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Abstract  13 

Second-order data acquired using liquid chromatography coupled to a diode array detector 14 

were used to classify extra virgin olive oils samples according to their cultivars. The 15 

chromatographic fingerprints from the epoxidised fraction were obtained using normal-phase 16 

liquid chromatography. To reduce the data matrices two strategies were employed: (1) 17 

multivariate curve resolution-alternating least squares (MCR-ALS) and (2) a new strategy 18 

proposed in this work based on the fusion of the mean data profiles in both spectral and time 19 

domains. Several conventional chemometric tools were then applied to both raw and 20 

reduced data: principal component analysis (PCA), partial least-squares-discriminant 21 

analysis (PLS-DA), soft independent modelling of class analogies (SIMCA) and n-way partial 22 

least-squares-discriminant analysis (NPLS-DA). Furthermore, an emergent multivariate 23 

classification method known as random forest (RF) has been first applied to second-order 24 

data. It was shown that RF is more efficient than conventional tools. Indeed, the obtained 25 

sensibility, specificity and accuracy are 1.00, 0.92 and 0.95 respectively; these performance 26 

metrics are significantly better than the values found for the other methods.  27 
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1. Introduction  35 

Extra-virgin olive oil (EVOO) is a food which contains valuable bioactive compounds as 36 

tocopherols and tocotrienols (vitamin E), β-carotenes, sterols, or phenols, which confer 37 

cardioprotective, antioxidant and anti-inflammatory properties over the health of consumers 38 

[1,2]. Furthermore, it is mainly composed by triacylglycerols (more than 90%) having a high 39 

proportion of monounsaturated fatty acids, especially oleic acid (around 70%). Its chemical 40 

composition could vary depending on many factors such as cultivar, agronomic conditions, 41 

extraction process, and ripeness, among others [3]. EVOO have thus characteristic 42 

organoleptic properties [4] due to the presence of many different flavouring organic 43 

compounds. 44 

This essential food represents a treasure into the Mediterranean diet, giving unique flavour 45 

and aroma to the dishes where it is employed. In the last few years, EVOO is gaining ground 46 

in high-quality cuisine, due to its broad spectrum in terms of organoleptic properties which 47 

allow choosing each cultivar for a specific flavour. Around 1700 olive varieties are being 48 

cultivated nowadays according to the World Catalogue of Olive Varieties of the International 49 

Olive Council (IOC). Nevertheless, only a handful of them are mostly used to produce olive 50 

oil [5]. 51 

In the last years, the main producers of olive oil have shown a special interest in the 52 

marketing of monovarietal olive oils as a way to improve the competitiveness, and to try to 53 

deal with the effects of the globalization process in the olive oil sector. The aim is to market 54 

high-quality olive oil with specific organoleptic characteristics, which reflect the effect of the 55 

cultivar and the geographical origin where it has been grown. A good strategy to take a 56 

prominent position over the competitors is to take advantage of the difference in chemical 57 

composition, organoleptic characteristics or the kind of cultivar of each EVOO, bearing a 58 

recognised quality-differentiated food seal as the 'Protected Designation Origin' (PDO) or 59 

'Protected Geographical Indication' (PGI) according to European regulations [6], and also 60 

labelling the oil as monovarietal EVOO, i.e., an extra-virgin olive oil obtained from a single 61 

kind of olive fruit botanical variety. These credentials, enforced within the EU and being 62 

gradually expanded internationally via bilateral agreements between the EU and non-EU 63 

countries, add value to the final product and bring exclusivity to the consumer. 64 

The 'arbequina' cultivar is a commonly botanical variety in Spain since the XVII century. The 65 

monovarietal olive oil obtained from arbequina olive fruits shows special organoleptic 66 

properties in comparison with other olive varieties, characterized for their freshly and fruity 67 

aroma and for showing a slight pungency or even none. These particular organoleptic 68 

properties make this olive oil an appreciated product for a wide spectrum of consumers. In 69 
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Spain there are some PDO concerns to Arbequina cultivars as 'Estepa' (South of Spain) [7], 70 

'Les Garrigues' [8] or 'Siurana' [9] (North of Spain).  71 

In this sense, proper analytical methods which enable to distinguish quickly and reliably 72 

cultivar olive oils are currently demanded. There are some works reporting the classification 73 

of EVOO according to its cultivar using spectroscopic techniques [10], liquid chromatography 74 

