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Decoding Reed-Solomon Skew-Differential Codes
José Gómez-Torrecillas, Gabriel Navarro, José Patricio Sánchez-Hernández

Abstract—A large class of MDS linear codes is constructed.
These codes are endowed with an efficient decoding algorithm.
Both the definition of the codes and the design of their decoding
algorithm only require from Linear Algebra methods, making
them fully accesible for everyone. Thus, the first part of the paper
develops a direct presentation of the codes by means of parity-
check matrices, and the decoding algorithm rests upon matrix
and linear maps manipulations. The somewhat more sophis-
ticated mathematical context (non-commutative rings) needed
for the proof of the correctness of the decoding algorithm
is postponed to the second part. A final section locates the
Reed-Solomon skew-differential codes introduced here within the
general context of codes defined by means of skew polynomial
rings.

INTRODUCTION

The treatment of cyclic linear codes as ideals of a quotient
of a polynomial ring inspired the extension of cyclic-like con-
ditions to the realm of skew-polynomial (non-commutative)
rings both from the perspective of block codes [4]–[6], [11],
[26] and convolutional codes [12], [14], [15], [25], [29], [30].
One of the nicest features of some (commutative) cyclic codes
is the possibility of designing efficient algebraic decoding
algorithms taking advantage of their rich algebraic structure
[19], [28], [32]. These classic approaches have been adapted
or, in some cases, inspire, decoding procedures for some fami-
lies of cyclic-like codes based on non-commutative polynomial
arithmetics [6], [16], [17], [24]. Dealing with these codes,
presented in the language of left ideals and modules, requires
a training in non-commutative rings which could limit their
difusion and potential practical use among coding theorists
and engineers.

In this paper we simplify and extend to a considerably
broader class of codes the algebraic decoding algorithms
designed in [17] and [18] for skew RS and convolutional
differential RS codes, respectively. These codes were presented
as left ideals of certain non-commutative polynomial rings,
and their decoding algorithms make use of advanced alge-
braic tools like evaluation of non-commutative polynomials.

José Gómez-Torrecillas is with IMAG and Department of Algebra of
University of Granada.

Gabriel Navarro is with CITIC and Department of Computer Science and
Artificial Intelligence of University of Granada.
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In contrast, both the construction of the codes in this note,
and the description and implementation of their decoding
algorithm only require basic Linear Algebra over a field. The
introduction of the (minimal) algebraic machinery needed to
prove the correctness of the decoding algorithm is postponed
till Section III. In this way, the material of Section I is ready
to use even without knowing what a non-commutative ring is.

We work over a general field K, since our interests include
block linear codes (K = Fq , a finite field) and convolutional
codes (K = Fq(t), the rational function field in one variable
t over Fq).

We call our codes Reed-Solomon (RS) skew-differential
codes because they are defined from a skew derivation of the
field K by means of parity check matrices (Definition 2), and
they become MDS with respect to the usual Hamming metric.
As linear subspaces, they are dual to some special type of
linearized Reed-Solomon codes in the sense of [26], and also
they may be seen as a particular case of (σ, δ)–codes from [6],
with a carefully chosen left ideal generator. This choice allows
the design of the algebraic decoding algorithm developed in
this paper.

Each code C(ϕu,α,d) depends on the three parameters re-
flected in the notation. Concretely, ϕu is a transformation of
K, defined from an element u ∈ K and the skew derivation,
that becomes linear with respect to a suitable subfield Kϕu of
K, α is a cyclic vector of ϕu, and d is the designed minimum
Hamming distance of the code. After the description of the
code C(ϕu,α,d), Section I proceeds to the design of its algebraic
decoding algorithm (see Algorithm 1). It runs at follows: from
a word corrupted by up to τ = bd−1

2 c errors, a matrix is
computed recursively from the syndromes. The left kernel of
this matrix contains a nonzero vector ρ (Proposition 3). With
this vector at hand, a second matrix L is recursively computed.
This matrix gives an easy procedure to get the positions of the
errors (Theorem 4). Once these positions are known, the values
of the errors are the solution of a linear system of equations.

Section II deals with the examples. We analyze when
the finiteness condition (see Proposition 1) that grants the
construction of the code C(ϕu,α,d) holds (Proposition 7 and
Corollary 8). Its turns out that in the cases of interest (block
and convolutional skew-differential codes), the code C(ϕu,α,d)

is always built (Subsections II-A and II-B). Concrete examples
of application of Algorithm 1 are shown in both cases. The
computations are done with the help of the SageMath symbolic
computation system [31].

Section III is devoted to prove the mathematical results that
ground Algorithm 1. Our algebraic setup requires from the
ring of additive endomorphisms of K generated by K and
the map ϕu, and the application of Jacobson-Bourbaki’s Cor-
respondence to identify which maps ϕu are suitable for con-
structing skew-differential codes (Proposition 11). Jacobson-
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Bourbaki’s Correspondence is a more general version of
Galois Correspondence that applies to additive maps (like
ϕu) which are not necessarily field automorphisms (see [33]
or [34]). We also use the non-commutative Wronskian and
Vandermonde matrices investigated in [9]. Indeed, it turns out
that R is isomorphic to the factor ring of a skew polynomial
ring by the minimal polynomial of ϕu (see Proposition 14).
This isomorphism eases the conceptual manipulation of the
elements of R in Proposition 17 and Theorem 18. The section
is closed with the proof of the correctness of Algorithm 1.

Section IV gives a precise description of an RS skew-
differential code C(ϕu,α,d) as a left ideal of R (Corollary
25). From the practical point of view, this serves to see in
detail how the codes investigated in [17] and [18] are obtained
as particular cases of C(ϕu,α,d) (see Examples 28 and 29).
Besides, a generator of C(ϕu,α,d) is explicitly given. On the
theoretical side, Corollary 25 identifies RS skew-differential
codes as members of the very general family of module (σ, δ)–
codes defined in [6]. In fact, we precisely characterize the
module (σ, δ)–codes with “word ambient” ring R (Proposition
23 and Proposition 24), and describe which of these codes
are RS skew-differential codes (Corollary 25), thus enjoying
an efficient algebraic decoding algorithm. We also discuss
(Remark 30) how the dual of an RS skew-differential code
becomes a linearized skew Reed-Solomon code in the sense
[26].

The Appendix contains some remarks on computational
aspects both of the construction of the codes and the decoding
algorithm.

I. DEFINITION OF THE CODES AND SPECIFICATION OF
THEIR ALGEBRAIC DECODING ALGORITHM

Let K be a field. For any additive map1 φ : K → K, set

Kφ = {b ∈ K : φ(ab) = φ(a)b for all a ∈ K}.

A straightforward argument shows that Kφ is a subfield of K
and, obviously, φ becomes a Kφ–linear map. A tempting idea
is to use good enough field extensions K/Kφ to design K–
linear error corrector codes with efficient algebraic decoding
algorithms. In this note, we consider additive maps on K
stemming from skew derivations.

A skew derivation on K is a pair (σ, δ), where σ is a field
automorphism of K, and δ : K → K is an additive map
subject to the condition

δ(ab) = σ(a)δ(b) + δ(a)b, (1)

for all a, b ∈ K.
Given u ∈ K, let ϕu : K → K be defined by

ϕu(a) = σ(a)u+ δ(a), (2)

for all a ∈ K.

Proposition 1. Assume that the dimension of K as a Kϕu–
vector space is m <∞. The minimal polynomial of the Kϕu–
linear map ϕu has degree m and, henceforth, it has at least a

1That is, it satisfies that φ(a+ b) = φ(a) + φ(b) for all a, b ∈ K.

cyclic vector. Moreover α ∈ K is such a cyclic vector if and
only if the matrix

A =


α ϕu(α) · · · ϕm−1

u (α)
ϕu(α) ϕ2

u(α) · · · ϕmu (α)
...

...
. . .

...
ϕm−1
u (α) ϕmu (α) · · · ϕ2m−2

u (α)


is invertible.

