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Abstract

We study the classical planar spin-orbit model from an analytical point of view, with
no requirements of smallness of the orbital eccentricity and taking into account dissipative
forces. The problem depends on e, the eccentricity of the orbit, and on Λ, the oblateness
of the spinning body. Our main concern is the capture into the 1:1 resonance for points
of the (e,Λ)-plane. First, we find a region of uniqueness of the 1:1 resonance, which is the
continuation from the solution for e = 0. Then, a subregion of linear stability is estimated.
We also study a separatrix close to the line e = e∗ ≈ 0.682, beyond which the resonance is
unstable. Finally, we study the dissipative case by estimating regions of asymptotic stability
of the solution (capture into resonance) depending on the strength of the dissipation applied.

Keywords: Spin-orbit problem, Forced pendulum, Dissipative systems, Synchronous res-
onance, Capture into resonance, Asymptotic stability

1 Introduction

Consider a satellite whose center of mass is moving around a planet in a Keplerian elliptical
orbit of eccentricity e. We are interested in the spin of the satellite around its center of mass,
so, we will identify the satellite with a tridimensional object and the planet with a point mass.
Let the satellite be triaxial, with principal moments of inertia A < B < C. Assume that the
spin axis of the satellite is perpendicular to the orbital plane and coincides with the smallest
of its physical axes, which is associated to C. Then, the parameter ε = 3

2
B−A
C measures the

oblateness of the satellite in the orbital plane.
Let us identify the orbital plane with the complex plane C, consider the planet fixed in

the 0 and let the position of the center of mass of the satellite, in the exponential notation,
be P = r exp[if ] ∈ C, where r > 0 and f are real functions of the time. Note that this point
describes an ellipse with focus at the origin, so, the polar coordinates r and f vary periodically
with time. Let us take convenient units so that the period is 2π and the semi-major axis of
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Figure 1: The spin-orbit problem

the ellipse is 1. In the usual terminology, f is called true anomaly and the time t is the mean
anomaly. There is a third useful angle u, the eccentric anomaly, which is defined by the famous
Kepler’s equation

t = u− e sinu, (1)

and which let us determine the Keplerian ellipse simply by

r = 1− e cosu. (2)

We can write the position of the planet also in terms of the eccentric anomaly as

r exp[if ] = cosu− e+ i
√

1− e2 sinu. (3)

Note that for t = 0 we assumed that f = u = 0, and consequently, f = u = π when t = π. The
expressions eqs. (2) and (3) relate the true and the eccentric anomalies. Moreover, Equations (1)
to (3) define u = u(t, e), r = r(t, e) and f = f(t, e) as analytic functions in both entries.

Let θ be the angle that determines the direction of the body’s axis of the major elongation
with respect to the major axis of the ellipse. See Figure 1. The motion of the satellite is
modeled by the following biparametric equation

θ̈ +
ε

r(t, e)3
sin[2(θ − f(t, e))] = Td(t, θ̇), e ∈ [0, 1), ε > 0, (4)

where Td is a dissipative torque, which has different forms depending on the model. One of the
most popular is the MacDonald torque

Td(t, θ̇) = − CM
r(t, e)6

sin[2∆t(θ̇ − ḟ(t, e))] ≈ − δ

r(t, e)6
(θ̇ − ḟ(t, e)), (5)

where 1� δ = 2CM∆t ≥ 0, and CM is a constant depending on the parameters of the bodies.
This formula has been extensively used, taking as reference [15] or [21], for example. According
to [13], to obtain (5), the dissipation is modeled by assuming that there is a time delay between
the deforming disturbance and the actual deformation of the body. That delay is a small fixed
amount ∆t (time lag), which leads to an angular lag of (ḟ(t, e)− θ̇)∆t (geometric lag).

This is the so-called spin-orbit problem, it has been widely studied, see for example [7], [3]
and [22] for the conservative case, or [15] and [9] for the dissipative case.
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We are going to deal with the capture into the 1:1 resonance of equation (4), i.e., solutions
that satisfy θ(t + 2π) = θ(t) + 2π. It is also known as synchronous resonance. This is the
resonance of most important practical interest because all the tidally evolved satellites in the
Solar System are trapped on it. For us it is indeed a very familiar phenomenon: from the Earth
we always look at the same side of the Moon. Mercury is the only body in the Solar System
that is captured in a different spin-orbit resonance, the 3:2, for which θ(t+4π) = θ(t)+6π. This
is also a very interesting resonance, see for example [4] or [8]. It is accepted that the capture
into the resonance is an effect driven by the dissipation. We will approach this phenomenon
from an analytical point of view, by looking for conditions resulting in the existence of an
asymptotically stable synchronous resonance.

Let us take the change of variable Θ = 2(θ−f) and a more general dissipation proportional
to (θ̇ − ḟ), such that equation (4) turns into

Θ̈ + δD(t, e)Θ̇ +
Λ

r(t, e)3
sin Θ = −2f̈(t, e), e ∈ [0, 1), Λ = 2ε� δ ≥ 0, (6)

where D(t, e) is a positive analytic function, which is 2π-periodic in t. Note that, for the
MacDonald torque, D(t, e) = r(t, e)−6. Equation (6) models a damped and forced pendulum of
variable length. Since f(t+ 2π, e) = f(t, e) + 2π, then, 1 : 1 resonances correspond to solutions
of (6) satisfying Θ(t+ 2π) = Θ(t).

We will start discussing, in Section 2, the linear stability of a particular 2π-periodic solution
for the non-dissipative problem

Θ̈ +
Λ

r(t, e)3
sin Θ = −2f̈(t, e), e ∈ [0, 1), Λ > 0. (7)

This solution is the analytic continuation of the trivial solution for e = 0. This will lead us
to a region of linear stability in the (e,Λ)-plane. Section 3 will be devoted to prove the linear
instability of the solution of the previous section for high eccentricities, no matter how small
Λ is considered. Our main concern about linear stability is because it will allow us to find an
asymptotically stable solution for the dissipative case (6) for δ > 0, which is a continuation of
the solution considered in previous sections. This will be proved in Section 4, provided that δ
is smaller than a certain quantifiable value δ̄. We will compute such value for a few systems,
including the Earth-Moon system, using the MacDonald torque. Finally, in Section 5, we will
present a discussion, putting our results in context with other previous works.

2 Linear stability of the synchronous resonance

The main result of this section is at the end of it, in Proposition 2. It determines a region
of linear stability written in terms of the functions Λ1(e), defined in the first subsection, and
Λ2(e), defined in the second one.

2.1 Uniqueness of the odd 2π-periodic solution

Note that equation (7) is invariant under the change (t,Θ) → (−t,−Θ), since f(−t, e) =
−f(t, e) and r(−t, e) = r(t, e). Then, if Θ(t) is a solution of (7), so it is −Θ(−t). On the other
hand, for e = 0, the equation (7) becomes the free pendulum equation Θ̈ + Λ sin Θ = 0. In this
case we know that for Λ ≤ 1, the only 2π-periodic solution are the equilibria Θ ≡ 0 and Θ ≡ π.
Since the trivial solution is the stable one, it is natural to look for the 2π-periodic continuation
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of such solution for e 6= 0 in the family of the odd solutions of (7), which is equivalent to solve
the Dirichlet problem  Θ̈ + Λ

r(t,e)3 sin Θ = −2f̈(t, e),

Θ(0) = Θ(π) = 0.
(8)

It is well known from nonlinear analysis that this problem has at least one solution because
equation (7) can be written as

Θ̈ = F (t,Θ), (9)

with F (t,Θ) bounded. Making explicit1 the dependence with the parameters we can write

F (t,Θ; e,Λ) = − Λ

r(t, e)3
sin Θ− 2f̈(t, e). (10)

We are going to present a simple proof of the existence of solution, based on the shooting
method. This will be a convenient way to introduce some notation.

Let Θ(t) = ϑ(t, v) be the solution of (9) satisfying initial conditions Θ(0) = 0, Θ̇(0) =
v ∈ R. Solutions of the problem (8) are in correspondence with the solutions of the equation
ϑ(π, v) = 0. As solution of (9), we know that ϑ satisfies the following integral equation

ϑ(t, v) = vt+

∫ t

0
(t− s)F (s, ϑ(s, v))ds.

Moreover, since there exists a positive number M ≥ |F (t,Θ)|, then

|ϑ(t, v)− vt| ≤M t2

2
,

for each t ∈ R. Using this estimate for t = π, we conclude that

lim
v→±∞

ϑ(π, v) = ±∞.

In consequence, the equation ϑ(π, v) = 0 must have at least one solution.
We know now that the Dirichlet problem (8) has a solution, however, it is not necessarily

unique. For instance, in the circular case (e = 0), the number of solutions of (8) becomes
arbitrarily large as Λ tends to infinity. We would like to determine a region of parameters
(e,Λ) where there is uniqueness for the problem (8).

The shooting method is also useful to prove uniqueness by proving that ϑ(π, v) is monotone,
which is equivalent to say that the partial derivative ∂vϑ(π, v) never vanishes. From the theorem
of differentiability with respect to initial conditions, we know that y(t) = ∂vϑ(t, v) is the solution
of the variational equation

ÿ +

(
Λ

r(t, e)3
cos[ϑ(t, v; e,Λ)]

)
y = 0, (11)

with initial conditions y(0) = 0, ẏ(0) = 1. Note that in (11) we have made explicit the depen-
dence with the parameters of ϑ. We conclude that the problem (8) has a unique solution as
soon as the equation (11) has the trivial solution y(t) ≡ 0 as the unique solution satisfying the
Dirichlet conditions y(0) = y(π) = 0. This condition must be checked for every v ∈ R.