[11,12,13,14] or gas chromatography [15,16,17]. Nevertheless, all these works are based on 75 

the quantification of specific compounds or on the study of the profile of a family of 76 

components such as chlorophylls, sterols, fatty acids and phenolic compounds.  77 

On the other hand, it is possible to develop a global method for the classification of EVOO 78 

according to its cultivar by applying the chromatographic fingerprinting methodology [18] 79 

which combines second-order data with chemometric tools. Conventionally, second-order 80 

data have been used for the quantification of compounds due to what is known as 'the 81 

second-order advantage', i.e., 'the analytes can be quantitated in the presence of 82 

uncalibrated interfering substances'. Therefore, only small sets of pure compounds are 83 

required for building the calibration model, instead of large calibration sets containing all 84 

possible interfering substances. The main algorithms employed to process these data are: (i) 85 

parallel factor analysis (PARAFAC) [19], (ii) multivariate curve resolution-alternating least 86 

squares (MCR-ALS) [20] and (iii) unfolded or multidimensional partial least-squares with 87 

residual bilinearization (UPLS-RBL or NPLS-RBL) [21].  88 

Nevertheless, the application of this kind of data to build multivariate classification models for 89 

authentication of olive oils has not been extensively explored. The literature reports some 90 

studies applying PARAFAC together with unfolded principal component analysis (UPCA) to 91 

discriminate between commercial samples of virgin and pure olive oils [22], to detect 92 

adulterations in EVOO samples from the PDO [23], or PARAFAC with unfolded partial least-93 

squares-discriminant analysis (UPLS-DA) to detect adulteration of olive oils with other 94 

vegetable oils and to quantify the proportion in binary blends [24].In all these studies, 95 

fluorescence spectroscopy was mainly employed. As far as we know, no studies have been 96 

reported where these algorithms are combined with chromatographic data and traditional 97 

supervised pattern recognition methods such as partial least-squares discriminant analysis 98 

(PLS-DA) and soft independent modelling of class analogies (SIMCA), or with recently 99 

introduced classification methods such as random forest (RF). Only few applications are 100 

known in the food field with second-order data to authenticate the cultivar of extra-virgin olive 101 

oils.  102 

The aim of this study is to discriminate between arbequina extra-virgin olive oil from extra-103 

virgin olive oils from other cultivars, using three-way data to develop multivariate 104 
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classification methods. For this purpose, we have developed a quick analytical method using 105 

high performance liquid chromatography coupled to a UV absorption diode array detector 106 

(HPLC-DAD).  The second-order data were processed with PLS-DA, SIMCA and RF, in their 107 

original format or by first reducing them using MCR and a newly proposed approach. In 108 

addition, a set of quality metrics: (i) sensitivity, (ii) specificity, (iii) positive (or precision) and 109 

negative predictive values, (iv) Youden index, (v) positive and negative likelihood ratios, (vi) 110 

classification odds ratio; (vii) F-measure (or F-score), (viii) discriminant power, (ix) efficiency 111 

(or accuracy), (x) AUC (area under the receiver operating curve), (xi) G-mean; (xii) Matthews 112 

correlation coefficient and (xiii) Kappa coefficient, were used to assess the performance of 113 

the classifications. 114 

 115 

2.  Materials and methods  116 

 117 

2.1 Chemicals and reagents 118 

HPLC-grade solvents (n-hexane, isopropanol, methanol and tert-butyl methyl ether (TBME)) 119 

were purchased from VWR International Eurolab, S.L. (Barcelona, Spain). 120 

Other reagents, sodium methoxide (MeONa), citric acid monohydrate, and anhydride sodium 121 

sulphate were provided by Merck (Darmstadt, Germany), sodium sulphate anhydrous was 122 

provided by Panreac, S.L (Barcelona, Spain) and 3-chloroperbenzoic acid was purchased 123 

from Sigma-Aldrich (Missouri, USA). 124 

 125 

2.2 Samples 126 

Sixty-four single-variety extra virgin olive oil samples (EVOO) of different regions from Spain 127 

and olive fruit varieties were analysed. The samples were obtained directly from local 128 

providers. More specifically, 20 samples were from 'arbequina' fruit variety and 44 samples 129 

were from different fruit varieties which include: 'picual', 'hojiblanca', 'cornicabra', 'frantoio', 130 