Proposition 1 establishes an adequate context to define our
codes from the matrix A. It is worth to mention that the
computation of a cyclic vector α can be randomized and does
not require the computation of Kϕu (see Remark 9 in Section
II).

Definition 2. Given 2 ≤ d ≤ m, define the K–linear code
C(ϕu,α,d) ⊆ Km of dimension m− d+ 1 as the left kernel of
the matrix

H =


α ϕu(α) · · · ϕd−2

u (α)
ϕu(α) ϕ2

u(α) · · · ϕd−1
u (α)

...
...

. . .
...

ϕm−1
u (α) ϕmu (α) · · · ϕm+d−3

u (α)

 ,

that is, C(ϕu,α,d) = {w ∈ Km : wH = 0}.

It can be proved (see Theorem 13 below) that the minimum
Hamming distance of this code is d, so it is an MDS code.
We will call these codes Reed Solomon (RS) skew-differential
codes. It is worth to mention that when K is either a finite field
or a rational function field over a finite field, its dimension
as a Kϕu–vector space is finite for any choice of the skew
derivation (σ, δ), of the element u and of the cyclic vector α
(see Section II). Indeed, m is always equal to the order m of
the automorphism σ, when the latter is not the identity map.

Next, let us describe the decoding algorithm for C(ϕu,α,d),
that corrects up to τ = bd−1

2 c errors. Suppose that we receive
a word

y = (y0, . . . , ym−1) ∈ Km

with y = c+ e ∈ Km, where c is a codeword, and

e = (e0, . . . , em−1)

is an error vector, which is assumed to be nonzero in
the discussion below. Suppose that the nonzero components
ek1 , . . . , ekv ∈ K of e occur at the positions 0 ≤ k1 < · · · <
kv ≤ m− 1. We assume that v ≤ τ .

We start by computing, for i = 0, . . . , d−2, the syndromes

Si,0 =

m−1∑
j=0

yjϕ
i+j
u (α), (3)

which are the components of the vector yH .
For every pair i, k of nonnegative integers such that i +

k ≤ 2τ − 1 we may compute Si,k ∈ K recursively from (3)
according to the rule

Si,k+1 = σ−1(δ(Si,k)− Si+1,k). (4)
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We may thus compute the columns of the matrix

S =


S0,0 S0,1 · · · S0,τ−1

S1,0 S1,1 · · · S1,τ−1

...
...

. . .
...

Sτ,0 Sτ,1 · · · Sτ,τ−1

 .

Next, for 1 ≤ r ≤ τ , let Sr denote the matrix formed by
the r first columns of S and compute

θ = max{r : rank Sr = r}.

Proposition 3. The left kernel of the matrix

B =


S0,0 S0,1 · · · S0,θ−1

S1,0 S1,1 · · · S1,θ−1

...
...

. . .
...

Sθ,0 Sθ,1 · · · Sθ,θ−1


is a one dimensional vector subspace of Kθ+1 spanned by a
vector ρ = (ρ0, . . . , ρθ) with ρθ 6= 0.

The next step is the localization of the positions
k1, . . . , kv ∈ {0, . . . ,m − 1} at which the error values
ek1 , . . . , ekv appear. This will be done with the help of a
locator matrix built as follows.

For j = 0, . . . ,m− 1 and i = 0, . . .m− θ − 1, set

l0,j =

{
ρj if j = 0, . . . , θ

0 if j = θ + 1, . . . ,m− 1
, li,−1 = 0. (5)

We may then construct a matrix

L =


l0,0 l0,1 · · · l0,m−1

l1,0 l1,1 · · · l1,m−1

...
...

. . .
...

lm−θ−1,0 lm−θ−1,1 · · · lm−θ−1,m−1

 (6)

by defining its entries recursively as

li+1,j = σ(li,j−1) + δ(li,j). (7)

For i = 0, . . . ,m−1 let εi denote the vector of Km whose
i–th component equal to 1, and every other component is 0.
By Row(LA) we denote the row space of the matrix LA.

Theorem 4. The error positions k1, . . . , kv are, precisely,
those

k ∈ {0, . . . ,m− 1}

such that εk /∈ Row(LA).
The error values ek1 , . . . , ekv ∈ K are the unique solution

of the linear system

Si,0 =

v∑
j=1

ekjϕ
i+kj
u (α), (0 ≤ i ≤ v − 1).

We are now ready to specify our decoding algorithm.

Algorithm 1. Decoding algorithm for an RS skew-
differential code C(ϕu,α,d).

• The input is a received word y = (y0, . . . , ym−1) ∈ Km

with no more than τ = bd−1
2 c errors.

• The output is an error vector e = (e0, . . . , em−1) ∈ Km

such that y − e ∈ C(ϕu,α,d).

• The algorithm runs according to the following steps:
1. Compute Si,0 according to (3) for i = 0, . . . , d− 2. If

Si,0 = 0 for every i = 0, . . . , d− 2, then e = 0.
2. Compute recursively Sr for r ≥ 2 by means of (4)

until rank Sr < r. Set θ = r − 1.
3. Compute a nonzero ρ = (ρ0, . . . , ρθ) in the kernel of

the matrix B formed by the first θ + 1 rows of Sθ.
4. Compute the matrix L according to (5) and (7).
5. The error positions set T = {k1, . . . , kv} is determined

by

T = {k ∈ {0, . . . ,m− 1} : εk /∈ Row(LA)}.

6. The error values ek1 , . . . , ekv are the solutions of the
linear system

m−1∑
j=0

yjϕ
i+j
u (α) =

v∑
j=1

ekjϕ
i+kj
u (α), (0 ≤ i ≤ v−1).

7. Set ei = 0 for i /∈ T . The error is e = (e0, . . . , em−1).

Remark 5. The location of the error positions from the matrix
LA in the fifth step of Algorithm 1 can be done by several
methods. For instance, one may compute the reduced row
echelon form of LA, as we do in the examples exhibited in
Section II.

II. EXAMPLES

Before giving concrete examples, we discuss under which
conditions the dimension of K as a Kϕu–vector space is finite.
Of course, we also would like to avoid the extreme case where
K = Kϕu , so we also consider this situation. We first record
separately an alternative description of Kϕu , which will used
several times. Keep the notation introduced in Section I.

Lemma 6. The subfield Kϕu of K admits the following
description:

Kϕu = {b ∈ K |σ(b)u+ δ(b) = ub}.

Proof. It follows from the identities

ϕu(ab) = σ(a)σ(b)u+ σ(a)δ(b) + δ(a)b

and
ϕu(a)b = σ(a)ub+ δ(a)b,

valid for any a, b ∈ K.

Proposition 7. 1) The equality K = Kϕu holds if and only
if δ(a) = u(a− σ(a)) for every a ∈ K.

2) If K 6= Kϕu then

Kϕu =

{
Kδ if σ = idK

Kσ if σ 6= idK .

Proof. Statement (1) follows immediately from Lemma 1.
As for statement (2) concerns, let us first observe that, since

δ(ab) = δ(ba) for every a, b ∈ K,

δ(b)(σ(a)− a) = δ(a)(σ(b)− b), (8)
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by virtue of (1). Now, since K 6= Kϕu , we pick a ∈ K \Kϕu .
If b ∈ Kϕu , then

δ(a)(σ(b)− b) = δ(b)(σ(a)− a) = (b− σ(b))u(σ(a)− a),

which is only possible if σ(b)−b = 0, as δ(a) 6= u(σ(a)−a).
Therefore, b ∈ Kσ and, henceforth, δ(b) = u(b − σ(b)) = 0.
We thus get that Kϕu ⊆ Kσ ∩Kδ . The converse inclusion is
easily checked, so that we obtain

Kϕu = Kσ ∩Kδ. (9)

If σ = idK , then (9) obviously implies Kϕu = Kδ . If σ 6=
idK , we may already pick a ∈ K \Kσ . Then, for b ∈ Kσ we
get form (8), that

δ(b)(σ(a)− a) = δ(a)(σ(b)− b) = 0.

