scheduled at the start of each
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iteration, and that would create some overhead. Instead to do that, Flink has a native
iterator support, which means that it can have partial solutions that will be updated
frequently. This partial solutions, in the FlinkML case, would be the models, and
it is able to iteratively update them in a streaming fashion. In addition to batch
iterations, Flink also has support for what is called delta iterations. Delta iterations
allow to shrink the size of the problem as it approaches closer to a solution.

As stated previously, the core feature of Flink is that it supports true streaming.
On top of the data processing API, Flink has libraries that allows graph processing
(Gelly), ML (FlinkML), SQL-like expression language (Table API), and complex
event processing (FlinkCEP).

In this section we are focusing on FlinkML and its components. FlinkML is
developed having three goals in mind:

1. Be really scalable: focusing on efficient algorithms and their implementations
that really scale to web-scale data.

2. Minimize glue code: glue code can be defined as all the code necessary in a ML
application in order to make it work. All the code that is necessary to deploy
it. Google claims that mature applications contain 95% of glue code and 5% of
actual logic [37]. This is what FlinkML tries to minimize, providing one system
where everything can be performed.

3. Ease of use: provide easy to use and intuitive APIs, and also focus on creating a
good documentation and examples of use.

Here, we describe and classify all DM techniques for Flink’s FlinkML machine
learning library.2

9.4.1 Data Preprocessing

Three simple yet very popular and widely used data preprocessing algorithms are
included in FlinkML. Here we outline the three different algorithms:

• Polynomial Features: it generates a vector containing all the polynomial com-
binations with degree less than or equal to a given degree. Flink’s polynomial
features implementation orders the these polynomials in descending order
according to their degree.

• StandardScaler: scales the data to have zero mean and a standard deviation equal
to 1. The user can specify its own desired mean and standard deviation.

• MinMaxScaler: scales the data to a specific range [min, max]. By default all
values will be scaled to [0, 1] interval.

2FlinkML documentation: https://ci.apache.org/projects/flink/flink-docs-master/dev/libs/ml/.

https://ci.apache.org/projects/flink/flink-docs-master/dev/libs/ml/
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9.4.2 Recommendation

FlinkML also includes a popular recommendation algorithm, Alternating Least
Squares (ALS) [40]. This algorithm factorizes a given matrix R into two factors
U and V such that R ≈ UT V .

Flink implementation includes a regularization scheme in order to avoid overfit-
ting, namely weighted-λ-regularization [51].

9.4.3 Outlier Selection

FlinkML implements Stochastic Outlier Selection (SOS) [25] for outlier detection.
An outlier can be defined as an example that is deviated enough from the majority
of the data points.

SOS is an unsupervised outlier-selection algorithm. It applies affinity-based
outlier selection to a set of vectors, and outputs a probability of being an outlier
for each example. A data point can be considered an outlier when the rest of the
data points have not enough affinity with it.

9.4.4 Utilities

Two additional utilities are provided for distance calculation and validation pur-
poses:

• Distance Metrics: different distance metrics are provided. The included dis-
tances are: Euclidean distance, Squared Euclidean distance, Cosine Similarity,
Chebyshev Distance, Manhattan Distance, Minkowski Distance, and Tanimoto
Distance.

• Cross Validation: in order to prevent overfitting, a validation strategy is recom-
mended. FlinkML includes four different types of validation schemes: Train-Test
splits, Train-Test-Holdout Splits, K-Fold Splits, and Multi-Random Splits.

9.5 BigDaPFlink

BigDaPFlink is a Big Data library oriented to online data preprocessing for Apache
Flink [19]. This library contains six of the most popular and widely used algorithms
for data preprocessing in data streaming [2]. It is composed of three feature selection
algorithms and three discretization algorithms. In Fig. 9.12 we can find the algorithm
implementations associated with this library.
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SCI2S BigDaPFlink

Big Data library oriented to online data preprocessing for Apache Flink. This
library contains six of the most popular and widely used algorithms for data
preprocessing in data streaming. It is composed of three feature selection
algorithms and three discretization algorithms.

https://sci2s.ugr.es/BigDaPFlink

Fig. 9.12 BigDaPFlink library

9.5.1 Feature Selection

The library contains three of the most popular feature selection algorithms for data
streaming in the literature: Information Gain, Online Feature Selection (OFS), and
Fast Correlation-Based Filter (FCBF).