'koroneiki', 'picudo', 'royal', 'loaime', 'lechin', 'lucio', 'arbosana' and 'manzanilla'. Table 1 131 

summarizes the different EVOO and the number of samples analysed.  132 

 133 

TABLE 1 

 134 

2.3 Sample preparation 135 
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First a transesterification reaction was applied to the EVOO samples. This reaction is a 136 

modification of the original procedure described by Bierdemann et al. [25]. For further 137 

information regarding to this modification see references [26,27]. Then, the methyl-138 

transesterification fraction of the EVOO samples was epoxidised as follows:  1000 µL of the 139 

transesterified fraction were added to a 10 mL tube and mixture with 1000 µL of a solution of 140 

5% (m/v) 3-chloroperbenzoic acid in TBME. The tube was stirred for 20 s and then allowed to 141 

stand for 10 min. Next, 4 mL n-hexane and 1 mL 20% sodium sulphate anhydrous in water 142 

were added, and the mixture was shaken. The aqueous phase was removed with a Pasteur 143 

pipet and finally the organic fraction was filtered using a syringe filter of 144 

polytetrafluoroethylene (PTFE) membrane with a 0.22 µm pore diameter. The solution was 145 

stored in cold until analysis.  146 

For chromatographic analysis, 200 µL of the stored solutions was transferred to a 2 mL 147 

HPLC vial. The epoxidisation step was carried out to enhance the difference between 148 

arbequina EVOOs and the ones from other cultivars.  149 

 150 

2.4 Instrumentation  151 

The chromatographic analysis was carried out with an Agilent 1100 series liquid 152 

chromatography (Santa Clara, CA) equipped with a G1316A column thermostat, G1311A 153 

quaternary pump, a G1379A degasser and a G1313A autosampler.  Detection was 154 

performed with a G1315B diode-array detector (DAD). Agilent ChemStation software 155 

(rev.A.09.03 [1417]) for HPLC systems was used.  156 

 157 

2.5 Chromatographic analysis 158 

The chromatographic fingerprint from the epoxidised fraction was obtained by HPLC-DAD 159 

using a column Lichrospher® 100 CN (2504 mm, i.d, 4 µm) provided by Merck (Darmstadt, 160 

Germany).  During the analysis the column temperature was constant at 30 ºC. Isocratic 161 

chromatographic conditions were employed using a mixture of n-hexane/isopropanol (96:4, 162 

v/v) as mobile phase at a flow rate of 1.2 mL min−1.  The injection volume was 20 µL and the 163 

run time was only 8 min. The DAD collected spectra every 2 s in the range 190-400 nm, each 164 

1 nm.  165 

 166 

2.6 Chemometrics 167 

The raw data files from each chromatogram were exported in 'comma separated value' 168 
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(CSV) format, and then converted to MATLAB format (version R2013b). The dimension of 169 

the matrix for each sample was of 1343211 where 1343 is the number of rows 170 

corresponding to the number of elution times and 211 is the number of absorbance spectra 171 

recorded. It is important to notice that the chromatographic fingerprints from the epoxidised 172 

fraction were reproducible from sample to sample due to the short chromatographic run time 173 

(3-4 min); for this reason, it was not necessary to apply any alignment procedure.  174 

The original dataset was randomly split into a training set, which was composed of 44 EVOO 175 

samples (14 EVOO samples from arbequina cultivar and 30 from non-arbequina cultivar) and 176 

an external validation set was made up with 20 EVOO samples (6 EVOO samples from 177 

arbequina cultivar and 14 from non-arbequina cultivar).  178 

MCR-ALS and NPLS-DA were applied using the interface MVC2 MATLAB toolbox, freely 179 

available on the internet [28]. Conventional multivariate chemometrics pattern recognition 180 

such PCA, SIMCA and PLS-DA, were employed using PLS_Toolbox ver 8.5.1 (Eigenvector 181 

Research Inc., Wenatchee, WA). RF was employed using perClass ver 4.7 (Delft, 182 

Netherlands). All the interface graphics, MVC2 toolbox, PLS Toolbox and perClass were 183 

designed for MATLAB software (Mathworks Inc., Natick, MA, USA).  184 

 185 

3. Results and discussion 186 

A two-way data array was recorded for each EVOO sample. Figure 1 illustrates a 187 

chromatographic-spectral landscape for an EVOO sample from 'cornicabra' cultivar.  188 

 189 

FIGURE 1 

 190 

Variable reduction  191 

Two strategies of variable reduction were employed: (i) strategy 1, named ''decomposition 192 

and vector fusion'' (DVF) and (ii) strategy 2, using MCR-ALS for the resolution into individual 193 

components. Figure 2 shows a flow chart of the two strategies performed.  194 

 195 

FIGURE 2 

 196 

(i) Strategy 1 for variable reduction: DVF  197 

For each sample, the corresponding mean vectors in both time and spectral domains were 198 