Hence, δ(b) = 0 and Kσ ⊆ Kδ , which implies, in view of
(9), that Kϕu = Kσ .

Given an automorphism σ 6= idK of the field K, and v ∈ K,
we may define

δσ,v(a) = v(σ(a)− a), (10)

for all a ∈ K, thus obtaining a map δσ,v : K → K
which is a σ–derivation. Indeed, it is already known (see, for
instance, [21, Proposition 1.1.20]), that every σ–derivation of
the commutative field K can be expressed in this form (this
fact is easily derived from (8)). With this notation, we derive
the following consequence of Proposition 7.

Corollary 8. Assume that σ 6= idK is an automorphism of
K of finite order m, and that δ = δσ,v . If u 6= −v, then the
dimension of K over Kϕu is m.

Remark 9. In practice, the computation of one of the cyclic
vectors α predicted by Proposition 1 can be implemented by a
randomized search in K until the matrix A becomes invertible.
This avoids in most cases the computation of the subfield Kϕu ,
since the parameter m is either the order of the automorphism
σ or, in the pure differential case of interest (namely K =
F(t)), the characteristic of the finite field F.

Next, we discuss how our construction applies to block and
convolutional codes. We also illustrate the execution of our
decoding algorithm with some concrete examples.

A. Block codes

Let us assume here that K = F is the finite field with
pr elements for some prime p, so our codes become linear
block codes over the alphabet F. Every automorphism of F is
a power of the Frobenius automorphism τ and, consequently,
has finite order. Additionally, any derivation on F is inner,
this is to mean, it is given by (10), so Corollary 8 provides us
plenty of non trivial examples. The steps of the design method
of a RS skew-differential block code may be then enumerated
as follows:

1) Choose a natural 0 < h < r, and set σ = τh and m =
r

(r,h) , the order of σ.
2) Choose v and u in F, with u+ v 6= 0, in order to set the

σ-derivation δ : F → F as δ(c) = v(σ(c) − c) and the
additive map ϕu as ϕu(c) = σ(c)u+ δ(c) for any c ∈ F.

3) By a random search, find a cyclic vector α (see Remark
9).

4) Finally, choose a designed distance 2 ≤ d ≤ m, and set
the parity check matrix H as in Definition 2.

The degrees of freedom of this process suggest how wide
this class of block codes is. Furthermore, RS skew-differential
block codes are not cyclic, see Section IV. Nevertheless,
Algorithm 1 provides a decoding method as efficient as the
classical Peterson-Gorenstein-Zierler algorithm.

Let us now describe a concrete example. Consider F =
F2(a) the field with 256 = 28 elements, where a8 + a4 +
a3 + a2 + 1 = 0. For brevity, except for 0 and 1, we write
the elements of F as powers of a. Let σ be the Frobenius
automorphism of F, that is, σ(c) = c2 for any c ∈ F, which
has order m = 8. Then, Corollary 8 says that our code is of
length 8. We set v = a, yielding the σ-derivation given by
δ(c) = ac2 + ac for every c ∈ F, and u = a2, so ϕu(c) =
a26c2 + ac for every c ∈ F.

We now choose α = a9. The matrix A from Proposition 1
takes now the form

A =



a9 a146 a103 a244 a214 a89 a a200

a146 a103 a244 a214 a89 a a200 a237

a103 a244 a214 a89 a a200 a237 a95

a244 a214 a89 a a200 a237 a95 a105

a214 a89 a a200 a237 a95 a105 a175

a89 a a200 a237 a95 a105 a175 a184

a a200 a237 a95 a105 a175 a184 a21

a200 a237 a95 a105 a175 a184 a21 a159


.

The determinant of A equals a47, so that α is a cyclic
vector. Finally, we set a designed distance d = 5. Let then
C = C(ϕu,a9,5) ⊆ F8 be the [8, 4, 5]256-linear code defined
as the left kernel of the following matrix H . From H , by
standard methods, we have also computed a generating matrix
G. Explicitly,

H =



a9 a146 a103 a244

a146 a103 a244 a214

a103 a244 a214 a89

a244 a214 a89 a
a214 a89 a a200

a89 a a200 a237

a a200 a237 a95

a200 a237 a95 a105


and

G =


1 0 0 0 a105 a69 a221 a41

0 1 0 0 a109 a25 a232 a166

0 0 1 0 a145 a54 a104 a36

0 0 0 1 a251 a141 a42 a60

 .

The reader may refer to Section IV and Remark 26 for the ex-
plicit calculation of a non-commutative generator polynomial
of C so that the encoding can be performed in a similar way
as for cyclic codes.

Let us exemplify the encoding-decoding process. We recall
that the error-correcting capacity of C is τ = 2. Suppose we
want to transmit the message

M =
(
a61, a102, a182, a250

)
,
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so that we encode it to a codeword

c = MG =
(
a61, a102, a182, a250, a33, a126, a121, a226

)
∈ C.

During the transmission, c is corrupted by adding the error
vector

e =
(
0, a2, 0, a2, 0, 0, 0, 0

)
,

yielding then the received word

y = c+ e =
(
a61, a6, a182, a107, a33, a126, a121, a226

)
.

Now, we run Algorithm 1. We first calculate the syndromes

yH =
(
a32, a96, a250, a236

)
,

so it is detected some error. The syndrome matrix is then

S =

 a32 a3

a96 a67

a250 a221

 .

The first column of S is a multiple of its second column, so
that S has rank 1 and, henceforth, θ = 1. Therefore, the matrix
B in Algorithm 1 takes the form

B =

(
a32

a96

)
.

and a basis of its left kernel is provided by the vector

ρ =
(
a, a192

)
.

The matrix L defined in (6) becomes

L =



a a192 0 0 0 0 0 0
a27 a125 a129 0 0 0 0 0
a132 a44 a148 a3 0 0 0 0
a193 a105 a215 a102 a6 0 0 0
a222 a134 a212 a108 a134 a12 0 0
a205 a117 a209 a216 a212 a25 a24 0
a158 a70 a195 a206 a88 a245 a222 a48


,

and LA results

LA=



a246 a98 a77 a98 a245 a164 a146 a23

a137 a27 a44 a27 a24 a129 a103 a22

a203 a169 a175 a169 a222 a76 a244 a124

a26 a40 a184 a40 a160 a124 a214 a58

a10 a203 a21 a203 a155 a58 a89 a116

a43 a26 a159 a26 a25 a116 a a169

a61 a10 a198 a10 a28 a169 a200 a40


.

The identification of the positions k ∈ {0, 1 . . . , 7} such that
εk /∈ Row(LA) can be easily done if we compute the row
reduced echelon form of LA,

LArref =



1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


It is clear that ε1 and ε3 do not belong to Row(LA). Therefore,
there are errors at positions 1 and 3. We finally need to solve

a linear system in order to recover the error values. Indeed,
the error values are the solution of the system(

a146 a103

a244 a214

)(
e1
e3

)
=
(
a32 a96

)
.

The solution is, as expected, e1 = a2 and e3 = a2.

B. Convolutional codes

Another case of interest is K = F(t), the field of rational
functions over a finite field F. Linear codes over F(t) are
examples convolutional codes, see [10] for details. It is well-
known that the group AutFF(t) of all F–linear automorphisms
of the field F(t) can be identified with the projective general
linear group PGL(2,F) via the map Φ : PGL(2,F) →
AutFF(t), which maps any matrix M = ( σ1 σ2

σ3 σ4
) ∈ PGL(2,F)

to the automorphism Φ(M) determined by the rule t 7→
σ1t+σ2

σ3t+σ4
. Every automorphism of K has then finite order and,

on the other hand, the field of constants of any derivation of
F(t) has finite index. Thus, Proposition 7 says that virtually all
choices of σ, δ and u lead to non trivial RS skew-differential
convolutional codes to which the decoding algorithm 1 may
be applied.
Remark 10. Algorithm 1 deals with the Hamming metric,
which is not the usual distance considered in convolutional
codes. However, the use of Hamming distances in the con-
volutional setting might be of interest in the technology of
distributed storage (see [18, Sect. 2] and [1]).