1Sometimes we will make explicit the dependence on the parameters of the problem in this way, for example,
a solution Θ(t) of (9) would be referred as Θ(t; e,Λ)
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To do this we will employ the Sobolev inequality

Kl(p)||ξ||2p ≤ ||ξ̇||22, (12)

where ξ is any function in the space H1
0 [0, l], || · ||p is the Lp-norm, which is defined by

||ξ||p =


(∫ l

0 |ξ(t)|
pdt
)1/p

, if 1 ≤ p <∞,

ess sup
t∈[0,l]

|ξ(t)|, if p =∞,

and the constant Kl(p) is optimal for (12) by definition,

Kl(p) = inf
ξ∈H1

0 [0,l]\{0}

||ξ̇||22
||ξ||2p

,

see [24], [6]. This constant has an explicit expression given in the Appendix A, with which we
can check that Kl(p) is continuous for all p ∈ [1,∞].

In order to prove the following lemma let us also recall the Hölder’s inequality for ξ ∈ Lp[0, l]
and χ ∈ Lq[0, l], with 1/p+ 1/q = 1,

||ξ · χ||1 ≤ ||ξ||p||χ||q. (13)

Lemma 1 Let a ∈ C[0, l] be a function such that its positive part

a+(t) = max{0, a(t)},

satisfies

||a+||α < Kl

(
2α

α− 1

)
, (14)

with α ∈ [1,∞], then, the unique solution of the Dirichlet problem ÿ + a(t)y = 0,

y(0) = y(l) = 0,
(15)

is the trivial solution.

This Lemma is a particular case of Corollary 2.2 in [6], in its Dirichlet version (Section 2.3).
As we see in the Remark 2.1 and in Section 2.3 of [6], we do not need to impose the condition∫ l

0 a(t)dt > 0, since our problem is of a type that they call nonresonant.
Proof. We proceed by contradiction. Multiply the equation in (15) by y(t) 6≡ 0 and

integrate by parts, ∫ l

0
ẏ(t)2dt =

∫ l

0
a(t)y(t)2dt ≤

∫ l

0
a+(t)y(t)2dt, (16)

i.e.
||ẏ||22 ≤ ||a+ y2||1,

from (13) we get
||ẏ||22 ≤ ||a+||p||y2||q,
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Figure 2: The functions e 7→ Λ0(e, α) for different values of α.

for any numbers such that 1 ≤ p, q ≤ ∞ satisfying 1/p + 1/q = 1, additionally, from (12) we
get

Kl(β)||y||2β ≤ ||a+||p||y2||q,

for any number such that 1 ≤ β ≤ ∞. Let us take q = β/2 in the last inequality and assume
that y(t) 6≡ 0, consequently

Kl(β) ≤ ||a+|| β
β−2

,

where we have used that ||y||2β = ||y2||β/2. The last inequality contradicts the hypothesis (14).
Then, it must be satisfied that y(t) ≡ 0.

The previous Lemma can be applied to equation (11) in the interval [0, π] for each α ∈ [1,∞].
To do this we define the following function

Λ0(e, α) =
Kπ( 2α

α−1)

||r(·, e)−3||α
, (17)

which has an explicit expression in terms of the hypergeometric function and the Γ function,
and, it is continuous in both of its variables (see the Appendix A). The graphs of Λ0(·, α), for
some values of α, are plotted in Figure 2.

Now we are able to define the function

Λ1(e) = max
α∈[1,∞]

Λ0(e, α), (18)

which leads us to the following Proposition. See some properties of Λ1(e) in Lemma 7, Ap-
pendix A.

Proposition 1 Assume that e ∈ (0, 1] and 0 ≤ Λ < Λ1(e). Then, there exists a unique solution
of the Dirichlet problem (8), denoted by Θ∗(t; e,Λ). The function

(t, e,Λ) ∈ [0, π]× [0, 1)× [0,Λ1(e)) 7→ Θ∗(t; e,Λ),

is analytic in the real sense.

Proof. The previous discussions lead directly to the existence and uniqueness of the solu-
tion. To prove the analytic character of it, we observe that, in terms of the previous notation,
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Figure 3: Stability diagram of Θ∗(t; e,Λ) computed numerically: the gray regions are linearly
unstable. The lines pattern indicates that for high eccentricity e ≥ 0.9 we did not compute the
linear stability due to the closeness to the singularity. The yellow region is the stable region
by a Lyapunov-type criterion.

the solution corresponds to Θ∗(t; e,Λ) = ϑ(t, v(e,Λ); e,Λ), where v = v(e,Λ) is the unique
solution of

ϑ(π, v; e,Λ) = 0.

Now we can apply the implicit function theorem, in its real analytic version (Theorem 2.3.5
in [16]), because the solution ϑ is analytic in all the entries due to the analytic character of the
equation (7). Also, the derivative ∂vϑ(π, v; e,Λ) does not vanish as long as v ∈ R, e ∈ [0, 1) and
0 ≤ Λ < Λ1(e), due to Lemma 1. These considerations lead easily to the proof of the claim.

Remark 1 Being more precise, in terms of complex analysis, the function Θ∗(t; e,Λ) has a
holomorphic extension to some open subset of C3 containing [0, π]× [0, 1)× [0,Λ1(e)).

Remark 2 Note that there are two special cases for which Θ∗ can be computed

Θ∗(t; e, 0) = 2(t− f(t, e)), Θ∗(t; 0,Λ) = 0. (19)

Now we are interested in the stability properties of the solution Θ∗(t; e,Λ), which should be
seen as 2π-periodic and odd from now on. In the following we will find a region of parameters
where the linearized equation of (7) at Θ∗, say,

ÿ +

(
Λ

r(t, e)3
cos[Θ∗(t; e,Λ)]

)
y = 0, (20)

is stable (linear stability). See Figure 3.
For this purpose we are going to apply Theorem 1 from [26], which is a generalization of the

classical Lyapunov criterion for the stability of a Hill’s equation using Lα norms. According to
it, given a Hill’s equation

ÿ + a(t)y = 0, a(t+ T ) = a(t),

with a ∈ Lα[0, T ], the equation is stable if∫ T

0
a(t)dt > 0 and ||a+||α < KT

(
2α

α− 1

)
. (21)
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See also a similar result by Borg in [18], Section 5.2.
It is important to observe that in our current situation we want to consider T = 2π, then,

we have to do the computations in the interval [0, 2π], instead of [0, π], as we did so far. We
know that the following relations hold

K2l

(
2α

α− 1

)
=

2
1
α

4
Kl

(
2α

α− 1

)
,

∫ 2π

0

dt

r(t, e)3α
= 2

∫ π

0

dt

r(t, e)3α
. (22)

The first identity comes from the definition of Kl(p) in (48). In consequence, the second
inequality in (21) is satisfied for equation (20) if 0 < Λ < 1

4Λ1(e). We rule out the case Λ = 0
because it does not satisfy the second inequality.

2.2 Upper and lower solutions

We see from Figure 3 that the condition 0 < Λ < 1
4Λ1(e) is not sufficient to obtain stability.

We are going to define another function Λ2(e), which let us guarantee that the first inequality
in (21) is satisfied for equation (20). Let us impose that cos[Θ∗(t; e,Λ)] > 0, or, equivalently,

|Θ∗(t; e,Λ)| < π

2
, t ∈ [0, 2π]. (23)

Due to the symmetry of this solution, it is sufficient to find the estimate on the half-interval
[0, π]. This can be done with the method of upper and lower solutions. See for example [11].

Let ψ(t) be a solution of the Dirichlet problem

ψ̈ = − Λ

r(t, e)3
, ψ(0) = ψ(π) = 0.

By the maximum principle, the function ψ is positive on (0, π) and can be expressed as

ψ(t) = −Λ

∫ π

0

G(t, s)

r(s, e)3
ds,

where G(t, s) is the Green’s function associated to the operator L[ψ] = ψ̈ with Dirichlet condi-
tions ψ(0) = ψ(π) = 0, and whose expression is

G(t, s) =


−s(π − t)/π if s ∈ [0, t],

−t(π − s)/π if s ∈ [t, π].

Note that G(t, s) ≤ 0, and that |G(t, s)| ≤ |G(s, s)|, then,

ψ(t) ≤ Λ

π

∫ π

0

s(π − s)
r(s, e)3

ds. (24)

We can use ψ to produce the following functions

ψ±(t) = 2(t− f(t, e))± ψ(t).

These functions are upper and lower solutions of our problem, since they satisfy

ψ+(t) > ψ−(t), ψ̈−(t) ≥ F (t, ψ−(t)), ψ̈+(t) ≤ F (t, ψ+(t)),
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where F (t,Θ) was defined by the expressions eqs. (9) and (10), and contains the nonlinear
terms of our equation. Consequently,

ψ+(t) ≥ Θ∗(t; e,Λ) ≥ ψ−(t), t ∈ [0, π].

Let us look for bounds that do not depend on t. Consider the function χ(t) = f(t, e) − t.
Since χ(0) = χ(π) = 0 and computing that

f̈(t, e) = −2e
√

1− e2 sin[u(t, e)]

(1− cos[u(t, e)])4
< 0, t ∈ (0, π),

we can say that χ(t), t ∈ [0, π], is positive and has a unique maximum m(e) in the interval
(0, π), say,

m(e) = 2 arctan

√√√√(1 + e)(e− 1 + (1− e2)
1
4 )

(1− e)(e+ 1− (1− e2)
1
4 )
− arccos

(
1− 4
√

1− e2

e

)

+

√
e2 − (1− 4

√
1− e2)2.

According to this discussion, define the function

Λ2(e) =
π2

2 − 2πm(e)∫ π
0
t(π−t)
r(t,e)3 dt

, (25)

then, the condition (23) is satisfied if 0 < Λ < Λ2(e). The stability result is summarized in the
following Proposition.