7 
 

obtained. In this way, two individual vectors per sample were computed, a mean vector of 199 

size 13431 (time domain) and another mean vector of size 2111 (spectral domain). These 200 

two vectors were then fused, so that the resulting fused vector was composed of 1544 201 

variables. Finally, the fused vectors for all samples were grouped in a single matrix of 202 

dimension 641544 (64 samples and 1544 variables).  Figure 3 displays the mean vectors in 203 

the time and spectral domain for an EVOO sample from 'cornicabra' cultivar, respectively. 204 

Figure 4 shows the overlay of the fused mean vectors from the 64 EVOO samples.  205 

 206 

FIGURE 3 

 207 

FIGURE 4 

 208 

(ii) Strategy 2 for variable reduction: MCR-ALS  209 

The successful application of this algorithm requires that enough selectivity exists in the 210 

spectral domain. If the samples show similar spectra, they cannot be resolved into individual 211 

components using MCR-ALS. In these cases, if the chromatograms are reproducible, matrix 212 

augmentation can be performed along the spectral domain before MCR-ALS is applied [29].  213 

MCR-ALS was applied to the row-wise augmented matrix (i.e., along the spectral domain). 214 

The number of components was estimated using principal component analysis of the 215 

augmented data matrix under a series of constraints: non-negativity in both domain (time and 216 

spectral) and none unimodality. According to the PCA results, 8 components were selected, 217 

which explained 99.94% of the data variance. After MCR-ALS decomposition, the 218 

chromatographic fingerprint information was arranged into a matrix of dimension 648 (64 219 

samples and 8 components), which was subsequently processed with PCA, PLS-DA, SIMCA 220 

and RF for classification purposes.  221 

 222 

Exploratory analysis 223 

Two PCA models were built using each of the matrices computed by strategies 1 and 2, to 224 

test if there was some natural grouping in the data set. Both PCA models were built with four 225 

principal components (PCs) (98.96% and 98.08% of explained variance for each strategy, 226 

respectively). They grouped the samples in a similar way.  227 

Figure 5a and 5b show the scores score-score plot on the PC4 vs PC1 plane and 3D plot 228 

with PC1-PC2-PC3, respectevely. PC4 and PC1 explained 4.08% and 68.18% of the 229 
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variance, respectively. Two groups of EVOO cultivars are distinguished: the positive region 230 

of PC4 mainly groups the EVOOs of the arbequina cultivar, while the positive region of PC1 231 

clusters the EVOOs of the other cultivars.  232 

 233 

Figure 5 (a) 

Figure 5 (b) 

 234 

Conventional multivariate classification methods 235 

As mentioned in the Introduction, multivariate classification methods using second-order data 236 

for the authentication of the cultivar kind of EVOOs are scarce, and the most commonly 237 

applied chemometric in these cases is linear discriminant analysis (LDA).  238 

In the present report, three classification models were developed: (i) two well-known 239 

classification methods (PLS-DA and SIMCA) using the resulting matrices obtained from the 240 

application of both strategies 1 and 2 (see above) , and (ii) NPLS-DA over the raw three-way 241 

data array . The main aim was to test whether there was significant difference between the 242 

classification methods usually applied to first-order (PLS-DA and SIMCA) and second-order 243 

data (NPLS-DA) when the chromatographic fingerprinting methodology is applied.  244 

For classification purposes with PLS-DA, the class "arbequina" was indexed with the value 1 245 

and the class "non-arbequina" with the value 0. The classification threshold was established 246 

by the software around of the value 0.6 for the arbequina class.   247 

The classification of the samples with SIMCA was carried out from both Q-reduced (Q) and 248 

Hotelling T2-reduced values. The classification region for the arbequina class was 249 

established according to Q and T2 values equal to 1, meaning that a sample must take values 250 

lower than 1 to be classified in the arbequina class. 251 

Table 2 shows the specifications of the PLS-DA and SIMCA models. 252 

 253 

Table 2 

 254 

The raw three-way data array was analysed using NPLS-DA . The estimated number of 255 

latent variables (LVs) was 15 according to the leave-one-out cross-validation method. As in 256 

the PLS-DA model, the "arbequina" class was denoted using the number 1 and the "non-257 

arbequina" class using the number 0.  258 
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The prediction results from both strategies were the same. Table 3 shows the results of PLS-259 