Let us now detail a specific example. Let F = F2(a), where
a2 +a+ 1 = 0, the field with four elements and set K = F(t)
the field of rational functions with coefficients in F. We shall
follow likewise the construction method in Subection II-A.

As commented above, an automorphism of K is determined
by four elements σ1, σ2, σ3, σ4 in F verifying σ1σ4− σ2σ3 6=
0. Set σ1 = 0, σ2 = 1, σ3 = 1 and σ4 = a yielding the
automorphism σ : K → K determined by σ(t) = 1/(t + a),
which has order m = 5. For simplicity, we fix v = 1, so that
δ(c) = σ(c)− c for any c ∈ K, and u = 0, and then ϕu = δ.
Now, consider α = t. Since the matrix

A =



t t2+at+1
t+a

t2+at+1
t+1

t2+at+1
t+a

t2+at+1
t+1

t4+at3+t2

t3+1

t2+at+1
t+1

t4+at3+t2

t3+1
t2+at+1

t

t4+at3+t2

t3+1
t2+at+1

t
t2+at+1
a2t2+t

t2+at+1
t

t2+at+1
a2t2+t

a2t4+t3+at2+at+1
a2t3+at2+t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t4+at3+t2

t3+1
t2+at+1

t

t2+at+1
t

t2+at+1
a2t2+t

t2+at+1
a2t2+t

a2t4+t3+at2+at+1
a2t3+at2+t

a2t4+t3+at2+at+1
a2t3+at2+t

t2+at+1
at2+t

t2+at+1
at2+t

t2+at+1
t+a+1


is non-singular, we get from Proposition 1 that α is a cyclic
vector for δ. Finally, the designed distance is selected to be d =
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3. So the skew-differential convolutional code C = C(δ,t,3) can
correct a single error, and a parity check matrix takes the form

H =



t t2+at+1
t+a

t2+at+1
t+a

t2+at+1
t+1

t2+at+1
t+1

t4+a2t3+t2

t3+1

t4+a2t3+t2

t3+1
t2+at+1

t

t2+at+1
t

t2+at+1
a2t2+t


Let us briefly exemplify our decoding algorithm. Suppose that
we receive the word

y =

(
0, 1, a2,

t2 + t

a2t2 + t+ 1
, 0

)
,

whose matrix of syndromes is as follows:

S =

(
t3+at2+t

t4+at2+at+1

t3+at2+t
a2t5+t4+t3+a2t2+t+1

)
.

Henceforth, the system detects errors during the transmission.
Clearly θ = 1 and B = S, and the vector ρ becomes ρ =
(1, at+ 1). The matrix L takes the form

L =


1 a2t+ 1 0 0 0

0 a2t2+1
t+a

t+1
t+a 0 0

0 t2+at+1
at+a 1 t+a+1

at+a 0

0 t4+at3+t2

at3+a
t2+at+1
at2+at+a

1
a2t2+t+a

a2t
at+1

 .

We then compute LA and its row reduced echelon form
obtaining that

LArref =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

It is clear that ε4 does not belong to RowLA, so we find an
error at position 4. When computing the error value we find
that

e4 =
t2

t4 + at2 + at+ 1
.

Therefore, the correction gives the codeword

c =

(
0, 1, a2,

t2 + t

a2t2 + t+ 1
,

t2

t4 + at2 + at+ 1

)
,

and the original message would be M =
(
0, 1, a2

)
.

III. MATHEMATICAL SET UP AND PROOFS

The aim of this section is to prove the mathematical results
that ground Algorithm 1. So, let (σ, δ) be a skew-derivation
on a field K, as defined in Section I. Recall that, for each
u ∈ K, we define

ϕu(a) = σ(a)u+ δ(a), (11)

for all a ∈ K, thus obtaining a map ϕu : K → K. This
additive map becomes right Kϕu–linear, where

Kϕu = {b ∈ K : ϕu(ab) = ϕu(a)b for all a ∈ K}

is the ϕu–invariant subfield of K.
Let End(K) denote the ring of endomorphisms of K

as an additive group. Let R be the subring of End(K)
generated by K and ϕu. Here, K is seen as a subring of
End(K) by considering each element a of K as the additive
endomorphism given by multiplication by a.

Proposition 11. If the dimension of K as a Kϕu–vector space
is m < ∞, then the minimal polynomial of ϕu as a Kϕu–
linear map has degree m. Consequently, ϕu has at least a
cyclic vector α ∈ K. Moreover,

R = K ⊕Kϕu ⊕ · · · ⊕Kϕm−1
u . (12)

Proof. It easily follows from (1) that, in End(K),

ϕua = σ(a)ϕu + δ(a), (13)

for all a ∈ K. This implies that R = K+Kϕu+Kϕ2
u+ · · · .

Now, since dimKϕu K = m, the minimal polynomial of ϕu
as a Kϕu–linear map has degree n ≤ m. This in particular
implies that R = K + Kϕu + · · · + Kϕn−1

u . On the other
hand, by Jacobson-Bourbaki’s correspondence [33, Theorem
4.1], m = dimK R. We thus derive that n = m and (12).

In the rest of the paper, we assume that dimKϕu K = m <
∞. According to Proposition 11, the minimal equation of ϕu
over Kϕu has degree m, that is, is of the form

0 = ϕmu + µm−1ϕ
m−1
u + · · ·+ µ1ϕu + µ0 (14)

with µi ∈ Kϕu for i = 0, . . . ,m− 1.
Let α ∈ K. For any subset {t1, . . . , tn} ⊆ {0, . . . ,m− 1},

define, following [9], the matrix

W (ϕt1u (α), . . . , ϕtnu (α)) =
ϕt1u (α) ϕt2u (α) · · · ϕtnu (α)
ϕt1+1
u (α) ϕt2+1

u (α) · · · ϕtn+1
u (α)

...
...

. . .
...

ϕt1+n−1
u (α) ϕt2+n−1

u (α) · · · ϕtn+n−1
u (α)

 .

Lemma 12. Given α ∈ K, the following conditions are
equivalent.

1) α is a cyclic vector for the Kϕu–linear map ϕu.
2) W (α,ϕu(α), . . . , ϕm−1

u (α)) is an invertible matrix.
3) W (ϕt1u (α), . . . , ϕtnu (α)) is an invertible matrix for every

subset {t1, . . . , tn} ⊆ {0, . . . ,m− 1}.

Proof. For every nonzero c ∈ K, consider the conjugate of u
by c:

cu = σ(c)uc−1 + δ(c)c−1.

By Lemma 6,

Kϕu = {c ∈ K \ {0} | cu = u} ∪ {0};

the latter being the (σ−δ)–centralizer of u in the terminology
of [9]. Since α is a cyclic vector for ϕu precisely when
{α,ϕu(α), . . . , ϕm−1

u (α)} is a Kϕu–basis of K, we may
apply [9, Theorem 5.3] to deduce that the three conditions
are equivalent.

Proof of Proposition 1. It is a consequence of Proposition 11
and Lemma 12.
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Fix a cyclic vector α ∈ K of ϕu. Let A =
W (α,ϕu(α), . . . , ϕm−1

u (α)) which, by Lemma 12, is an in-
vertible matrix with coefficients in K.

Theorem 13. For 2 ≤ d ≤ m, let C(ϕu,α,d) ⊆ Km be the left
kernel of the matrix

H =


α ϕu(α) · · · ϕd−2

u (α)
ϕu(α) ϕ2

u(α) · · · ϕd−1
u (α)

...
...

. . .
...

ϕm−1
u (α) ϕmu (α) · · · ϕm+d−3

u (α)

 . (15)

Then C(ϕu,α,d) is a K–linear code of dimension m − d + 1
and minimum Hamming distance d.