Proposition 2 For each value e ∈ (0, 1) such that m(e) < π/4, if 0 < Λ < 1
4Λ1(e) and

0 < Λ < Λ2(e), then, the solution Θ∗(t; e,Λ) is linearly stable.

3 Instability for high eccentricity

The numerical calculation of the instability regions in Figure 3 shows that there exists instability
for high eccentricities, whose boundary bifurcates from Λ = 0 at some value of the eccentricity
that we will call e = e∗. As it is described in [3], Chapter 2, Section 7.3, Zlatoustov and
collaborators already showed this behavior with computer simulations in [27]. In this section
we will prove the existence of such bifurcation branch for small Λ. Assume that e and Λ are
in the conditions of Proposition 1 and let Θ∗(t; e,Λ) be the odd 2π-periodic solution obtained
for the Dirichlet problem (8). The next result also concerns the stability of the variational
equation (20).

Theorem 1 For some ε > 0, there exists a function E : [0, ε) → (0, 1), Λ 7→ E(Λ), such that
the equation (20) is unstable and has a non-trivial 4π-periodic solution if e = E(Λ). Moreover,
E(0) = e∗ ∈ (0, 1) and for each ē ∈ (e∗, 1) there exists a Λ̄ = Λ̄(ē) ∈ (0, ε), such that the
equation (20) is unstable for the points (e,Λ) satisfying E(Λ) < e < ē, 0 < Λ < Λ̄. In addition,
the function E can be expressed as E(Λ) = ξ(Λ1/p), where ξ(ζ) is real analytic at ζ = 0 and
p ≥ 1 is an integer.

9



PSfrag replacements

e∗

e = E(Λ)

Λ̄

ē
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Figure 4: Bifurcation of stability at e = e∗. The shaded region is unstable.

The proof of this result will provide some additional information. The number e∗ solves the
equation I(e) = 0, where,

I(e) :=

∫ π

−π

cos[2(t− f(t, e))]

r(t, e)3
dt. (26)

Numerical computations suggest that e∗ is the only root of I(e) and e∗ ≈ 0.682...
The general theory of Hill’s equation deals with the study of

ÿ + a(t)y = 0, (27)

where a is a continuous and 2π-periodic function, see [18]. As it is well known, the discriminant
∆ = ∆[a] is a real number such that (27) is stable if |∆| < 2 (elliptic case) and unstable if
|∆| > 2 (hyperbolic case). When |∆| = 2 (parabolic case) the equation might be stable
or unstable. In this last case, there is at least one 4π-periodic solution and, only if all the
solutions of (27) are 4π-periodic (coexistence), the equation is stable.

According to Theorem 1, the specific equation (20) is parabolic-unstable on the curve
e = E(Λ) and hyperbolic-unstable on the shaded region of the Figure 4. In particular, this
hyperbolicity implies that Θ∗(t; e,Λ) is unstable, in the Lyapunov sense, as solution of the
nonlinear equation (7).

Incidentally, we notice that Zhang’s conditions (21) really imply that (27) is elliptic-stable.
In our particular case, it means that equation (20) is elliptic on the conditions of Proposition 2.

To describe the strategy for the proof of Theorem 1 we first recall some facts on the linear
equation (27) when the coefficient a(t) is even. Note that this is the case for (20). Let y1

and y2 be the normalized solutions, i.e., solutions obtained with initial conditions y1(0) = 1,
ẏ1(0) = 0, y2(0) = 0, ẏ2(0) = 1. The discriminant is expressed in terms of these solutions by
the formula

∆2 − 4 = 4ẏ1(2π)y2(2π), (28)

which let us discriminate between the cases of stability in a convenient way.
For the equation (20), we have that y1(t) = y1(t; e,Λ) and y2(t) = y2(t; e,Λ). Particularly,

for Λ = 0 we observe that for all t ∈ R, e ∈ [0, 1),

y1(t; e, 0) ≡ 1, y2(t; e, 0) ≡ t, (29)

Assuming that Λ < 1
4Λ1(e), let us prove that y2(2π; e,Λ) > 0. Since y2 is a non-trivial

solution, we can apply Lemma 1 for l = 2π, and conclude that y2(2π; e,Λ) 6= 0 = y2(0; e,Λ).
From (29), y2(2π; e, 0) > 0 for each e ∈ [0, 1), then, by continuity, y2(2π; e,Λ) > 0.
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In consequence, by (28), if ẏ1(2π; e,Λ) is negative/positive, the equation will be stable/unstable.
Additionally, the fact that y2(2π; e,Λ) 6= 0 implies, by Theorems 1.1 and 1.2 in [18], that y2

is not 4π-periodic. Therefore, if ẏ1(2π; e,Λ) = 0, then, the equation (27) will be parabolic-
unstable.
Since ẏ1(2π; e, 0) = 0 for each e, the division formula can be applied to write

ẏ1(2π; e,Λ) = ΛΨ(e,Λ), (30)

with

Ψ(e,Λ) =

∫ 1

0
∂Λ ẏ1(2π; e, sΛ)ds,

which is a real analytic function in both variables. This comes from the fact that any solution
y = y(t; e,Λ) of (20) is analytic in all its entries due to the real analytic version of the theorem
of differentiability of solutions with respect to the parameters. Fix a value e ∈ [0, 1) and note
that, according to the expansion of ẏ1(2π, e,Λ) around Λ = 0, we have

Ψ(e, 0) = ∂Λ ẏ1(2π; e, 0).

Differentiating the equation (20) with respect to Λ and evaluating at Λ = 0, we obtain

∂Λ ÿ(t; e, 0) +
cos[Θ∗(t; e, 0)]

r(t, e)3
y(t; e, 0) = 0,

which can be integrated with initial condition ∂Λ ẏ1(0; e, 0) = 0 and give as a result that

∂Λ ẏ1(2π; e, 0) = −
∫ 2π

0

cos[2(t− f(t, e))]

r(t, e)3
dt.

By 2π-periodicity of the integrand and considering the definition (26), we can change the
interval of integration from [0, 2π] to [−π, π] and identify Ψ(e, 0) = −I(e).

The standard theory of integrals depending on parameters implies that I(e) is a real analytic
function defined on e ∈ [0, 1). Moreover, since f(t, 0) = t and r(t, 0) = 1, we see that I(0) =
2π > 0. The following result implies that I(e) has a change of sign. Hence, I(e∗) = 0 for some
e∗ ∈ (0, 1).

Lemma 2 The function I(e) has a negative finite limit as e→ 1−.

The proof of this result is delicate because it is not possible to interchange the limit with
the integral sign. Let us explain this point. Since the integrand is even, we just consider the
integral (26) on the interval (0, π). At first glance we see that the limit of the integrand is

lim
e→1−

cos[2(t− f(t, e))]

r(t, e)3
=

cos[2t]

r(t, 1)3

because, as e → 1−, f(t, e) → π for all t ∈ (0, π). From its definition, it can be computed the
expansion r(t, 1)3 = 9t2/2 +O(t4), i.e., the integrand has a pole of order 2 at t = 0. Therefore,∫ π

0

cos[2t]

r(t, 1)3
dt = +∞.

However, the delicate point comes from the fact that, for e close to 1, the value of f(t, e)
increases from 0 to π very fast. This results in a fast-changing argument of the cosine and,
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ultimately, a change of sign of the integrand in (26) for smaller and smaller t > 0. In this
situation we cannot apply any classical technique, such as the dominated convergence theorem
or the Fatou’s lemma.

In order to prove Lemma 2, first, we will apply the Residue Theorem to compute I(e) for
e ∈ (0, 1), then, let e tend to 1. All this hard work is postponed to the end of the section.

Once we have found e∗ such that Ψ(e∗, 0) = 0, it seems natural to find the function e = E(Λ)
as a solution of the implicit function problem

Ψ(E(Λ),Λ) = 0, E(0) = e∗.

A direct application of the implicit function theorem does not seem easy. The number e∗ is
not known explicitly and the transversality condition ∂ΛΨ(e∗, 0) 6= 0 leads to a complicated
integral with no clear sign.

Taking advantage of the analytic character of the function Ψ, we will apply the following
parametric version of Bolzano’s Theorem. The proof of Theorem 1 will follow as a direct
consequence.

Lemma 3 Let Υ : [0, l1) × [0, l2) → R, l1, l2 > 0, be a real analytic function of two variables
Υ = Υ(x, y) such that,

Υ(0, 0) < 0 < lim inf
x→l−1

Υ(x, 0). (31)

Then, there exists a value x∗ ∈ (0, l1) and a function ϕ : [0, ε)→ (0, l1), such that

ϕ(0) = x∗, Υ(ϕ(y), y) = 0, for each y ∈ [0, ε), (32)

and, for each x̄ ∈ (x∗, l1), there exists a ȳ > 0 such that

Υ(x, y) > 0, if ϕ(y) < x, x < x̄, 0 < y < ȳ. (33)

Moreover, there exists some positive integer p ≥ 1 such that ϕ(y) = ϕ̃(y1/p), where ϕ̃(ζ) is
analytic at ζ = 0.

Proof. The function Υ(·, 0) is analytic in [0, l1) and changes sign, then, it has a finite
number of zeros. We will say that a zero x0 ∈ (0, l1) of this function is transversal if

Υ(x0 + σ, 0)Υ(x0 − σ, 0) < 0,

for every small enough σ > 0. The function Υ(·, 0) has at least one transversal zero due to the
condition (31).

Define the set of zeros

Z = {(x, y) ∈ [0, l1)× [0, l2) : Υ(x, y) = 0}.

We say that a zero x0 ∈ (0, l1) of Υ(·, 0) has a continuation if the point (x0, 0) is non-isolated in
Z. Transversal zeros have always a continuation. This is a consequence of Bolzano’s Theorem.
Given a transversal zero x0, for small ε > 0,

Υ(x0 + σ, y)Υ(x0 − σ, y) < 0 if 0 < y < ε.