DA, SIMCA and NPLS-DA models and Table 4 presents the classification quality metrics 260 

calculated from the prediction results on the external validation set.  261 

 262 

Table 3 

 263 

Table 4 

 264 

In Table 3, the wrongly classified samples have been highlighted. As can be seen, PLS-DA 265 

and NPLS-DA classification models are more efficient than SIMCA. Furthermore, the former 266 

two models misclassified the same samples, which make sense since PLS-DA and NPLS-267 

DA work similarly.    268 

 269 

Emergent multivariate classification methods  270 

Random forest (RF) was first employed to process the second-order data. This algorithm is a 271 

combination of several prediction trees, which then selects the best split at each node among 272 

a random selection of predictor variables. RF shows significant advantages about other more 273 

applied classification methods such as high capability in handling mixed or badly unbalanced 274 

datasets, flexibility with no formal assumption on data structure, and the ability to deal 275 

address complex non-linear systems, and therefore it is able to build a more robust 276 

classification model than other conventional algorithms. Moreover, RF readily handles larger 277 

numbers of predictors and the cross-validation is unnecessary because it generates an 278 

internal unbiased estimate of the generalization error (test error) as the forest building 279 

progresses. The potential of RF for modelling linear and nonlinear multivariate calibration 280 

allows to be used for feature selection too, with two different objectives: (i) to find the subset 281 

of features with the minimum possible generalization error, or (ii) to select the smallest 282 

possible subset with a given discrimination capability [30]. 283 

Both classification models using the reduced data sets by strategies 1 and 2 achieved the 284 

same results. In both cases, 20 trees were combined to perform the prediction of the classes 285 

of the EVOO samples. Table 5 shows the obtained classification contingency table on the 286 

external validation data set, and table 6 displays the prediction results and the different 287 

classification quality metrics for the RF models, respectively.  288 

 289 
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Table 5 

 290 

Table 6 

 291 

The RF results are significantly better than the obtained ones from the previously applied 292 

conventional classification methods. The sensibility, specificity and efficiency from PLS-DA 293 

and NPLS-DA were 0.67, 0.92 and 0.84, respectively, while the same performances featured 294 

by the RF model were 1.00, 0.92 and 0.95, respectively. This suggests that the analysis of 295 

second-order data with to a powerful algorithm such as RF is a promising methodology to 296 

authenticate cultivars of EVOO samples.    297 

 298 

4. Conclusions 299 

The potential of second-order (or) fingerprint data obtained using LC-DAD to identify and 300 

discriminate extra-virgin olive oils from 'arbequina' botanical variety in respect of other 301 

varieties of milled olive fruits has been proved. A new fast-methodology has been proposal 302 

for the quality control of the extra virgin olive oil from arbequina cultivar using three 303 

multivariate classification algorithms, including two widely-recognised methods (partial least-304 

squares-discriminant analysis, PLS-DA, and soft independent modelling of class analogies, 305 

SIMCA) and a third one (random forest, RF) which is much less known and has been first 306 

used on second-order data. Surprisingly RF has shown itself to be the more efficient one in 307 

validation, yielding values of sensibility, specificity and accuracy of 1.00, 0.92 and 0.95, 308 

respectively, which are significantly better than the values found for the other methods.  309 

Before building multivariate classification models, the raw three-way data matrices have 310 

been reduced by applying two strategies: (1) multivariate curve resolution-alternating least 311 

squares (MCR-ALS), and (2) a new strategy named ''decomposition and vector fusion'' (DVF) 312 

which has been proposed in this work and based on the fusion of the mean vector obtained 313 

from the signal profiles in both spectral and time domains. No differences on the 314 

performance classification are found when both strategies are applied.  315 

 316 

317 
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Tables 319 

 320 

 321 

Table 1. Classes and olive fruit varieties of extra virgin olive oil analysed.   

 

Class Fruit varieties Nº samples 

'Arbequina' 

(20 samples) 
'arbequina' 20 

'Non-arbequina' 

(44 samples) 

'picual' 10 

'hojiblanca' 4 

'cornicabra' 5 

'frantoio' 3 

'koroneiki' 3 

'picudo' 4 

'royal' 3 

'loaime' 3 

'lechin' 1 

'lucio' 3 

'arbosana' 2 

'manzanilla' 3 

Total  64 

 322 

323 
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 324 

Table 2. Characteristics of the PLS-DA and SIMCA models  

 

 
PLS-DA SIMCA 

LVs %  var 
PCs 

 'Arb-Class' 
% var 

PCs 
 'nArb-Class' 

% var 

(a) Strategy 1  

 4 98.83 4 99.48 5 99.60 

(b) Strategy 2 

 5 97.29 6 99.92 6 99.87 

 325 

 326 

327 
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 328 

Table 3. Prediction results of arbequina and non-arbequina classification from the 

external validation set using PLS-DA, SIMCA and NPLS-DA. 