Proof. Since H consists of the first d − 1 columns of the
invertible matrix A, we get that the dimension of the left K–
vector subspace C(ϕu,α,d) is m− d + 1. Every submatrix M
of order d− 1 of H is of the form

M =


ϕk1u (α) ϕk1+1

u (α) · · · ϕk1+d−2
u (α)

ϕk2u (α) ϕk2+1
u (α) · · · ϕk2+d−2

u (α)
...

...
. . .

...
ϕ
kd−1
u (α) ϕ

kd−1+1
u (α) · · · ϕ

kd−1+d−2
u (α)

 ,

where {k1, . . . , kd−1} ⊆ {0, . . . ,m− 1}. We see that

M = W (ϕk1u (α), . . . , ϕkd−1
u (α))t,

which is, by Lemma 12, invertible. Hence, the Hamming
distance of C(ϕu,α,d) is d.

The proof of Lemma 12 is based on a result from [9] in
the realm of the theory of skew polynomials. Indeed, for some
purposes, it is useful to understand the ring R as a factor ring
of a ring of skew polynomials. Let us derive such a description.

The skew derivation (σ, δ) leads to the construction of a non
commutative polynomial ring R = K[x;σ, δ], often called a
skew polynomial ring (see, e.g., [21]). The elements of R are
polynomials in an indeterminate x with coefficients from K
written on the left (that is, the monomials 1, x, x2, . . . form a
basis of R as a left vector space over K). The multiplication
of R is subject to the following rule:

xa = σ(a)x+ δ(a), (16)

for all a ∈ K.

Proposition 14. The map π : R→ R that sends
∑
i fix

i onto∑
i fiϕ

i
u is a surjective ring homomorphism whose kernel is

Rµ = µR, where

µ = xm +

m−1∑
i=0

µix
i

is a polynomial in R built from the coefficients of the minimal
equation of ϕu, see (14).

Hence, there is a K–linear isomorphism of rings R/Rµ ∼=
R.

Proof. Observe that π is clearly left K–linear and, from
Proposition 11, surjective. It is multiplicative since ϕu satisfies
(13). Its kernel is an ideal I of R which, as a left ideal,
is generated by the monic polynomial h ∈ R in I of least

degree, due to the left Euclidean division algorithm enjoyed
by R (see, e.g. [21]). Also, the degree of h is the dimension
of R/I ∼= R as a left K–vector space. By Proposition 11, this
dimension equals m. We see that µ fits these requirements, so
that h = µ, and I = Rµ. Finally, since I is an ideal, we get
that I = µR as well.

We may thus identify R with R/Rµ, and, therefore, its
elements with polynomials in R with degree smaller than m
(this identification makes correspond ϕu with x). This view
makes some concepts more natural, like the degree of an
element of R.

The coordinate isomorphism of left K–vector spaces

v : R → Km, (

m−1∑
i=0

fix
i 7→ (f0, f1, . . . , fm−1))

allows the transfer of elements and vector subspaces between
both K–vector spaces.

We are ready to consider our decoding algorithm. Let c ∈
C(ϕu,α,d) be a codeword that is transmitted through a noisy
channel, and let

y = (y0, y1, . . . , ym−1) ∈ Km

be the received word. We may decompose y = c+ e, where

e = (e0, e1, . . . , em−1) ∈ Km

is the error vector. By k1, . . . , kv ∈ {0, 1, . . . ,m − 1}
we denote the positions where the nonzero error values
ek1 , . . . , ekv ∈ K occur. We prove first that the latter can
be computed from y once the positions are known.

Proposition 15. If 0 ≤ i ≤ d− 2, then
m−1∑
j=0

yjϕ
i+j
u (α) =

v∑
j=1

ekjϕ
i+kj
u (α). (17)

Therefore, if v ≤ d − 1, then (ek1 , . . . , ekv ) is the unique
solution of the linear system of equations
m−1∑
j=0

yjϕ
i+j
u (α) =

v∑
j=1

ekjϕ
i+kj
u (α), (0 ≤ i ≤ v − 1).

(18)

Proof. The equations (17) hold because C(ϕu,α,d) is the left
kernel of the matrix H defined in (15). The linear system (18)
has a unique solution since the matrix

ϕk1u (α) ϕk1+1
u (α) · · · ϕk1+v−1

u (α)
ϕk2u (α) ϕk2+1

u (α) · · · ϕk2+v−1
u (α)

...
...

. . .
...

ϕkvu (α) ϕkv+1
u (α) · · · ϕkv+v−1

u (α)

 =

W (ϕk1u (α), . . . , ϕkvu (α))t

is invertible by Lemma 12.

Our aim is then to design an algorithm for computing the
positions k1, . . . , kv where the errors ek1 , . . . , ekv appear. We
assume in our exposition that e 6= 0.
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For every pair (i, k) of non-negative integers, set

Si,k =

v∑
j=1

ϕi+kju (α)ψk(ekj ), (19)

where
ψ(a) = σ−1(δ(a)− ua) (20)

for all a ∈ K.

Lemma 16. For all pairs (i, k) of non-negative integers, we
have

σ(Si,k+1) = δ(Si,k)− Si+1,k (21)

Moreover,

Si,0 =

m−1∑
j=0

yjϕ
i+j
u (α), (22)

for every i = 0, . . . , d − 2, and the values Si,k can be
computed recursively by means of (21) from the received word
y whenever i+ k ≤ d− 2.

Proof. Observe that

σ(aψ(b)) = δ(ab)− ϕu(a)b, (23)

for all a, b ∈ K. Indeed,

σ(aψ(b))
(20)
= σ(a)(δ(b)− ub)
(1)
= δ(ab)− δ(a)b− σ(a)ub

(11)
= δ(ab)− ϕu(a)b.

For every pair (i, k),

σ(Si,k+1)
(19)
=

∑v
j=1 σ(ϕ

i+kj
u (α)ψk+1(ekj ))

(23)
=

∑v
j=1 δ(ϕ

i+kj
u (α)ψk(ekj ))

−
∑v
j=1 ϕ

i+kj+1
u (α)ψk(ekj )

(19)
= δ(Si,k)− Si+1,k.

Finally, since K is commutative, (22) follows from (17).

Set T = {k1, . . . , kv}, and let AT be the submatrix of
A = W (α,ϕu(α), . . . , ϕm−1

u (α)) formed by the columns at
positions k1, . . . , kv , that is

AT =


ϕk1u (α) ϕk2u (α) · · · ϕkvu (α)
ϕk1+1
u (α) ϕk2+1

u (α) · · · ϕkv+1
u (α)

...
...

. . .
...

ϕk1+m−1
u (α) ϕk2+m−1

u (α) · · · ϕkv+m−1
u (α)

.
Proposition 17. Define, for every 1 ≤ r, the matrix

Er =


ek1 ψ(ek1) · · · ψr−1(ek1)
ek2 ψ(ek2) · · · ψr−1(ek2)

...
...

. . .
...

ekv ψ(ekv ) · · · ψr−1(ekv )

 .

and set
θ = max{r : rank Er = r}.

1) If V ⊆ Km is the left kernel of the matrix ATEθ, then
v−1(V ) = Rρ for some ρ ∈ R of degree θ.

2) If B is the matrix formed by the first θ+1 rows of ATEθ,
then we may choose ρ = ρ0 + ρ1x+ · · ·+ ρθx

θ, for any
nonzero vector (ρ0, ρ1, . . . , ρθ) in the left kernel of B.

Proof. (1) We will prove that the K–vector subspace I =
v−1(V ) of R is a left ideal. To do this, we need just to check
that xI ⊆ I . Given

∑m−1
i=0 aix

i ∈ R we get from (16), since
µ = 0 in R, that

x(

m−1∑
i=0

aix
i) =

m−1∑
i=0

(σ(ai−1) + δ(ai)− σ(am−1)µi)x
i, (24)

where we set a−1 = 0.
Suppose that (a0, . . . , am−2, am−1)ATEθ = 0. The maxi-

mality of θ ensures that the last column of Eθ+1 is a right
linear combination of the former θ columns. Hence,

(a0, . . . , am−2, am−1)ATEθ+1 = 0.