• Information gain is a feature selection algorithm composed of two steps, an
incremental feature ranking method, and an incremental learning algorithm that
can consider a subset of the features during prediction (Naïve Bayes) [26].
First, the conditional entropy with respect to the class is computed. Then, the
information gain is calculated for each attribute. Finally, once the algorithm has
all the information gains for each feature, it selects the best N as features.

• OFS is an ε-greedy online feature selection method based on feature weights
generated by an online classifier (in this case a neural network) which makes a
trade-off between exploration and exploitation of features [45].

• FCBF is a feature selection algorithm where the class relevance and the correla-
tion between each feature pair of features are taken into account [49]. It is based
on information theory, it uses Symmetrical Uncertainty to calculate dependencies
of features and the class importance. It starts with the full set of features and,
using a backward selection technique with a sequential search strategy, it removes
all the irrelevant and redundant features. Finally, it stops when no more features
are left to eliminate.

9.5.2 Discretization

In this section we show the three online discretization algorithms for data streaming
available in the library: Incremental Discretization Algorithm (IDA), Partition
Incremental Discretization Algorithm (PiD), and Local Online Fusion Discretizer
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(LOFD). Discretization in data streaming has the challenge of the concept drift.
These three methods tackle it in three different ways.

• IDA performs an approximate quantile-based discretization on the entire encoun-
tered data stream to date by keeping a random sample of the data [46]. This
sample is then used to calculate the cut points of the dataset. It uses the reservoir
sampling algorithm to maintain this sample randomly updated from the entire
stream. In IDA a sample of the data is used because it is not feasible nor possible
to keep the complete data stream in memory.

• PiD discretizes data streams in an incremental manner [17]. The discretization
process is performed in two steps. The first step discretizes the data using more
intervals than required, keeping some statistics of it. The second and final step
is to use that statistics to create the final discretization. It is constant in time and
space even for infinite streams, as PiD processes all the streaming examples in a
single scan.

• LOFD is a very recent proposal for online data streaming discretization. It is an
online and self-adaptive discretizer [32]. LOFD is capable of smoothly adapt
its interval limits, reducing the negative impact of shifts (concept drift), and
also to analyze the interval labeling and interaction problems. The interaction
between the discretizer and the learner algorithm is addressed by providing
two alike solutions. LOFD generates an online and self-adaptive discretization
for streaming classification whose objective is to reduce the negative impact of
fluctuations in evolving intervals.

9.6 Summary and Conclusions

In this chapter we have studied in depth the two most popular Big Data ML libraries
for both batch and stream data processing. For static data, MLlib is the most popular
and widely used ML library. It is built on top of Apache Spark and provides a
useful set of algorithms and utilities. We have also presented a new Big Data library
focused on data preprocessing for Apache Spark, BigDaPSpark. This library is
composed of several state-of-the-art algorithms for data preprocessing in Big Data.

From the streaming point of view, FlinkML is the ML library of Apache Flink. It
provides some algorithms for supervised and unsupervised learning, as well as some
utilities, like cross validation or distance metrics. Additionally, we have introduced
BigDaPFlink, a Big Data streaming library focused on streaming data preprocessing
under Apache Flink. This library contains six data preprocessing algorithms for Big
Data online scenarios.

BigDaPSpark and BigDaPFlink libraries are part of BigDaPTOOLS library. This
library is composed of three libraries for the most popular and widely used ML and
DM frameworks (R, Apache Spark, and Apache Flink). BigDaPTOOLS contains a
wide variety of state-of-the-art data preprocessing algorithms. In Fig. 9.13 we can
find the algorithm implementations associated with this library.
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SCI2S BigDaPTOOLS

BigDaPTOOLS: Big Data Preprocessing: Models and Tools to improve the
quality of data.
It is a Big Data preprocessing library, composed of three sub-libraries, for the
most popular and widely used machine learning and data mining frameworks:
R, Apache Spark and Apache Flink. It contains data preprocessing algorithms
for many different disciplines, including imperfect data approaches, imbalance
dataset preprocessing techniques, and data reduction algorithms. It also in-
cludes data preprocessing proposals for non-standard classification, including
multilabel and data streaming problems.