 

Class 

Sample 
number 

Class Ref 
PLSDA SIMCA NPLS-DA 

Clas Pred Clas Pred Clas Pred 

Arbequina 

(Arb) 

28 1 0 0 0 

30 1 0 0 0 

67 1 1 1 1 

69 1 1 1 1 

70 1 1 1 1 

74 1 1 0 1 

Non-arbequina 

(nArb) 

1 0 0 0 0 

10 0 0 0 0 

14 0 0 0 0 

16 0 0 0 0 

19 0 0 0 0 

34 0 0 0 0 

37 0 0 0 0 

39 0 0 1 0 

48 0 0 0 0 

51 0 0 0 0 

59 0 0 0 0 

61 0 0 0 0 

73 0 1 1 1 

Ref: reference; Pred: predicted 

 329 

 330 

331 
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 332 

Table 4. Values of the quality metrics from the conventional multivariate classification 

methods. 

 

Performance features PLS-DA SIMCA NPLS-DA 

Sensibility (Recall)  0.67 0.50 0.67 

Specificity  0.92 0.85 0.92 

Positive predictive value (Precision) 0.80 0.60 0.80 

Negative predictive value  0.86 0.79 0.86 

Youden index  0.59 0.35 0.59 

Positive likelihood ratio  8.67 3.25 8.67 

Negative likelihood ratio  0.36 0.59 0.36 

Classification odds ratio 24.00 5.50 24.00 

F-measure  0.73 0.55 0.73 

Discriminant power 0.76 0.41 0.76 

Efficiency (or Accuracy)  0.84 0.74 0.84 

AUC (Correctly classified rate)  0.79 0.67 0.79 

G-mean 0.78 0.65 0.78 

Matthews correlation coefficient  0.62 0.36 0.62 

Kappa coefficient  0.62 0.36 0.62 
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Table 5. Contingency charts for the RF classification models from 

the same external validation set used for the SIMCA, PLS-DA and 

NPLS-DA models. 

 

 Decision of the classifier  

Arb class nArb class Total 

True 

class 

Arb class 6 0 6 

nArb class 2 12 14 

 Total 8 12 20 

 337 

 338 
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 340 

Table 6. Values of the classification quality metrics from the RF models. 

 

Performance features RF  (strategy 1) RF (strategy 2) 

Sensibility (Recall)  1.00 1.00 

Specificity  0.92 0.92 

Positive predictive value (Precision) 0.76 0.76 

Negative predictive value  1.00 1.00 

Youden index  0.92 0.92 

Positive likelihood ratio  13.00 13.00 

Negative likelihood ratio 0.00 0.00 

Classification odds ratio – – 

F-measure  0.92 0.92 

Discriminant power – – 

Efficiency (or Accuracy)  0.95 0.95 

AUC (Correctly classified rate)  0.96 0.96 

G-mean 0.96 0.96 

Matthews correlation coefficient  0.89 0.89 

Kappa coefficient  0.88 0.88 

The hyphen "–" indicates that the performance feature cannot be determined 

341 
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FIGURE CAPTIONS  342 

 343 

Figure 1. Time-wavelength chromatographic landscape of an extra virgin olive oil from 344 

'cornicabra' cultivar.  345 

 346 

Figure 2. Flow chart showing the strategies applied for the treatment of the two-way 347 

data (N = number of objects (EVOO samples); M = number of variables in the spectral 348 

domain (wavelengths of the UV absorption spectrum); T = number of variables in the 349 

time domain (retention times of the chromatogram); L = number of latent variables 350 

(principal components)).    351 

 352 

Figure 3. Plot of the mean vectors for an EVOO sample from 'cornicabra' cultivar: (a) 353 

mean vector in the time domain and (b) mean vector in the spectral domain.  354 

 355 

Figure 4. Overlay of fused mean vectors of all EVOO samples.  356 

 357 

Figure 5. (a) PC1-PC2-PC3 and (b) PC4 vs PC1 plot from the matrix obtained from 358 

application of MCR of the epoxidised fraction of the 64 EVOO samples from different 359 

cultivars.  360 

361 
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