Observe that

ATEθ+1 =


S0,0 S0,1 · · · S0,θ

S1,0 S1,1 · · · S1,θ

...
...

. . .
...

Sm−1,0 Sm−1,1 · · · Sm−1,θ

 .

Therefore,
m−1∑
i=0

aiSi,k = 0, for all 0 ≤ k ≤ θ. (25)

For 0 ≤ k ≤ θ − 1 we have

∑m−1
i=0 (σ(ai−1) + δ(ai))Si,k

(1)
=
∑m−1
i=0 {σ(ai−1)Si,k

+δ(aiSi,k)− σ(ai)δ(Si,k)}
(25)
=
∑m−1
i=0 σ(ai−1)Si,k

−
∑m−1
i=0 σ(ai)δ(Si,k)

(21)
=
∑m−1
i=0 σ(ai−1)Si,k

−
∑m−1
i=0 σ(ai)σ(Si,k+1)

−
∑m−1
i=0 σ(ai)Si+1,k

=
∑m−1
i=0 σ(ai−1)Si,k

−σ(
∑m−1
i=0 aiSi,k+1)

−
∑m−1
i=0 σ(ai)Si+1,k

(25)
=
∑m−1
i=0 σ(ai−1)Si,k

−
∑m−1
i=0 σ(ai)Si+1,k

=−σ(am−1)Sm,k.

Since, by (14), ϕmu +
∑m−1
i=0 µiϕ

i
u = 0, we get

Sm,k =
∑v
j=1 ϕ

m+kj
u (α)ψk(ekj )

=
∑v
j=1[−

∑m−1
i=0 µiϕ

kj+i
u (α)]ψk(ekj )

= −
∑m−1
i=0 µi

∑v
j=1 ϕ

kj+i
u (α)ψk(ekj )

= −
∑m−1
i=0 µiSi,k.
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Then
∑m−1
i=0 (σ(ai−1) + δ(ai))Si,k =

∑m−1
i=0 σ(am−1)µiSi,k

and, therefore,

(b0, b1, . . . , bm−1)ATEθ = 0,

where bi = σ(ai−1)+δ(ai)−σ(am−1)µi for i = 0, . . . ,m−1.
We thus deduce from (24) that x(

∑m−1
i=0 aix

i) ∈ I when-
ever

∑m−1
i=0 aix

i ∈ I . Hence, I is a left ideal ofR and I = Rρ
for some nonzero polynomial ρ. As for its degree concerns,
we have

deg ρ = dimK
R
Rρ

= dimK
Km

V
= θ,

since ATEθ is full rank.
(2) We know from (1) that, if ρ = ρ0 + · · ·+ρθx

θ, then the
vector (ρ0, . . . , ρθ, 0, . . . , 0) ∈ Km belongs to the left kernel
of ATEθ. Now, the statement should be clear.

Next, we will state the result that will allow the location of
the error positions. We need to construct a matrix from the
polynomial ρ given in Proposition 17.

For j = 0, . . . ,m− 1 and i = 0, . . .m− θ − 1, set

l0,j =

{
ρj if j = 0, . . . , θ

0 if j = θ + 1, . . . ,m− 1
, li,−1 = 0.

We may then construct a matrix

L =


l0,0 l0,1 · · · l0,m−1

l1,0 l1,1 · · · l1,m−1

...
...

. . .
...

lm−θ−1,0 lm−θ−1,1 · · · lm−θ−1,m−1

 (26)

by defining its entries recursively as

li+1,j = σ(li,j−1) + δ(li,j).

For i = 0, . . . ,m−1, let εi denote the vector of Km whose
i–th component is equal to 1, and every other component is
0. By Row(LA) we denote the row space of the matrix LA.

Theorem 18. If T = {k1, . . . , kv} is the set of error positions,
then

T = {k ∈ {0, . . . ,m− 1} : εk /∈ Row(LA)}.

Proof. Let us first prove that the rows of L form a K–basis
of V = ker(·ATEθ), the left kernel of ATEθ. According to
Proposition 17, v(Rρ) = V , where ρ =

∑θ
i=0 ρix

i.
Observe that ρ, xρ, . . . , xm−1−θρ have different degrees

θ, . . . ,m− 1, so they are K–linearly independent in R. Since
the dimension of Rρ is m− θ, we get that they form a basis
and, hence, the rows of

Mρ =


v(ρ)
v(xρ)

...
v(xm−1−θρ)


give a basis of v(Rρ). Note that the first row of Mρ is v(ρ).
Indeed, a straightforward computation based on (1) leads to
admit that the j-th row of L is, precisely, v(xjρ), for j =
0, . . . ,m− 1− θ. Thus, L = Mρ.

Let I be denote the identity matrix of size m × m, and
denote by IT the submatrix of I formed by the columns
at positions k1, . . . , kv . Note that AT = AIT . This implies
that Row(LA) = ker(·ITEθ). Indeed, we have proved that
Row(L) = ker(·ATEθ), so that

Row(LA) = {x |xA−1 ∈ Row(L)}
= {x |xA−1 ∈ ker(·ATEθ)}
= ker(·ITEθ).

Let i ∈ {0, . . . ,m − 1}. If i ∈ T , then εiITEθ is the i-th
row of Eθ, while if i /∈ T , then εiITEθ = 0. Since every row
of Eθ is non zero, we get that εi ∈ Row(LA) if and only if
i /∈ T .

In our decoding algorithm, we need to compute θ from the
received word y. To this end, set

τ = bd− 1

2
c,

the integer part of (d− 1)/2.

Lemma 19. For every r ≥ 1, define the matrix

Sr =


S0,0 S0,1 · · · S0,r−1

S1,0 S1,1 · · · S1,r−1

...
...

. . .
...

Sτ,0 Sτ,1 · · · Sτ,r−1

 .

If v ≤ τ , then θ = max{r : rank Sr = r}.

Proof. Observe that Sr = MEr, where

M =


ϕk1u (α) ϕk2u (α) · · · ϕkvu (α)
ϕk1+1
u (α) ϕk2+1

u (α) · · · ϕkv+1
u (α)

...
...

. . .
...

ϕk1+τu (α) ϕk2+τu (α) · · · ϕkv+τu (α)

 .

Since v ≤ τ , the rank of M is v due to Lemma 12. We thus
get that rk Sr = rk Er for all r ≥ 1, which gives the desired
determination of θ.

Next, we derive the proofs of Proposition 3 and Theorem
4.

Proof of Proposition 3. Lemma 19 gives that, whenever v ≤
τ ,

max{r : rank Sr = r} = θ = max{r : rank Er = r}.

By Lemma 16, the matrix B consists of the first θ+1 rows of
ATEθ, as in Proposition 17.(2). Now, B has rank θ, so that its
left kernel is of dimension 1 as a K–vector space. Proposition
2 guarantees that (ρ0, ρ1, . . . , ρθ) belongs to this kernel and
ρθ 6= 0.

Proof of Theorem 4. By Lemma 19, since we assume that
v ≤ τ , we get that

max{r : rank Sr = r} = θ = max{r : rank Er = r}.

Thus, Theorem 18 is of application to obtain the first part of
Theorem 4. The second statement is given by Proposition 15.

We finally state and prove the main result in this paper.
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Theorem 20. Assume K to be a commutative field and v ≤
τ = b(d − 1)/2c. Then Algorithm 1 correctly computes the
error vector.

Proof. The output of Line 1 is e = 0 since C(ϕu,α,d) is the
kernel of the matrix H in Definition 2. Line 2 runs whenever
e 6= 0. In such a case, since we are assuming the the number of
errors is v ≤ τ , it follows from Proposition 15 that Si,0 6= 0 for
at least one 0 ≤ i ≤ τ , as the linear system (18) has a unique
solution. This is to mean that S1 6= 0 and, henceforth, always
under the condition v ≤ τ , the number θ computed in Line
2 equals max{r : rank Sr = r}. Proposition 3 guarantees
the existence of a nonzero vector ρ to be computed in Line
3, which serves as the initial datum to the calculation of the
matrix L in Line 4. Finally, Theorem 4 assures that the error
positions and values computed in Lines 5 and 6 lead to a
correct output in Line 7.