Therefore, Z has a point lying in the segment [x0 − σ, x0 + σ]× {y}. The converse is not true,
sometimes non-transversal zeros have a continuation. We illustrate the previous definitions
with the example

Υ(x, y) = (y − x+ 1)2(y + x− 2)(x− 3)2.

12



Figure 5: Illustration of the contradiction argument. Green, red and blue correspond to values
of Υ that are positive, negative and zero, respectively.

This function satisfies the conditions of the Lemma if l1 > 3, l2 > 0. Additionally, Υ(·, 0) has
three zeros, say, x0 = 2 (transversal), x1 = 1 (non-transversal with continuation) and x2 = 3
(non-transversal without continuation).

Let x∗ ∈ (0, l1) be the largest zero of Υ(·, 0) having a continuation. Now, we are going to
use several theorems on real analytic functions of two variables in order to characterize the
continuation set of the point (x∗, 0).

First, we apply the Weierstrass Preparation Theorem (Theorem 6.3.1 in [16]) to the function
Υ at the point (x∗, 0). To do this, note that some coefficient of the power series expansion of
Υ(x, 0) at x = x∗ does not vanish (otherwise Υ(x, 0) ≡ 0). Then, the function Υ(x, y) can be
decomposed as

Υ(x, y) = W (x− x∗, y)Y (x, y), (x, y) ∈ U,

where U is a small neighborhood of (x∗, 0), Y (x, y) is a non-vanishing real analytic function
defined on U and W (x, y) is a Weierstrass polynomial. This means that there exists an integer
N ≥ 1 such that

W (x, y) = xN +AN−1(y)xN−1 + · · ·+A1(y)x+A0(y),

where the functions An(y), n = 0, ..., N − 1, are real analytic at y = 0 and An(0) = 0. As a
result, the equation Υ = 0 is equivalent to W = 0 in U .

Second, we can apply the Decomposition Theorem (Theorem 4.2.7 in [16]) to W . We
deduce that there exists a finite number q of functions H1, H2, ...,Hq, defined on [0, ε) where
Hj(0) = x∗, j = 1, ..., q; H1(y) < H2(y) < ... < Hq(y) if y ∈ (0, ε), and such that, for some
neighborhood V ⊂ U of (x∗, 0), we can characterize the continuation set as

Z ∩ V = {(Hj(y), y) : y ∈ [0, ε), j = 1, ..., q}.

Moreover, there exists an integer p ≥ 1 such that Hj(y) = H̃j(y
1/p), where each H̃j(ζ) is

analytic at ζ = 0. We define ϕ = Hq and ϕ̃ = H̃q. Then, the identities (32) are automatically
satisfied.

It remains to check that the inequality (33) holds. We start with a preliminary observation:
given a point (x, y) ∈ V with x > ϕ(y), then, Υ(x, y) > 0. This is a consequence of the
way we have chosen ϕ = Hq. Consider χ ∈ (x∗, x∗ + σ), with σ > 0 small enough such
that the point (χ, 0) ∈ V . The point (χ, 0) is connected to every point within the region
{(x, y) ∈ V : x > ϕ(y)}. Since Υ(χ, 0) > 0, the same is true for all the points in the region.

13



Let us now prove (33) by a contradiction argument concerning the definition of x∗. Assume
the existence of a number x̄ ∈ (x∗, l1) and a sequence of points {(xn, yn)} satisfying

Υ(xn, yn) ≤ 0, ϕ(yn) < xn, xn < x̄, yn > 0, yn −→
n→∞

0.

Figure 5 illustrates the argument for strict inequalities Υ(xn, yn) < 0. It is not restrictive
to assume that x̄ is sufficiently close to l1 in order to assure that x̄ 6∈ V and Υ(x̄, 0) > 0. Let
us fix ε1 > 0 such that Υ(x̄, y) > 0 if y ∈ [0, ε1]. Letting n→∞ in the inequality xn > ϕ(yn),
we deduce that lim inf

n→∞
xn ≥ x∗.

From the previous discussions we know that (xn, yn) 6∈ V . Then, there exists some positive
number ν > 0 such that xn > x∗ + ν for large n. Also, we can assume yn ≤ ε1. For each n,
the function Υ(·, yn) must have a zero in the interval [xn, x̄), say x̂n ∈ [xn, x̄). After extracting
a subsequence we can assume that x̂n converges to some x̂ ∈ [x∗ + ν, x̄]. Then, (x̂, 0) is a
non-isolated point in Z. Which contradicts the definition of x∗ as the largest of such points.

Proof of Lemma 2. We will employ some techniques from complex analysis. They are
motivated by the following observation: after the change of variable t = u − e sinu, we can
express the integral in the form

I(e) =

∫ π

−π

cos[2(u− e sinu− f(u, e))]

(1− e cosu)2
du,

where the true anomaly f is written in terms of the eccentric anomaly u, as defined by eqs. (2)
and (3). Then, it is indeed the composition of f(t, e) with t = u− e sinu.

Using some trigonometric identities I(e) can be written as an integral in the family∫ π

−π
(R1(cosu, sinu) sin(2e sinu) +R2(cosu, sinu) cos(2e sinu)) du,

whereR1(x, y) andR2(x, y) are rational functions. The simpler family of trigonometric integrals∫ π

−π
R(cosu, sinu)du,

is often analyzed using the change of variables z = exp[iu] and the Residue Theorem. We will
show that this trick also works in our situation.

First it is convenient to observe that∫ π

−π

sin[2(u− e sinu− f(u, e))]

(1− e cosu)2
du = 0,

because the integrand is odd. Therefore, our integral can be expressed as

I(e) =

∫ π

−π

exp[2i(u− e sinu− f(u, e))]

(1− e cosu)2
du. (34)

After the change of variable z = exp[iu], we can interpret I(e) as an integral over the
curve γ, where γ is the unit circle run counter-clockwise. To find the integrand we employ the
formulas

cosu =
1

2

(
z +

1

z

)
, sinu =

1

2i

(
z − 1

z

)
,
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leading to

1− e cosu = − e

2z
(z − ζ−)(z − ζ+),

where ζ± = 1±
√

1−e2
e . Note that ζ− and ζ+ are positive real numbers with ζ−ζ+ = 1 and ζ− < 1.

From (3) we can compute that

exp[if(u, e)] = −ζ+
z − ζ−
z − ζ+

.

Straightforward computations show that

I(e) =
4

ie2ζ2
+

∫
γ
h(z, e)dz,

where

h(z, e) =
z3 exp[−e

(
z − 1

z

)
]

(z − ζ−)4
.

For each e ∈ (0, 1), the meromorphic function h(·, e) has two singularities at z = ζ− and
z = 0, both inside the unit circle. Therefore, making explicit the dependence on e and using
the Residue Theorem,

I(e) =
8π

e2ζ+(e)2
[Res(h(·, e), ζ−(e)) + Res(h(·, e), 0)].

The singularity at z = ζ−(e) is a pole of order 4. Then,

Res(h(·, e), ζ−(e)) =
1

6

d3g

dz3
(ζ−(e), e),

with g(z, e) = z3 exp[−e
(
z − 1

z

)
]. The function g(·, 1) is holomorphic in |z| > 0. Moreover,

g(z, e)→ g(z, 1) as e→ 1−, z 6= 0,

and the convergence is uniform for z lying in any compact subset of C\{0}. In particular,

d3g

dz3
(z, e)→ d3g

dz3
(z, 1) as e→ 1−.

This shows that the residue Res(h(·, e), ζ−(e)) has a limit when e→ 1−. We are going to prove
that this is also the case for the residue at the origin.

The function h(·, 1) is holomorphic in 0 < |z| < 1 and

h(z, e)→ h(z, 1) as e→ 1−, 0 < |z| < 1.

The convergence is uniform on compact subsets. In particular on the circle γ̃ = {z ∈ C : |z| =
1/2}. Then, as e→ 1−,

Res(h(·, e), 0) =
1

2πi

∫
γ̃
h(z, e)dz → 1

2πi

∫
γ̃
h(z, 1)dz = Res(h(·, 1), 0).

We conclude that I(e) has a limit, namely,

lim
e→1−

I(e) = 8π

[
1

6

d3g

dz3
(1, 1) + Res(h(·, 1), 0)

]
. (35)
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To complete the proof we must show that this number is negative. This will involve some
computations, first,

1

6

d3g

dz3
(1, 1) = −1

3
. (36)

The function h(·, 1) has an essential singularity at z = 0. To compute the residue we
factorize h(·, 1) in the form

h(z, 1) = µ(z)ν(z),

with

µ(z) =
z3

(z − 1)4
exp[−z], ν(z) = exp

1

z
.

Then, µ is holomorphic in the disk |z| < 1 and has an expansion

µ(z) =
∞∑
n=0

µnz
n, |z| < 1.

The function ν has an essential singularity at z = 0 with Laurent expansion

ν(z) =
∞∑
n=0

1

n!
z−n, |z| > 0.

The residue of h(·, 1) can be computed from the Laurent expansion. More precisely,

Res(h(·, 1), 0) =

∞∑
n=0

µn
(n+ 1)!

. (37)

From the binomial series (1− z)−d =
∑∞

n=0

(
n+d−1
n

)
zn, we know that

1

(z − 1)4
=
∞∑
n=0

(
n+ 3

n

)
zn, |z| < 1,

and

z3 exp[−z] =

∞∑
n=3

(−1)n+1

(n− 3)!
zn, z ∈ C,

we deduce that

µ0 = µ1 = µ3 = 0, µn =

n−3∑
k=0

(
k + 3

k

)
(−1)n−k+1

(n− k − 3)!
, n ≥ 3.