https://sci2s.ugr.es/BigDaPTOOLS

Fig. 9.13 BigDaPTOOLS library

As we have seen in this chapter, new libraries for Big Data preprocessing are
emerging in the last years. We can find an increasing list of data preprocessing
algorithms ready to tackle Big Data problems. Apache Spark is positioning as the
best performing and most complete Big Data framework for ML and DM. On the
other hand, Apache Flink is becoming the reference in Big Data streaming scenarios.
MLlib is growing at a faster pace than FlinkML. For this reason, it is desirable to
develop new data preprocessing methods on Apache Flink, adapted to the Big Data
streaming environment.
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Chapter 10
Final Thoughts: From Big Data
to Smart Data

In previous chapters we have discussed both the advantages and necessity of
having a correct data treatment methodology. As we have seen, such a treatment
is necessary for several reasons: data quality enhancement, faster learning times,
less space requirements, and Smart Data generation. A well-known principle in
computer science is the principle of garbage in–garbage out: no matter how good
your model is created, as long as the data is bad, the results will be poor (Fig. 10.1).
Thus, obtaining quality, Smart Data must be first data scientist’s objective. The way
to obtain such a Smart Data is to apply data preprocessing.

The plethora of different preprocessing techniques and the constant proposal of
algorithms in the specialized literature poses a challenge to any practitioner [2].
Having a unique preprocessing methodology for all datasets is unfeasible, as the
different combination of preprocessing steps will yield different results [3]. The
presence of Big Data does not ease this issue: large volumes of data lead to the
appearance of new problems, as data redundancy, which may render useless tra-
ditional preprocessing techniques. Missing values imputation, for instance, cannot
be feasible compared to eliminating incomplete instances, as data redundancy will
provide enough examples to avoid bias generated by such an elimination. Therefore,
classical approaches must be revised before tackling Big Data preprocessing.

We cannot forget the importance that Deep Learning has nowadays [5, 6]. While
Deep Learning also needs large collections of data in order to obtain generalizable
and accurate model, the nature of such data is different of that used by Big
Data frameworks. While the latter is oriented to textual, tuple-based data, Deep
Learning is successful thanks to its ability to deal with non-standard data types:
images, voice, sound, etc. Deep Learning models are robust and with enough
data they may yield accurate solutions to almost every problem [10]. However,
the lack of data for a given problem might force practitioners to elect for data
augmentation techniques [1]. Data augmentation enables the user to increase the
amount of training examples from a reduced data pool size, but transforming the
training data to generate synthetic examples may lead to noise introduction if not
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Fig. 10.1 Garbage in, garbage out principle

performed correctly [7, 9]. This kind of “noisy examples” and their treatment is
an open challenge that may constitute a bridge between Deep Learning and Big
Data preprocessing, due to the large amount of examples that can be found in both
paradigms. However, this complex issue is out of the scope of this book but still an
interesting challenge.

Data preprocessing in data mining for business has been known to be very costly,
both in time and computational resources [11]. Actually, datasets collection and
preprocessing accounts for about 80% of the work of data scientists, according to
recent surveys as shown in Fig. 10.2 (source: Forbes 20161). These costs are even
greater in Big Data environments, where the computationally expensive techniques
need to deal with massive data. The growing attention to Smart Data in the
companies [4] is boosting even more the share hold by preprocessing in the whole
knowledge extraction process, where cleaning and preparing the data is overtaking
data integration as the most devoted task.

Direct translation of sequential algorithms is unfeasible, requiring novel
approaches and designs to cope with the exponential data growth rates [8]. The
challenge imposed by the new designs has limited the rate of Big Data preprocessing
proposals, which still constitutes a prominent field of work with many unresolved
problems that need to be tackled. There is still a long journey to go for data scientists
in Big Data preprocessing.

1https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-
enjoyable-data-science-task-survey-says/#5a932e1b6f63.

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#5a932e1b6f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#5a932e1b6f63
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Fig. 10.2 Data scientists spend 60% of their time on cleaning and organizing data. Collecting
datasets comes second at 19% of their time, meaning data scientists spend around 80% of their
time on preparing and managing data for analysis
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Fig. 10.3 Big Data preprocessing is the key to transform raw Big Data into quality Smart Data

We hope the book has served the reader as an appropriate introduction to the Big
Data world and how to reach Smart Data, where Big Data preprocessing is the bridge
between both sides of the data river towards quality data, as depicted in Fig. 10.3.
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