SUPPLEMENTARY MATERIAL

EVALUATING THE RELIABILITY OF SPECIFIC AND GLOBAL METHODS TO ASSESS THE PHENOLIC CONTENT OF VIRGIN OLIVE OIL: DO THEY DRIVE TO EQUIVALENT RESULTS?

Lucía Olmo-García¹, Carmen Fernández-Fernández¹, Ana Hidalgo², Pedro Vílchez², Alberto Fernández-Gutiérrez¹, Rosa Marchal², Alegría Carrasco-Pancorbo¹

¹Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071, Granada, Spain.

² CM Europa, Carretera Fuensanta s/n, 23600, Martos (Jaén), Spain.

*Corresponding author:

Dr. A. Carrasco-Pancorbo, Research Group FQM-297, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain.

E-mail: <u>alegriac@ugr.es</u>

Telephone: +34 958 242785

Fig. 1 SM. (I, II, III) Correlations between the sum of concentrations found for each determined phenolic compound by the LC-MS profiling method and total phenolic content determined by the three different non-specific methods for the 50 EVOO samples under evaluation (results expressed in molar basis). (IV, V, IV) Same correlations as above, excluding elenolic acid and derivatives from the sum of individual compounds determined by LC-MS (results expressed in mg/kg).

Fig. 2 SM. Correlations between the total phenolic content determined by the three different non-specific methods for the 50 EVOO samples under evaluation. Results expressed in molar basis.

Fig. 3 SM. Correlations between HTY (I) and TY (II) related compounds determined after acid hydrolysis and by the LC-MS method, expressed in terms of the corresponding phenolic alcohol. Correlation between the theoretically calculated and the actual molar concentration of HTY (III) and TY (IV) after hydrolysis.

Table 1SM. Advantages and drawbacks of the evaluated methodologies.

	Advantages	Drawbacks	Green aspects
FC colorimetric assay	- Global index	- Low selectivity	- Sample size: 10 g oil
	- Fast	- Reducing substances may cause	- Sample prep: 6 mL solvent (3.6 mL
	- Cheap instrumentation	interferences	MeOH + 2.4 mL water)/g oil + 0.25
	- Equivalent result to the hydrolysis	- Results differ depending on the	mL FC reagent
	approach (appropriate for the	used standard	
	health claim requirements)	- Cannot give information about the	
		phenolic profile	
IOC HPLC method	- Global index	- Overlapped peaks	- Sample size: 2 g oil
	- Could allow individual	- Considers equal response factor	- Sample prep: 2.5 mL solvent (2 mL
	quantification of non-coeluting	for all the analytes	MeOH + 0.5 mL water)/g oil; 15 min
	compounds	- Omit EA and derivatives	ultrasounds
	- Easy to apply	- Long chromatographic run time	- Chromatographic separation: 82
	- Affordable instrumentation		mL solvent (ACN/MeOH/acidified
			water) per sample
Hydrolysis approach	- Secoiridoids indirect global	- Chemical reaction required (6 h)	- Sample size: 1.5 g oil
	measurement (appropriate for the	- Does not consider other relevant	- Sample prep: 20 mL solvent (2.5
	health claim requirements)	families of phenolic compounds	mL HCl + 17.5 mL water)/g oil; 6 h
	- Allows differentiation among TY-	- The efficiency of the hydrolysis	orbital shaker
	related and HTY-related substances	reaction should be validated for	- Chromatographic separation: 20
	- Chromatographic run time could	VOOs with very high phenolic	mL solvent (ACN/acidified water)
	be shortened	content	per sample
	- Easy to carry out		
	- Affordable instrumentation		
LC-MS profiling	- Information about 24 individual	- Questionable artificial sum to	- Sample size: 2 g oil
	phenolic compounds	generate a global index	- Sample prep: 3 mL solvent (1.8 mL
	- Allows the individual	- Expensive instrumentation	MeOH + 1.2 mL water)/g oil; 6 min
	determination of the compounds to	- High cost of commercial standards	vortex
	which the health claim refers	- Difficult isolation of non	- Chromatographic separation: 20
		commercially available standards	mL solvent (ACN/acidified water)
		- Short linear dynamic ranges for	per sample
		quantification	