Combining this formula with (37),

Res(h(·, 1), 0) =

∞∑
n=0

n−3∑
k=0

(
k + 3

k

)
(−1)n−k+1

(n+ 1)!(n− k − 3)!
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Letting n− k − 3 = j,

Res(h(·, 1), 0) =

∞∑
k=0

∞∑
j=0

(
k + 3

k

)
(−1)j

j!(j + k + 4)!

<

∞∑
k=0

∞∑
j=0

(
k + 3

k

)
1

j!(j + k + 4)!

<
∞∑
j=0

1

j!

∞∑
k=0

(
k + 3

k

)
1

(k + 4)!
= exp[1]

∞∑
k=0

(
k + 3

k

)
1

(k + 4)!

Finally, we observe that

∞∑
k=0

(
k + 3

k

)
1

(k + 4)!
=

1

3!

∞∑
k=0

1

(k + 4)k!
<

1

4!

∞∑
k=0

1

k!
=

exp[1]

24
.

Thus,

Res(h(·, 1), 0) <
exp[2]

24
<

1

3
,

and the proof follows from (35), (36) and this inequality.

4 Asymptotic stability of the synchronous resonance in the dis-
sipative case

Recall that the dissipative spin-orbit problem is modeled by the equation

Θ̈ + δD(t, e)Θ̇ +
Λ

r(t, e)3
sin Θ = −2f̈(t, e), e ∈ [0, 1), Λ� δ ≥ 0, (38)

with D(t, e) positive, analytic and 2π-periodic in t. We know from Proposition 2 that, for
δ = 0, there exists an odd 2π-periodic solution Θ∗(t; e,Λ), which is linearly stable in the set

Ω = {(e,Λ) : 0 < e < 1, 0 < Λ <
1

4
Λ1(e), 0 < Λ < Λ2(e)}.

Furthermore, this solution is elliptic in the following sense, the discriminant associated to the
linearized equation at Θ∗(t; e,Λ), say ∆0 = ∆0(e,Λ), satisfies |∆0| < 2.

We will prove that this periodic solution can be continued in the presence of friction,
although the odd symmetry is lost.

Theorem 2 Assume that (e,Λ) ∈ Ω. Then, there exists a number δ̄ > 0 and a real analytic
function

(t, δ) ∈ R× [0, δ̄] 7→ Θ∗δ(t) ∈ R,

satisfying

i) Θ∗δ(t) is an asymptotically stable 2π-periodic solution of (38),

ii) Θ∗0(t) = Θ∗(t; e,Λ) for each t ∈ R.
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In principle, this theorem is consequence of well known classical results (see for instance
Theorem 1.1 and 1.2 in Chapter 14, [10]). However, we will prove it independently because our
proof will provide an explicit formula for δ̄. This formula will involve the quantities e, Λ and
∆0 only.

Let Θδ(t) be a solution of (38) satisfying Θδ(0) = Θ0 ∈ R, Θ̇δ(0) = ω0 ∈ R. To make
explicit the dependence on initial conditions, consider x = (Θ0, ω0)T ∈ R2 and

φt(δ, x) =

Θδ(t)

ωδ(t)

 , with ωδ(t) = Θ̇δ(t).

Define the function
F(δ, x) = φ2π(δ, x)− x.

The zeros of this function are in correspondence with the 2π-periodic solutions of (38). Since
we know that Θ∗(t; e,Λ) is the odd 2π-periodic solution for δ = 0, we are going to study the
implicit function problem

F(δ, χ(δ)) = 0, χ(0) =

 0

Θ̇∗(0; e,Λ)

 .

The solution x = χ(δ) of this problem will produce a branch of periodic solutions in the
conditions of Theorem 2.

The proof of Theorem 2 will consists of two steps. First, we will apply a quantitative version
of the Implicit Function Theorem in order to find χ(δ), defined on δ ∈ [0, δ̄]. Once the branch
is constructed, we will prove the asymptotic stability of the solution.

In the next lemma we will employ the following notation.
Given a function (δ, x) ∈ [0, 1]×Rn 7→ G(δ, x) ∈ Rn. The partial derivative ∂δG(δ, x) will be

interpreted as a vector in Rn, whereas ∂xG(δ, x) and ∂δxG(δ, x) = ∂δ(∂xG(δ, x)) are linear maps
represented by matrices in Rn×n. Let xi be the i-th component of x ∈ Rn, then, ∂xxG(δ, x) is
a bilinear map given by

∂xxG(δ, x)[u, v] =

n∑
i=0

n∑
j=0

∂2G(δ, x)

∂xi∂xj
uivj , u, v ∈ Rn.

The norm in Rn is denoted by || · ||. The same notation will be employed for the induced norm
in spaces of multilinear forms. See [12], Chapter 5, Section 7. Given a point ζ ∈ Rn and a
positive number r > 0, the closed ball centered at ζ of radius r is denoted by B̄r(ζ).

Lemma 4 Let G : [0, δ∗]×Rn → Rn, with δ∗ > 0, and G = G(δ, x), be a function of class C2

such that there exists (∂xG(δ0, x0))−1 and G(δ0, x0) = 0 for a certain point (δ0, x0) ∈ [0, δ∗]×Rn.
Assume that there exist uniform bounds C1 ≥ ||∂δG||, C12 ≥ ||∂δxG||, C22 ≥ ||∂xxG|| for all

(δ, x) ∈ [0, δ∗]×Rn and C0 > ||(∂xG(δ0, x0))−1||.
Define the positive constants

ρ =


C12−C0C1C22

C0C2
12

if 2C0C1C22 < C12,

1
4C2

0C1C22
if 2C0C1C22 ≥ C12,

(39)
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and

R = R(ρ) =
1−

√
1− 4C2

0C1C22ρ

2C0C22
, (40)

then, there exists a C2 function χ : B̄ρ(δ0) ∩ [0, δ∗]→ B̄R(x0) satisfying x0 = χ(δ0) and

G(δ, χ(δ)) = 0, δ ∈ B̄ρ(δ0) ∩ [0, δ∗].

Proof. The proof follows along the standard methods using the Contraction mapping
theorem. See for instance Section 3.4 in [17]. We give some hints to reproduce the values of ρ
and R in eqs. (39) and (40). Define

L(δ, x) = x−M−1G(δ, x), M = ∂xG(δ0, x0),

so that our problem is equivalent to the fixed point equation x = L(δ, x). We see that

∂xG(δ, x)−M =

∫ 1

0
∂δxG(δλ, xλ)(δ − δ0)dλ+

∫ 1

0
∂xxG(δλ, xλ)(x− x0)dλ,

∂xG(δ0, x)−M =

∫ 1

0
∂xxG(δ0, xλ)(x− x0)dλ,

where δλ = λδ + (1 − λ)δ0, xλ = λx + (1 − λ)x0, λ ∈ [0, 1]. Consequently, since ∂xL(δ, x) =
1−M−1∂xG(δ, x), we can use the bounds of the derivatives of G to get that

||∂xL(δ, x)|| ≤ C0(C12ρ+ C22R), ||∂xL(δ0, x)|| ≤ C0C22R, (41)

for each x ∈ B̄R(x0) and δ ∈ B̄ρ(δ0). From the second expression in (41) and the generalized
version of the mean-value theorem for vector-valued functions, see [2], we get

||L(δ0, x)− L(δ0, x0)|| ≤ C0C22R
2 x ∈ B̄R(x0).

Proceeding analogously with ∂δL, we obtain

||L(δ, x)− L(δ0, x)|| ≤ C0C1ρ x ∈ B̄R(x0), δ ∈ B̄ρ(δ0).

Note that L(δ0, x0) = x0 by definition, then,

||L(δ, x)− x0|| ≤ ||L(δ, x)− L(δ0, x)||+ ||L(δ0, x)− L(δ0, x0)||
≤ C0(C1ρ+ C22R

2).

Let X be the complete metric space composed by continuous functions

χ : B̄ρ(δ0) ∩ [0, δ∗]→ B̄R(x0), χ(δ0) = x0.

The distance in X is induced by the uniform norm. Consider the operator L(δ, ·) : X → X.
From the previous computations, this operator is well defined, i.e., L(δ,X) ⊆ X, as long as

C0(C1ρ+ C22R
2) ≤ R.

Moreover, from the first inequality in (41), L(δ, ·) is a contraction if

C0(C12ρ+ C22R) < 1.

The parameters ρ and R in (39) and (40) are the values such that the last two inequalities are
satisfied and the value of ρ is the largest possible. The Banach principle leads to a continuous
solution of the functional equation. The implicit function theorem can be applied at each
(δ, χ(δ)) to deduce that this solution is indeed C2.
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Remark 3 Note that χ is a real analytic function if G is real analytic.

Remark 4 By direct substitution of (39), we get that 0 ≤ 1− 4C2
0C1C22ρ < 1, then,

ρ ∈
(

0,
1

4C2
0C1C22

]
, R ∈

(
0,

1

2C0C22

]
.

We will work with n = 2 and the maximum norm

||x|| = max{|x1|, |x2|}, x =

x1

x2

 .

The corresponding norms in the spaces of multilinear maps (see [12]) are given by

||∂δG(δ, x)|| = max
i∈{1,2}

|∂δGi(δ, x)|,

||∂δxG(δ, x)|| = max
i∈{1,2}

 ∑
j∈{1,2}

∣∣∣∣∂2Gi(δ, x)

∂δ∂xj

∣∣∣∣
 ,

||∂xxG(δ, x)|| = max
i∈{1,2}

 ∑
j,k∈{1,2}

∣∣∣∣∂2Gi(δ, x)

∂xk∂xj

∣∣∣∣
 .