IV. SKEW-DIFFERENTIAL CODES AS (σ, δ)–CODES.

In Section III, the ring R was proved (Proposition 14)
to be isomorphic to a factor ring of the skew-polynomial
ring R = K[x;σ, δ]. Indeed, as we will see later, the codes
C(ϕu,α,d) are left ideals of R and, henceforth, they constitute
a class of (σ, δ)–codes in the sense of [6], which enjoys
an efficient algebraic decoding algorithm (see Algorithm 1).
In this section, our aim is to describe precisely how the
codes C(ϕu,α,d) look like from the perspective of the ring R,
although this view, we think, is less practical, for our purposes,
than our choice in the previous sections, which are independent
from the forthcoming material.

Given u ∈ K we may consider the principal left ideal R(x−
u) of R generated by x− u ∈ R. Since K is a subring of R
in the obvious way, the factor left R–module R/R(x−u) is a
left K–vector space of dimension 1. An explicit isomorphism

R/R(x− u) ∼= K (27)

sends the equivalence class of g(x) ∈ R onto its right
evaluation g[u] ∈ K, defined as the remainder of the left
Euclidean division

g(x) = q(x)(x− u) + g[u], (28)

where q(x) ∈ R is a suitable polynomial.
The left R–module structure of R/R(x− u) is transferred

to K via the isomorphism (27), and it leads to a ring
homomorphism

λ : R −→ End(K), (29)

where End(K) is still denote the ring of all additive endo-
morphisms of K. Recall that λ sends f ∈ R onto the map
defined by left multiplication by f according to the left R–
module structure of K. A straightforward computation shows
that λ sends f =

∑
i fix

i onto
∑
i fiϕ

i
u, so that it acts as

the map π from Proposition 14. Henceforth, the kernel of λ
equals Rµ = µR, and λ induces the isomorphism R/Rµ ∼= R
from Proposition 14. We are assuming, as in Section III, that
µ 6= 0 and its degree is m. Recall that a K–basis of R is
{1, x, . . . , xm−1} where we are identifying each element of R
with its unique representative in R of degree smaller than m.

This natural basis of R leads to the corresponding coordinate
isomorphism

v : R → Km.

Definition 21. A K–linear code C ⊆ Km is said to be a
(σ, δ, u)–code if v−1(C) is a left ideal of R. These codes will
be referred to as skew-differential codes.

Remark 22. In [6], a module (σ, δ)–code is defined as sub-
module of a left module of the form R/Rf , for some nonzero
skew polynomial f ∈ R. Indeed, their definition is given for
K a finite field but, obviously, it makes sense for a general
field. From this perspective, the (σ, δ, u)–codes are instances
of module (σ, δ)–codes, when one sets f = µ, the minimal
polynomial of ϕu over Kϕu (and, hence, R/Rf = R).

Every (σ, δ, u)–code admits a nice presentation in terms of
linear skew polynomials. Recall that, for any c ∈ K∗, we have
the conjugate cu = σ(c)uc−1 + δ(c)c−1.

Proposition 23. Every (σ, δ, u)–code is of the form

C = v(Rg),

where
g = [x− c1u, . . . , x− cku]`, (30)

the least common left multiple in R of x − c1u, . . . , x − cku,
for some c1, . . . , ck ∈ K∗.

Proof. Observe that the left R–module R/R(x−u) is simple
because it is of dimension 1 as a left K–vector space.
By Jacoboson-Bourbaki’s Theorem (see [33, Theorem 4.1]),
λ gives a ring isomorphism R ∼= End(KKϕu ), so R is
isomorphic to a full matrix ring with coefficients in Kϕu . We
know thus that every simple left R–module is isomorphic to
R/R(x−u). This entails (see, e.g., [13, pp. 40-41]) that every
maximal left ideal of R is of the form R(x−cu) for a suitable
non-zero c ∈ K. Since every left ideal of R is the intersection
of finitely many maximal left ideals, we get the description
(30).

Our next aim is to discuss when the representation (30)
is irredundant, which will also lead to the computation of
a parity-check matrix of the code C. We will use that the
non-commutative evaluation defined in (28) obeys some rules,
which are to be recalled.

Following [22] define by recursion, for a ∈ K:

N0(a) = 1,

Nn+1(a) = σ(Nn(a))a+ δ(Nn(a)).

If g(x) =
∑
i gix

i ∈ K[x;σ, δ] then, by [22, Lemma 2.4],

g[a] =
∑
i

giNi(a). (31)

Following [9], define the Vandermonde matrix

Vn(c1, . . . , ck)=


1 1 · · · 1
c1 c2 · · · ck

N2(c1) N2(c2) · · · N2(ck)
...

...
. . .

...
Nn−1(c1) Nn−1(c2) · · · Nn−1(ck)


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and the Wronskian matrix

Wu
n (c1, . . . , ck) =

c1 c2 · · · ck
ϕu(c1) ϕu(c2) · · · ϕu(ck)

...
...

. . .
...

ϕn−1
u (c1) ϕn−1

u (c2) · · · ϕn−1
u (ck)


for each n ≥ 1. Then, by [9, Proposition 4.4],

Vn(c1u, . . . , cku)diag(c1, .., ck) = Wu
n (c1, . . . , ck), (32)

where diag(c1, . . . , ck) denotes the diagonal matrix built from
the list c1, . . . , ck.

Proposition 24. Let {c1, . . . , ck} ⊆ K∗ be a linearly inde-
pendent set over Kϕu , with k ≤ m− 1, and set

g = [x− c1u, . . . , x− cku]`.

Then deg(g) = k, g is a right divisor of µ, and v(Rg) is the
left kernel of the Wronskian matrix

Wu
m(c1, . . . , ck).

In other words, C = v(Rg) is a K–linear skew-
differential code of dimension m− k with parity-check matrix
Wu
m(c1, . . . , ck).

Proof. By [9, Theorem 5.3], deg(g) = k. On the other hand,
f =

∑m−1
k=0 fkx

k ∈ Rg if and only if x− cju right divides f
for all j = 1, . . . ,m. This is equivalent, by (28) and (31), to
the condition

(f0, . . . , fm−1)Vm(c1u, ..., cku) = 0.

By (32), this is equivalent to the condition

(f0, . . . , fm−1)Wu
m(c1, . . . , ck) = 0

as required.

We are now ready to locate our RS skew-differential codes
within the class of all (σ, δ, u)–codes.

Corollary 25. The code C(ϕu,α,d) is a (σ, δ, u)–code given by
C(ϕu,α,d) = v(Rg), where

g = [x− αu, x− ϕu(α)u, . . . , x− ϕd−2
u (α)u]`.

Remark 26. The code C(ϕu,α,d) was defined by means of its
parity-check matrix H (see Definition 2). Of course, in order to
specify the encoding of messages, one may use the standard
method for linear codes of constructing a generator matrix
from H , as done in Subsections II-A and II-B.

An alternative is to use the arithmetic of the ring R. Indeed,
one may compute the skew polynomial g from Corollary 25
and use it as an encoder similarly to the commutative cyclic
case. As for the computation of g concerns, one may use the
non-commutative extended Euclidean algorithm (see, e.g. [7,
Ch. I, Theorem 4.33]). For instance, in the example described
in Subsection II-A, the set of conjugates becomes

{αu,ϕu(α) u,ϕ
2
u(α) u,ϕ

3
u(α) u} = {a137, a212, a141, a225},

so that a generator polynomial of this code is

g =
[
x− a137, x− a212, x− a141, x− a225

]
`

=

x4 + a187x3 + a99x2 + a98x+ a218.