It will be clear from the computations in the Appendix C that Lemma 4 cannot be directly
applied to the function F . Actually, the norm of ∂δxF(δ, x) has not a uniform bound in
(δ, x) ∈ R2. To overcome this difficulty, we will observe that there is a partial a priori bound
for the periodic solutions of (38).

Lemma 5 Let Θ(t) be a 2π-periodic solution of (38). Then,

|Θ̇(t)| ≤ C for each t ∈ R,

with C := Λ
∫ 2π

0
dt

r(t,e)3 + 2
∫ 2π

0 |f̈(t, e)|dt.

The proof is postponed to the Appendix B. Note that an analogous bound cannot be
obtained for Θ(t). Due to the periodicity of the equation, Θ(t) + 2nπ is also a solution for each
n ∈ Z.

Let us define the function M : R→ R, and the map R : R2 → R2 such that

M(ζ) =


arctan(ζ + C)− C if ζ < −C,

ζ if |ζ| ≤ C,

arctan(ζ − C) + C if ζ > C,

R(x) =

 x1

M(x2)

 . (42)

We observe that R is C2 and satisfies

• R is the identity on the strip SC = {(x1, x2)T : |x2| ≤ C}.

• R(R2\SC) ∩ SC = ∅.
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From these properties and Lemma 5 it is easy to deduce that, if x ∈ SC , the equation
F(δ, x) = 0 is equivalent to G(δ, x) = 0, where,

G(δ, x) = F(δ,R(x)).

Here by equivalence we mean that both equations have the same solutions.
We can now find estimates for the norms of the derivatives of G. In the Appendix C we

will obtain

C0 =
1 + κ0

|2−∆0|
, C1 = κ||D(·, e)||1(2C + π/2),

C12 = κ2
(
C1Λ||r(·, e)−3||1 + ||D(·, e)||1

)
, C22 = 4κ3Λ||r(·, e)−3||1 +

3
√

3(1 + κ)

8
,

where || · ||1 is the L1[0, 2π]-norm and the constants κ0 and κ are defined by

κ0 = exp
(
max

{
2π,Λ||r(·, e)−3||1

})
,

κ = exp
(
max

{
2π,Λ||r(·, e)−3||1 + δ∗||D(·, e)||1

})
,

where the constant δ∗ ∈ (0, 1/4) can be chosen arbitrarily making sure that the computed value
δ̄ must be smaller than the chosen δ∗. We will take δ∗ = 0.01 for the MacDonald torque in
Section 4.2.

The parameters ρ and R are now determined by (39) and (40). We find the function χ(δ)
defined on [0, ρ], such that

||χ(δ)− χ(0)|| ≤ R. (43)

Once we have constructed the branch of periodic solutions Θ = Θ∗δ(t), we analyze the
stability properties. The next Lemma on linear equations is tailored for our purposes.

Lemma 6 Let a, b, c : R → R be continuous and T -periodic functions, also, c ∈ C1 and∫ T
0 c(t)dt > 0. Let K > 0 be a constant such that∣∣∣∣b(t)− 1

4
c(t)2 − 1

2
ċ(t)

∣∣∣∣ < K, t ∈ [0, T ].

Let ∆0 be the discriminant of ÿ + a(t)y = 0 and assume that |∆0| < 2. Assume that

||Φ0(t)Φ0(s)−1|| ≤ κ0, 0 ≤ s < t ≤ T,

where Φ0(t) is the matrix solution of ÿ + a(t)y = 0, such that Φ0(0) = 1, and || · || denotes the
matrix norm induced by the maximum norm in R2. Then, the equation

ÿ + c(t)ẏ + (a(t) + b(t))y = 0 (44)

is asymptotically stable if

K <
1

κ0T
ln

(
1 +

2− |∆0|
2κ0

)
. (45)

The proof of this result is postponed to the Appendix D.
The variational equation of (38) at Θ∗δ(t) is

ÿ + δD(t, e)ẏ +
Λ

r(t, e)3
cos[Θ∗δ(t)]y = 0.
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We can interpret this equation as a perturbation of the equation for δ = 0. In the framework
of (44),

a(t) =
Λ

r(t, e)3
cos[Θ∗0(t)],

b(t) =
Λ

r(t, e)3
(cos[Θ∗δ(t)]− cos[Θ∗0(t)]) , c(t) = δD(t, e).

To estimate |b(t)| we observe that η(t) = Θ∗δ(t)−Θ∗0(t) satisfies the linear equation

η̈ + P (t)η = Q(t), (46)

where

P (t) =
Λ

r(t, e)3

sin[Θ∗δ(t)]− sin[Θ∗0(t)]

Θ∗δ(t)−Θ∗0(t)
, Q(t) = −δD(t, e)Θ̇∗δ(t)

In view of Lemma 5 we deduce that |Q(t)| ≤ ρCD(t, e). Also, |P (t)| ≤ Λ
r(t,e)3 . These

estimates, together with (43) and (40) lead (see Appendix E) to

|Θ∗δ(t)−Θ∗0(t)| ≤ κ0R(ρ) + κ0ρC||D(·, e)||1, (47)

where || · ||1 is the L1[0, 2π]-norm. Consequently,

|b(t)| ≤ κ0Λ

r(t, e)3
(R(ρ) + ρC||D(·, e)||1),

and we can take a suitable K = K(ρ), say,

K(ρ) = κ0Λ||r(·, e)−3||∞ (R(ρ) + ρC||D(·, e)||1) +
ρ2

4
||D(·, e)||2∞ +

ρ

2
||Ḋ(·, e)||∞.

Note that, by (40), K(ρ) is an increasing continuous function for ρ ∈ (0, 1
4C2

0C1C22
] and

such that K(ρ)→ 0+ as ρ→ 0+. In consequence, the function Θ∗δ(t) obtained by Lemma 4 is
asymptotically stable as long as

ρ < K−1

(
1

κ0T
ln

(
1 +

2− |∆0|
2κ0

))
.

In principle, we do not know if the value of ρ defined by (39) satisfies this inequality.
However, since the solution Θ∗δ(t) is defined for all δ ∈ [0, ρ], we can always take a smaller
value of ρ, say δ̄, satisfying the previous inequality so that Θ∗δ(t) is asymptotically stable for
all δ ∈ [0, δ̄]. With this, we have proved Theorem 2.

4.1 The dissipative function D(t, e)

In addition of being a planar model, equation (38) models the dissipative spin-orbit with the
strong assumption that the dissipative torque is proportional to Θ̇. This is obvious for the
so-called MacDonald torque in (5), for which D(t, e) = r(t, e)−6, in this case we will be able to
find analytically the constants of our estimates, except for ∆0, which can be found numerically.

Let us sketch out a procedure through which our results are applicable to other dissipative
torques. We take [13] as reference. In general, to compute the dissipative torque Td we start
from a potential U depending on the position of the perturbing body, so that Td = rFz,
where Fz is the z-component of the force F = − gradU . It is common to expand U in power
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Figure 6: Dissipative diagram for the MacDonald torque. The more green is the region, the
higher δ admissible. We do not guarantee the existence of Θ∗δ(t; e,Λ) for the region filled with
the wavy pattern.

series of 1/r, via Legendre polynomials, and assume that the dissipation is introduced by
including a constant small time delay ∆t in the position of the perturber. This gives rise
to the torque of equation (28) in [13]. If we take only the leading term of the expansion
we get the MacDonald torque, equation (30), [13]. Note that, in the expanded torque (28),
[13], we work with i = 0, M1 = M∗1 , r = r∗, and λ = λ∗. Consequently, we can see that
each term of the expansion is proportional to sin(−m∆tΘ̇/2) ≈ −m∆tΘ̇/2 and we can write
the torque in the form −δD(t, e)Θ̇. Actually, different orders of approximation would give
rise to different functions D(t, e). However, we must mention that this procedure does not
guarantee that D(t, e) is positive, which is important to find an upper bound C ≥ |Θ̇∗δ(t)|, see
Lemma 5, involved in the computation of other constants of our estimates, as we can check in
the Appendix C.

4.2 Quantitative estimates for the MacDonald torque

In general we see that

||r(·, e)−3||∞ =
1

(1− e)3
, ||r(·, e)−3||1 =

2π

(1− e2)3/2
, ||f̈(·, e)||1 =

8e√
1− e2

,

while for the MacDonald torque

||D(·, e)||∞ =
1

(1− e)6
, ||D(·, e)||1 =

8 + 24e2 + 3e4

4(1− e2)9/2
π, ||Ḋ(·, e)||∞ ≤

6e

(1− e)8
.

Taking δ∗ = 0.01, we can compute the maximum admissible δ̄ = δ̄(e,Λ) and divide the
(e,Λ)-diagram in regions corresponding to different orders of magnitude of δ̄. See Figure 6.

In the case of the Moon-Earth system, for which e = 0.0549, Λ = 0.00069, we obtain that
the 1 : 1 resonance is asymptotically stable for all δ smaller than δ̄ = 2.06 · 10−20. This is
actually a very small value, however, if we evaluate the corresponding maximum admissible
delay we get ∆t(δ̄) = 11 min. Which means that, if the Moon’s response is delayed 11 minutes
or less, its asymptotic stability is guaranteed by our computations. Consider a seismic event
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Satellite (Planet) e Λ δ̄ ∆t(δ̄)

Moon (Earth) 0.0549 0.00069 2.06 · 10−20 11 min

Io (Jupiter) 0.0041 0.021 9.69 · 10−18 0.00057 min

Europa (Jupiter) 0.0094 0.0055 2.85 · 10−19 0.0064 min

Table 1: Estimates for some satellite-planet systems with strong spin-orbit interaction. The
parameters e and Λ have been taken from [5] and other constants from [1]. The corresponding
δ̄ have been obtained numerically. The dependence of ∆t with respect to δ only depends on
the parameters of the system.

occurring at the center of the Moon and reaching the surface in 11 minutes. If the Moon were
homogeneous, the necessary velocity of propagation would be of 2.74 km/s. This is reasonably
consistent with the available data from the interior of the Moon, for which the speed of p-waves
ranges from 1.0 km/s to 8.5 km/s, according to Table 24.2 in [25]. On the contrary, as we see
in Table 1, we are less optimistic with respect to the direct applicability of these estimates for
Io and Europa, since we get too small values of ∆t.

5 Discussion

In this paper we have obtained some rigorous results concerning the existence and stability of
the 1:1 resonant solution for the spin orbit problem, which is closely related to the capture
into the resonance. The dissipative as well as the conservative version of the problem have
attracted much attention. We have considered equation (4) as the reference model for the
problem. Despite that the MacDonald torque introduces a rough simplification in the model, it
looks for us reasonable to take the dissipative torque Td proportional to θ̇− ḟ , which inevitably
leads us to the intricate pendulum-like equation (6). This starting point, though suggested in
many articles, was never fully exploited, as far as we know. That is why we wanted to study this
equation with an analytical point of view and without further modifications. This contrasts to
the literature, where the numerical approach prevails, or, where it is usual to average equation
over a period or expand it in powers of the eccentricity e in order to focus the study on small e.
The pioneer works of Goldreich and Pale [15], on one hand, and Beletskii [3], on the other hand,
set the main research directions. The articles following [3] work in the conservative regime with
f as independent variable, obtaining the so-called Beletskii equation.

In the literature we find different approaches to the stability of the solution. For instance,
[15] poses the rough stability condition that the averaged dissipative torque does not exceed
the maximum conservative torque. There are also more sophisticated approaches by A. Celletti
and her collaborators, as the KAM stability in [7] for the conservative case, or the existence of
quasiperiodic attractors in [9] for the dissipative problem, which bifurcate from the KAM tori of
the conservative case. See also other related articles like [8] and [14]. The articles that employ
the Beletskii equation, such as [3], [20] and [19], do not average the equation, they study the
2π-periodic solutions (there is not uniqueness) and consider the linear stability, particularly for
the even solution Θ∗(t). They produce similar numerical stability diagrams as that of Figure 3,
and notice, see for example [3], the complexity of the region of linear stability of Θ∗(t) for high
eccentricities.

24



The most similar approach to ours is that of [22], which studies the Beletskii equation with
analytical tools. Its main result (Theorem 5) estimates a region of existence and Lyapunov
stability of Θ∗(t). The authors use the method of upper and lower solutions to prove the
existence of solution, but they do not guarantee the uniqueness as odd 2π-periodic solution
as we did in Proposition 1. Since we consider the dissipative model, we are interested in the
asymptotic stability of the solution instead of the Lyapunov stability. For this purpose we need
a region of elliptic linear stability, which is larger than the region obtained in Theorem 5, [22].
Using their computations, which correspond to L∞-norm estimates (recall that we used all the
Lα-norms to estimate our region), the resulting region of linear stability is given by

0 < Λ <
(1− e)3

4
, 0 < Λ <

1

π

(
(1− e2)3/2

2
− 8e

)
.

We can check that this region is in fact included in our Ω.

A Properties of Λ0(e, α) and Λ1(e)

The function Λ0(e, α) defined in (17) has an explicit expression in terms of special functions
since, according to [26],

Kl(p) =


2π

p l1+2/p

(
2

2+p

)1−2/p (
Γ(1/p)

Γ(1/2+1/p)

)2
, if 1 ≤ p <∞,

4
l , if p =∞,

(48)

where Γ is the usual Gamma function. We can compute that

||r(·, e)−3||α =



π

(1− e2)3/2
, if α = 1,(

π 2F1(1/2, 3α− 1; 1; 2e/(1 + e))

(1 + e)3α−1

)1/α

, if 1 < α <∞,

(1− e)−3, if α =∞,

(49)

where || · ||α denotes the Lα[0, π]-norm and 2F1 is the hypergeometric function. The continuous
dependence of the function ||r(·, e)−3||α with respect to e and α < ∞ is guaranteed by the
classical theorem in integration theory. Moreover, it is also guaranteed for α = ∞, because
it is well known that the Lα-norm of a function converges to its L∞-norm as α → ∞. The
function Kl(p) is continuous for each p ∈ [1,∞) since Γ(x) is continuous for all x > 0. It is also
continuous for p =∞ because Γ(1/2) =

√
π and Γ(1/p) = p+O(1) as p→∞. Consequently,

Λ0(e, α) is continuous in both entries.

Lemma 7 The function Λ1 defined in (18) is continuous, strictly decreasing and

Λ1(0) = 1, lim
e→1−

Λ1(e) = 0.

Proof. The continuity of Λ0(e, α) implies that the function Λ1(e) is bounded in [0, ē], for
all ē ∈ (0, 1), since,

|Λ1(e)| ≤ max
[0,ē]×[1,∞]

|Λ0(e, α)|.
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Then, the continuity of Λ1(e) is equivalent to say that the set {(e,Λ1(e)) : e ∈ [0, ē]} is closed
in R2.

Since Λ1 is bounded, we can take a sequence en ∈ [0, ē] converging to e such that Λ1(en)
converges to a some ζ. Then we have to prove that Λ1(e) = ζ.

By definition of Λ1, for each n there exists αn ∈ [1,∞] such that Λ1(en) = Λ0(en, αn).
We can take a subsequence ασ(n) converging to a some α̂. Due to the continuity of Λ0 and
because Λ1(eσ(n)) = Λ0(eσ(n), ασ(n)), we get that Λ1(e) ≥ Λ0(e, α̂) = ζ. On the other hand, we
can take a α∗ ∈ [1,∞] such that Λ1(e) = Λ0(e, α∗). Again, since Λ1(en) ≥ Λ0(en, α∗), then,
ζ ≥ Λ0(e, α∗) = Λ1(e). Consequently, Λ1(e) = ζ.

To prove that Λ1 is monotone, recall the definitions made in (2). We can evaluate the
integral ||r(·, e)−3||α, α ∈ [1,∞) using the change of variable of the eccentric anomaly t =
u− e sinu and get

||r(·, e)−3||αα =

∫ π

0

du

(1− e cosu)3α−1
, (50)

differentiating with respect to e and applying properties of the cosine we obtain

d

de
||r(·, e)−3||αα = (3α− 1)

∫ π

0

cosu

(1− e cosu)3α
du

= (3α− 1)

∫ π/2

0

(
1

(1− e cosu)3α
− 1

(1 + e cosu)3α

)
cosu du.

The last integral is clearly positive and, since

d

de
||r(·, e)−3||αα = α||r(·, e)−3||α−1

α

d

de
||r(·, e)−3||α,

the function ||r(·, e)−3||α is increasing in e. In consequence, according to the definition (17),
each Λ0(·, α) is strictly decreasing for α ∈ [1,∞). The same can be said about Λ0(·,∞) since,
according to (49), ||r(·, e)−3||∞ = (1− e)−3. This implies also that Λ1 is monotone.

Now let us prove that Λ1(0) = 1. First note that it is easy to compute that Λ0(0,∞) =
Kπ(2) = 1, then Λ1(0) ≥ 1. On the other hand, we can apply Theorem 5 in [26] to our equation
(20), which for e = 0 is simply ÿ + Λy = 0. In this case, the first anti-periodic eigenvalue is
1/4, then, using the identities (22) again and the definition of Λ0(0, α), we get the following
inequalities

1 > Λ0(0, 1), 1 ≥ Λ0(0, α), α ∈ (1,∞],

which lead to Λ1(0) ≤ 1. This proves the claim.
Now consider the asymptotic behavior. Note that the integrand in (50) is positive and has a

singularity at u = 0 for e = 1, actually, it behaves as u−2(3α−1) as u→ 0+, making the integral
diverges. This is the reason why ||r(·, e)−3||α → ∞ as e → 1− for each α ∈ [1,∞), and, as a
result, Λ0(e, α) → 0. The same happens for the case α = ∞ as we did before. To be able to
take the maximum, the limit Λ0(e, α) → 0 as e → 1− should be uniform, but so far we have
shown only the pointwise convergence. To obtain this property we can apply Dini’s Theorem
(see Theorem 7.13 in [23]) thanks to the fact that Λ0(e, α) is continuous in the compact set of
values α ∈ [1,∞] for each e, and it is monotone in e for each α. We can take any set of values
{en} ⊂ [0, 1), such that en < en+1, and en → 1− as n→∞, and apply the mentioned theorem
to the functions fn(α) = Λ0(en, α). As a result, Λ0(e, α)→ 0 uniformly in α as e→ 1−, which
guarantees that Λ1(e)→ 0.
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B Proof of Lemma 5

Note that if Θ(t) satisfies (38), then ω(t) = Θ̇(t) satisfies the equation

ω̇ + δD(t, e)ω = b0(t), b0(t) = −2f̈(t, e)− Λ

r(t, e)3
sin[Θ(t)],

by variation of constants we see that if ω0 = ω(t0),

ω(t) = ω0 exp

(
−δ
∫ t

t0

D(s, e)ds

)
+

∫ t

t0

b0(s) exp

(
−δ
∫ t

s
D(τ, e)dτ

)
ds,

and, since D is positive,

|ω(t)| ≤ |ω0|+
∫ t0+2π

t0

|b0(s)|ds ≤ |ω0|+ C, (51)

where we defined
C = 2||f̈(·, e)||1 + Λ||r(·, e)−3||1,

where || · ||1 is the L1[0, 2π]-norm.
Since the solution Θ(t) is 2π-periodic, then, we could choose t0 such that Θ̇(t0) = ω0 = 0,

then, C is a bound for |Θ̇(t)|.