Remark 27. Module (σ, δ)–codes over a finite field F gener-
ated be a polynomial of the form [x − α1, . . . , x − αn]` ∈
F[x;σ, δ] have been proved to be MDS in [6, Theorem 5]
whenever α1, . . . , αn ∈ F are suitable powers of an element
in the algebraic closure of F subject to additional conditions
called “Hamming 1” and “Hamming 2”. These codes are dif-
ferent, in the case K = F, from that of Corollary 25, which are
known to be MDS by Theorem 13. Also, a decoding algorithm,
different from Algorithm 1 was designed in [6], under the
condition “Hamming 1” which, in particular, requires δ = 0.

Next, we analyze how skew RS codes from [17] and RS
differential convolutional codes [18] are particular examples
of RS skew-differential codes. In this way, Algorithm 1 both
extends to a considerable broader class of codes and, also,
simplifies the decoding algorithms designed in [17] and [18].

Example 28. Let σ be an automorphism of K of finite order
m, and choose a cyclic vector α of σ as a vector space over
Kσ . Set β = α−1σ(α) and

g = [x− β, x− σ(β), . . . , x− σd−2(β)]`,

the left least common multiple being computed in K[x;σ].
Skew RS codes from [17] are defined as v(Rg), where

R = K[x;σ]/〈xm − 1〉.

Since 1α = β, and ϕ1 = σ we see, after Corollary 25, that

v(Rg) = C(σ,α,d).

That is, for u = 1 and δ = 0, we obtain the skew RS
codes from [17]. Thus, we may apply the decoding algorithm
presented here, which is simpler than that of [17].

Example 29. Let δ be any F–linear derivation of the the field
F(t) of rational functions in the variable t with coefficients
in a finite field F. If p is the characteristic of F, then the
degree of F(t) over the field of constants F(t)δ is p, and
the minimal polynomial of δ becomes µ = xp − γx, where
γ = δp(t)/δ(t) (see [18] for details). For any c ∈ F(t), the
logarithmic derivative is defined as L(c) = c−1δ(c). Choose
a cyclic vector α for the F(t)δ–linear map δ and set

g = [x−L(α), x−L(δ(α)), . . . , x−L(δd−2(α))]` ∈ F(t)[x; δ].

In [18], the differential convolutional RS codes are defined as
v(Rg), where, this time,

R = F(t)[x; δ]/〈xp − γx〉.

Since 0α = L(α) and ϕ0 = δ, we deduce from Corollary 25
that

v(Rg) = C(δ,α,d).

In other words, we obtain the differential convolutional RS
codes from [18] by setting σ = idF(t) and u = 0, to which
we also may apply the decoding algorithm presented in this
paper. Again, it results simpler than that from [18].
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Our last remark in this section deals with the relationship,
kindly pointed out by one of the referees, between the codes to
which our decoding algorithm applies to, and those introduced
in [26].
Remark 30. Reed-Solomon skew-differential codes are also
related to the class of linearized Reed-Solomon codes defined
in [26, Definition 31] whenever the base ring is a field. Con-
cretely, the dual of a Reed-Solomon skew-differential code is,
as a vector subspace of Km, a linearized Reed-Solomon code.
Observe that the operator ϕu is exactly the operator described
in [26, Definition 20], so that, the matrix H described in
Definition 2 is the transpose of the generator matrix given
in [26, Definition 31] by setting ` = 1, n1 = m, a(1) = u

and β
(1)
i = ϕi−1

u (α) for i = 1, . . . ,m. Observe also that the
condition of {β(1)

1 , . . . , β
(1)
m } being linearly independent over

the centralizer [22] is equivalent to the matrix A in Proposition
1 being invertible.

A decoding algorithm for linearized Reed-Solomon codes
is described in [3]. It works for the skew metric as defined in
[26], which is in general different from the Hamming metric.
Another decoding algorithm for these codes, for a sum-rank
metric, is presented in [8] in the case δ = 0. Linearized Goppa
codes are then introduced and interpreted as duals, with respect
to a suitable bilinear form, to linearized RS codes. One should
not expect that some of them become RS skew-differential
codes in our sense, as the duality stated in this context is not
the usual.

Fast decoding algorithms for linearized RS codes with
coefficients in a finite field appeared recently in [27] and [2].

APPENDIX

A. Computation of the cyclic vector.

Let us briefly discuss why a randomized calculus, as
proposed in Remark 9, of the cyclic vector α for the
Kϕu–linear map ϕu : K → K is a reasonable method.
First, recall that α ∈ K is such a cyclic vector whenever
{α,ϕu(α), . . . , ϕm−1

u (α)} is a Kϕu–basis of K. Equivalently,
α is a generator of K as a module over the commutative poly-
nomial ring Kϕu [X], where the action of the indeterminate X
on K is given by Xb = ϕu(b) for all b ∈ K.

We know that K is already a cyclic Kϕu [X]–module by
Proposition 11 and, what is more, K ∼= Kϕu [X]/〈µ〉 as
modules over Kϕu [X], where µ is the minimal polynomial of
ϕu as a Kϕu–linear map. Henceforth, cyclic vectors for ϕu
are in bijective correspondence with polynomials in Kϕu [X]
of degree up to m − 1 which are coprime with µ. We see,
thus, that, if K is not finite, then almost every element in K
becomes a cyclic vector for a fixed ϕu.

For finite fields, there is an explicit formula expressing the
number of polynomials with degree smaller than that of a given
polynomial and coprime with it [23, Lemma 3.69]. Setting
in our case Kϕu = Fq , when K is finite, and n1, . . . , nr
the degrees of the distinct irreducible factors appearing in the
canonical factorization of the minimal polynomial µ ∈ Fq[X],
we obtain that the probability for a given α ∈ K to be a cyclic
vector is

(1− q−n1) · · · (1− q−nr ).

Of course, there also exists the possibility of computing a
cyclic vector by means of the classical algorithm based upon
the calculus, by elementary row and column transformations,
of a diagonal matrix equivalent to the characteristic matrix of
ϕu with respect to a given basis (see, e.g. [20, pp. 195–198]).
This deterministic method, in contrast with our preferred
randomized method, requires the computation of Kϕu and of
a basis of K as a vector space over this subfield in order to
get the matrix with coefficients in Kϕu representing ϕu.

B. Complexity calculation.

We state here some guidelines about the time complexity
of Algorithm 1. In general, since we work over an arbitrary
field, we calculate it with respect to the number of operations
(additions, multiplications, applications of σ and δ) on the base
field. Step 1 is simply obtained by the product yH , where
H is the parity-check matrix in Definition 2, so it belongs
to O(md). Step 2 requires to compute the matrix Sτ in the
worst case, which can be done in O(τ2), and the calculation
of the rank of Sr for 1 ≤ r ≤ τ . The traditional approach
to compute the rank is by Gaussian elimination, which can be
done in O(τω), where ω is the matrix multiplication exponent.
Since matrices are relatively small, we may consider the
classical algorithm and set ω = 3. So that Step 2 can be
performed in O(τ3). Step 3 can be done by the execution of
an algorithm that outputs the row reduced echelon form, whose
execution time is in O(τ3) by using the standard algorithm.
Matrix L in Step 4 can be computed in O(m(m − τ))
operations. Assuming that A is pre-calculated, the product LA
is in O(m2(m − τ)) with the standard matrix multiplication
algorithm. An efficient way of dealing with Step 5 consists
of computing the row reduced echelon form LArref of LA,
and check which unitary vectors are not rows of LArref ,
so the runtime is in O(m2(m − τ)). Finally, in Step 6 we
need to solve a linear system whose coefficient matrix has
order τ , so this step can be done in O(τ3) operations. The
complexity is then dominated by the matrix product and the
row reduced echelon form computations, and Algorithm 1 can
be executed in O(m3 + τ3) operations on the base field. That
is to say, since τ is bm−k+1

2 c, where k is the dimension of the
code, Algorithm 1 is in O(m3). Obviously, this bound can be
improved if we use faster algorithms for matrix multiplication
and row reduced echelon form computation. Nevertheless, a
detailed study of this issue is out the scope of the paper.
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