C Computation of constants κ0, κ, C0, C1, C12, C22

Consider a vector x = (Θ0, ω0)T ∈ R2 and let Θ = Θ(t; δ, x) be the solution of (38) with initial
conditions Θ(0) = Θ0, Θ̇(0) = ω0 for fixed (e,Λ). Let us call ω(t; δ, x) = Θ̇(t; δ, x) and

φt(δ, x) =

Θ(t; δ, x)

ω(t; δ, x)

 .

Note that Φ(t) = ∂xφt(δ, x) ∈ R2×2 is the matrix solution of

ẏ = A(t)y, y(0) = 1,

where

A(t) =

 0 1

− Λ
r(t,e)3 cos[Θ(t; δ, x)] −δD(t, e)

 ,

then, for 0 ≤ s ≤ t ≤ T = 2π,

Φ(t)Φ(s)−1 = 1+

∫ t

s
A(τ)Φ(τ)Φ(s)−1dτ,

taking matrix norms and using Gronwall’s inequalities, we have that

||Φ(t)Φ(s)−1|| ≤ exp

(∫ t

s
||A(τ)||dτ

)
≤ exp

(∫ T

0
||A(τ)||dτ

)
.
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Using the maximum norm we get

||A(τ)|| ≤

 max{T,Λ|r(τ, e)−3|} if δ = 0,

max
{
T,Λ|r(τ, e)−3|+ δ|D(τ, e)|

}
if δ > 0,

in consequence, using the subscript 0 for the case δ = 0, we have that

||Φ0(t)Φ0(s)−1|| ≤ κ0 = exp
(
max

{
T,Λ||r(·, e)−3||1

})
,

where || · ||1 is the L1[0, T ]-norm. Note that, for δ = 0, it is also true that ||A(τ)T|| ≤
max{T,Λ|r(τ, e)−3|}, then, ||Φ0(t)T|| ≤ κ0. Fixing a value δ∗ > 0, for δ ∈ (0, δ∗] we have

||Φ(t)Φ(s)−1|| ≤ κ = exp
(
max

{
T,Λ||r(·, e)−3||1 + δ∗||D(·, e)||1

})
.

The previous bounds are valid for all the initial conditions x ∈ R2.
For

G(δ, x) = F(δ,R(x)) = φT (δ,R(x))−R(x),

where R is defined in (42), we want to find some positive constants such that

C1 ≥ ||∂δG(δ, x)||, C12 ≥ ||∂δxG(δ, x)||, C22 ≥ ||∂xxG(δ, x)||.

Computing the derivatives,
∂δG(δ, x) = ∂δφT (δ,R(x)),

∂δxG(δ, x) = ∂δxφT (δ,R(x))∂xR(x),

∂2G
∂xi∂xj

(δ, x) = ∂xxφT (δ,R(x))

[
∂R
∂xi

,
∂R
∂xj

]
+ (∂xφT (δ,R(x))− 1)

[
∂2R
∂xi∂xj

]
,

where, in the last expression, ∂xxφT is considered as a bilinear map and (∂xφT − 1) as a linear
map. We can see that the non-vanishing derivatives of R appearing above are

∂R
∂x1

=

1

0

 ,
∂R
∂x2

=

 0

M′(x2)

 ,
∂2R
∂x2

2

=

 0

M′′(x2)

 ,

then, particularly,

∂2G
∂x2

1

(δ, x) =
∂2φT
∂x2

1

(δ,R(x)),
∂2G

∂x1∂x2
=

∂2φT
∂x1∂x2

(δ,R(x))M′(x2),

∂2G
∂x2

2

(δ, x) = (M′(x2))2∂
2φT
∂x2

2

(δ,R(x)) + (∂xφT (δ,R(x))− 1)

 0

M′′(x2)

 .

Taking into account that |M′(x2)| ≤ 1 and |M′′(x2)| ≤ 3
√

3/8, the constants C1, C12 and
C22 are going to be defined in terms of bounds for the derivatives of φT (δ,R(x)).

The function ∂δφt(δ, x) is a solution of

ẏ = A(t)y + b1(t), y(0) = 0,
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where

b1(t) =

 0

−D(t, e)ω(t; δ, x)

 .

By variation of constants

∂δφt(δ, x) =

∫ t

0
Φ(t)Φ(s)−1b1(s)ds,

then, in order to find a bound for ||∂δφT (δ,R(x))||, first we need to find a bound for |ω(t; δ,R(x))|.
Note that the expression (51) is valid for all the initial conditions ω0 = ω(0; δ, x), but in our
case |M(ω0)| ≤ C + π/2, then,

|ω(t; δ,R(x))| ≤ 2C + π/2.

Consequently,

||∂δφT (δ,R(x))|| ≤
∫ T

0
||Φ(T )Φ(s)−1|| ||b1(s)||ds ≤ C1 = κ||D(·, e)||1(2C + π/2).

We see that ∂δxφt(δ, x) is a matrix solution of

ẏ = A(t)y + b12(t), y(0) = 0,

where

b12(t) =

 0 0

Λ
r(t,e)3∂δΘ(t; δ, x) sin[Θ(t; δ, x)] −D(t, e)

Φ(t),

then,

||∂δxφT (δ,R(x))|| ≤
∫ T

0
||Φ(T )Φ(s)−1|| ||b12(s)||ds ≤ C12,

with C12 = κ2(C1Λ||r(·, e)−3||1 + ||D(·, e)||1).

Finally, we observe that ∂2φt
∂xi∂xj

is solution of

ẏ = A(t)y + bij22(t), y(0) = 0,

where

bij22(t) =

 0

Λ
r(t,e)3

∂Θ
∂xi

∂Θ
∂xj

sin Θ

 ,

then, ∣∣∣∣∣∣∣∣ ∂2φT
∂xi∂xj

(δ,R(x))

∣∣∣∣∣∣∣∣ ≤ ∫ T

0
||Φ(T )Φ(s)−1|| ||bij22(s)||ds ≤ κ3Λ||r(·, e)−3||1.

In consequence,

||∂xxG(δ, x)|| ≤
∑

i,j∈{1,2}

∣∣∣∣∣∣∣∣ ∂2G
∂xi∂xj

∣∣∣∣∣∣∣∣ ≤ C22 = 4κ3Λ||r(·, e)−3||1 +
3
√

3(1 + κ)

8
.
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Finally, in our case, δ0 = 0 and x0 = (0, Θ̇∗(0))T. We know that |Θ̇∗(0)| ≤ C, since Θ∗(t) is
a T -periodic solution, then, R(x0) = x0 and ∂xR(x0) = 1, so, we have to find a bound for the
norm of

(∂xG(0, x0))−1 = (∂xφT (0, x0)− 1)−1.

For any matrix M ∈ R2×2,

M−1 = −JM
TJ

detM
, J =

 0 1

−1 0

 ,

since ||J || = 1, then,

||M−1|| ≤ ||M
T||

|detM |
,

on the other hand, define ∆0 = Tr(∂xφT (0, x0)), since ∂xφT (0, x0) is a symplectic matrix, we
have that det(∂xφT (0, x0)T − 1) = 2−∆0. In consequence,

||(∂xG(0, x0))−1|| ≤ C0 =
1 + κ0

|2−∆0|
.

D Proof of Lemma 6

The change of variables η(t) = exp
(

1
2

∫ t
0 c(s)ds

)
y(t), transforms (44) into

η̈ +
(
a(t) + b̃(t)

)
η = 0,

where

b̃(t) = b(t)− 1

4
c(t)2 − 1

2
ċ(t).

We observe that (44) is asymptotically stable if the equation for η is stable. If we call

Y =

η
η̇

, we obtain the equation

Ẏ =
(
A0(t) + b̃(t)N

)
Y,

where

A0(t) =

 0 1

−a(t) 0

 , N =

 0 0

−1 0

 .

Let Φ(t) be the matrix solution with Φ(0) = 1. Then, by variation of constants, the
equation is equivalent to

Φ(t) = Φ0(t) +

∫ t

0
Φ0(t)Φ0(s)−1b̃(t)NΦ(s)ds.

Since the maximum norm of N is 1, then,

||Φ(t)|| ≤ κ0 + κ0µ

∫ t

0
||Φ(s)||ds,
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using Gronwall’s Lemma,
||Φ(t)|| ≤ κ0 exp (κ0µt) ,

in consequence,

||Φ(t)− Φ0(t)|| ≤ κ2
0µ

∫ t

0
exp (κ0µs) ds = κ0(exp (κ0µt)− 1).

For any real square matrix M , |TrM | ≤ 2rs(M) ≤ 2||M ||, where rs is the spectral radius.
If ∆ = Tr Φ(T ) and, using hypothesis (45),

|∆−∆0| ≤ 2κ0(exp (κ0µT )− 1) < 2− |∆0|.

We conclude that |∆| < 2.

E Computation of equation (47)

By variation of constants in (46) we get thatη(t)

η̇(t)

 = Φ̂(t)

η(0)

η̇(0)

+

∫ t

0
Φ̂(t)Φ̂−1(s)

 0

Q(s)

 ds,

where Φ̂(t) is the matrix solution of the homogeneous equation η̈+P (t)η = 0. Note that, since
|P (t)| ≤ Λ

r(t,e)3 , we have that

||Φ̂(t)|| ≤ κ0 = exp
(
max

{
2π,Λ||r(·, e)−3||1

})
,

exactly as in the computation of κ0 in Appendix C. Moreover, note that∣∣∣∣∣∣
∣∣∣∣∣∣
η(0)

η̇(0)

∣∣∣∣∣∣
∣∣∣∣∣∣ = ||χ(δ)− χ(0)|| ≤ R,

since |Q(t)| ≤ ρCD(t, e), we get that

|Θ∗δ(t)−Θ∗0(t)| ≤ κ0R+ κ0ρC||D(·, e)||1.
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